JPH0434254Y2 - - Google Patents

Info

Publication number
JPH0434254Y2
JPH0434254Y2 JP1987195742U JP19574287U JPH0434254Y2 JP H0434254 Y2 JPH0434254 Y2 JP H0434254Y2 JP 1987195742 U JP1987195742 U JP 1987195742U JP 19574287 U JP19574287 U JP 19574287U JP H0434254 Y2 JPH0434254 Y2 JP H0434254Y2
Authority
JP
Japan
Prior art keywords
bearing
cylindrical
synthetic resin
case
lower case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987195742U
Other languages
Japanese (ja)
Other versions
JPH01100922U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987195742U priority Critical patent/JPH0434254Y2/ja
Publication of JPH01100922U publication Critical patent/JPH01100922U/ja
Application granted granted Critical
Publication of JPH0434254Y2 publication Critical patent/JPH0434254Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/60Polyamides [PA]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/70Polyesters, e.g. polyethylene-terephthlate [PET], polybutylene-terephthlate [PBT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/76Polyolefins, e.g. polyproylene [PP]
    • F16C2208/78Polyethylene [PE], e.g. ultra-high molecular weight polyethylene [UHMWPE]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/05Vehicle suspensions, e.g. bearings, pivots or connecting rods used therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 本考案は合成樹脂軸受、とくに四輪自動車にお
けるストラツト型サスペンシヨン(マクフアーソ
ン式)に組込まれて好適な合成樹脂軸受に関する
ものである。 〔従来の技術〕 一般にストラツト型サスペンシヨンは主として
四輪自動車の前輪に用いられ、主軸と一体となつ
た外筒の中に油圧式シヨツクアブソーバを内蔵し
たストラツトアツセンブリにコイルバネを組合わ
せたものである。上記サスペンシヨンには、ス
トラツトの軸線に対してコイルバネの軸線を積極
的にオフセツトさせ、該ストラツトに内蔵された
シヨツクアブソーバのピストンロツドの摺動を円
滑に行わせる構造とストラツトの軸線に対して
コイルバネの軸線を同一に配置させる構造のもの
とがある。いずれの構造においても、ステアリン
グ操作によりストラツトアツセンブリがコイルバ
ネとともに回転するさい、当該回転を円滑に許容
するべく車体の取付部材とコイルバネの上部バネ
座シートとの間に軸受が配されている。 そして、この軸受には車体荷重(スラスト荷
重)を支持するとと同時に前記サスペンシヨンの
構造に起因するラジアル荷重、すなわち前者の構
造においてはコイルバネの軸線がストラツトの軸
線に対してオフセツトされているため、静止状態
においてもコイルバネのストラツト軸線方向への
復元力によつて生じるラジアル荷重、また後者の
構造においてはストラツト軸線とコイルバネ軸線
とを同一軸線上に配置するという製作上の困難性
に起因するミスアライメントによつて生じるラジ
アル荷重を円滑に許容する性能が要求される。 しかして、上述した性能を満足するべく従来よ
り、当該軸受にはボールを使用したころがり軸受
あるいは合成樹脂製すべり軸受が使用されてい
る。 〔考案が解決しようとする問題点〕 しかしながら、上述した従来のころがり軸受は
微小揺動、振動荷重等によりボールに疲労破壊を
生ずる恐れがあり、円滑なステアリング操作を長
期間にわたつて維持しがたいという問題点があ
る。また合成樹脂製すべり軸受は上記ころがり軸
受に比べて摩擦係数が高くステアリング操作を重
くするという問題点がある。さらに、いずれの軸
受においても摺動面への塵埃等の異物の混入を防
止するべく装着されたゴム弾性体からなるダスト
シールの摩擦力が高いことに起因するステアリン
グ操作を重くするという問題点、とくに合成樹脂
製すべり軸受においてはステアリング操作を一層
重くするという問題点がある。 本考案は上記従来技術の問題点を解決するべく
なされたもので、ゴム弾性体からなるダストシー
ルを使用することなく摺動面への塵埃等の侵入を
防止し、スラスト荷重ならびにラジアル荷重を円
滑に許容してステアリング操作を長期間にわたつ
て円滑に維持できる合成樹脂軸受を得ることを目
的とするものである。 〔問題点を解決するための手段〕 上述した目的を達成するべく、本考案はつぎの
技術的手段、すなわち構成を採る。 円筒部と該円筒部の端部に一体に形成された径
方向外方に拡がる幅広鍔部を備えた合成樹脂製下
部ケースと、円筒軸受部と該円筒軸受部の端部に
一体に形成された径方向に拡がるスラスト軸受部
を備えた合成樹脂製軸受片と、円筒面部と該円筒
面部に連なる平面部を備えた合成樹脂上部ケース
とからなり、該軸受片は円筒軸受部の内面および
スラスト軸受部の下面を該下部ケースの円筒部外
面および幅広鍔部の上面にそれぞれ摺接せしめて
配されており、該上部ケースは円筒面部および平
面部を該軸受片の円筒軸受部外面およびスラスト
軸受部上面にそれぞれ摺接せしめて配されている
とともに該上部ケースは下部ケースに弾性装着さ
れて組合わされており、該軸受片と上、下部ケー
ス間の摺動面は該上、下部ケース間に形成された
ラビリンス作用による密封部によつて保護されて
いることを特徴とする合成樹脂軸受である。 上述した構成において、上、下部ケースを構成
する合成樹脂は、耐摩耗性、耐衝撃性、耐クリー
プ性などの機械的特性に優れていることが必要で
あり、また該上、下部ケース内に摺接配置せしめ
られる軸受片を構成する合成樹脂は、とくに自己
潤滑性を有するものが好ましく、例えばポリアセ
タール樹脂、ポリアミド樹脂、ポリブチレンテレ
フタレート(PBT)などの熱可塑性ポリエステ
ル樹脂、ポリエチレン、ポリプロピレンなどのポ
リオレフイン樹脂などが良好に使用され、このほ
かポリカーボネート樹脂なども使用し得る。上、
下部ケースには、上記軸受片と同様の合成樹脂が
使用されるが、とくに該軸受片に使用される合成
樹脂と摩擦特性の良好な組合せであつて、しかも
比較的剛性の高い合成樹脂であることが望まし
い。 その望ましい組合わせについて例示すると下表
のとおりである。
[Industrial Field of Application] The present invention relates to a synthetic resin bearing, particularly a synthetic resin bearing suitable for being incorporated into a strut type suspension (McPherson type) of a four-wheeled vehicle. [Prior art] Strut type suspensions are generally used mainly for the front wheels of four-wheeled vehicles, and are made by combining a coil spring with a strut assembly that has a hydraulic shock absorber built into an outer cylinder that is integrated with the main shaft. It is. The above suspension has a structure in which the axis of the coil spring is actively offset with respect to the axis of the strut, so that the piston rod of the shock absorber built into the strut can smoothly slide, and a structure in which the axis of the coil spring is positively offset with respect to the axis of the strut. There is a structure in which the axes are arranged in the same way. In either structure, when the strut assembly rotates together with the coil spring due to steering operation, a bearing is disposed between the mounting member of the vehicle body and the upper spring seat of the coil spring to allow the rotation smoothly. This bearing supports the vehicle body load (thrust load) and at the same time supports the radial load due to the structure of the suspension, that is, in the former structure, the axis of the coil spring is offset from the axis of the strut. Radial load generated by the restoring force of the coil spring in the direction of the strut axis even in a stationary state, and misalignment due to the manufacturing difficulty of arranging the strut axis and the coil spring axis on the same axis in the latter structure. performance is required to smoothly tolerate the radial loads generated by In order to satisfy the above-mentioned performance, rolling bearings using balls or sliding bearings made of synthetic resin have conventionally been used as the bearings. [Problems to be solved by the invention] However, with the conventional rolling bearings mentioned above, there is a risk of fatigue failure of the balls due to minute vibrations, vibration loads, etc., and it is difficult to maintain smooth steering operation over a long period of time. There is a problem with this. Furthermore, synthetic resin sliding bearings have a higher coefficient of friction than the above-mentioned rolling bearings, making steering operations heavier. Furthermore, in all bearings, there is a problem that the steering operation becomes heavy due to the high frictional force of the dust seal made of a rubber elastic body installed to prevent foreign matter such as dust from entering the sliding surface. Synthetic resin sliding bearings have the problem of making steering operations even heavier. The present invention was developed to solve the problems of the conventional technology described above, and it prevents dust from entering the sliding surface without using a dust seal made of rubber elastic material, and smoothly handles thrust loads and radial loads. The object of the present invention is to obtain a synthetic resin bearing that allows steering operation to be maintained smoothly over a long period of time. [Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention adopts the following technical means, that is, the configuration. A synthetic resin lower case including a cylindrical portion and a wide flange extending radially outward formed integrally at the end of the cylindrical portion, a cylindrical bearing portion and an end portion of the cylindrical bearing portion. It consists of a synthetic resin bearing piece with a thrust bearing part extending in the radial direction, and a synthetic resin upper case with a cylindrical surface part and a flat part connected to the cylindrical surface part. The lower surface of the bearing portion is arranged in sliding contact with the outer surface of the cylindrical portion and the upper surface of the wide flange of the lower case, and the upper case has the cylindrical surface portion and the flat portion connected to the outer surface of the cylindrical bearing portion of the bearing piece and the thrust bearing. The upper case is elastically attached to the lower case and combined, and the sliding surface between the bearing piece and the upper and lower cases is the contact between the upper and lower cases. This is a synthetic resin bearing characterized in that it is protected by a sealed portion formed by a labyrinth action. In the above configuration, the synthetic resin that makes up the upper and lower cases must have excellent mechanical properties such as abrasion resistance, impact resistance, and creep resistance. The synthetic resin constituting the bearing piece that is arranged in sliding contact is preferably one that has self-lubricating properties, such as polyacetal resin, polyamide resin, thermoplastic polyester resin such as polybutylene terephthalate (PBT), or polyolefin such as polyethylene or polypropylene. Resins and the like are preferably used, and polycarbonate resins and the like may also be used. Up,
The lower case is made of the same synthetic resin as the above-mentioned bearing piece, and is particularly a synthetic resin that has a good combination of frictional properties with the synthetic resin used for the bearing piece, and is relatively rigid. This is desirable. Examples of desirable combinations are shown in the table below.

〔試験条件〕〔Test conditions〕

スラスト荷重:350Kg、揺動角度:±35° 揺動速度:60cpm 潤滑:始動時シリコングリースを摺動面に塗布 なお、摩耗量は、上記試験を100万サイクル行
つた後の軸受片の寸法変化量(mm)を示す。 このように、上、下部ケースおよび軸受片の合
成樹脂を上記試験結果に基づいて選択することに
より優れた摩擦特性を有する合成樹脂軸受を得る
ことができる。 〔作用・効果〕 上述した構成からなる本考案の合成樹脂軸受は
以下に述べる特有の作用効果を有する。 合成樹脂軸受に、サスペンシヨンの構造に起
因するラジアル荷重が作用した場合でも、当該
ラジウル荷重は該下部ケースの円筒部外面と軸
受片の円筒軸受部内面あるいは軸受片の円筒軸
受部外面と該上部ケースの円筒面部内面との間
のいずれか摩擦係数の小さい方の摺動によつて
円滑に許容される。また、車体重量は、該下部
ケースの幅広鍔部の上面と軸受片のスラスト軸
受下面および該軸受片のスラスト軸受部上面と
上部ケースの平面部とで支持するとともにスラ
スト荷重は該下部ケースの幅広鍔部の上面と軸
受片のスラスト軸受部下面あるいは該軸受片の
スラスト軸受部上面と上部ケースの平面部との
間のいずれか摩擦係数の小さい方の摺動によつ
て許容される。 軸受片と上、下部ケース間の摺動面は、該
上、下部ケース間に形成されたラビリンス作用
による密封部によつて保護されているので、当
該摺動面への塵埃等の侵入は防止され、塵埃等
の侵入に起因する摩擦特性の低下はなく円滑な
ステアリング操作が長期間にわたつて維持され
る。 上記の効果により、従来のゴム弾性体から
なるダストシールは不要となり、ダストシール
に起因するステアリング操作時の操舵力の増大
はない。 上部ケースと下部ケースとは弾性挿着によつ
て組合わされるので、その組立て作業は極めて
容易となるばかりでなく、該軸受はユニツトと
して取り扱えるので当該軸受のストラツトアツ
センブリへの組付けが極めて容易となる。 〔実施例〕 以下、本考案をその実施例を示す添付図面の第
1図乃至第4図によつて詳細に説明する。 第1図乃至第2図は第1実施例を示すものであ
る。 図において、1は合成樹脂軸受であり、該軸受
1は合成樹脂製下部ケース2と合成樹脂製上部ケ
ース3と該上、下部ケース内に配される合成樹脂
製軸受片4とからなる。 該合成樹脂製下部ケース2は円筒部21と該円
筒部21の下端に一体に形成された径方向外方に
拡がる幅広鍔部22と該鍔部22の上面に該円筒
部21と径方向に所定間隔へだてて形成された環
状突起部23と該環状突起部23と環状溝24を
隔てて該鍔部22の周縁部に形成された係合突起
部25と該円筒部21の端面に該円筒部21の内
面と段部26をもつて拡径する環状拡径突部27
とを備えている。 該係合突起部25はその外周面に該突起部25
の端部から外方に向けて傾斜するテーパ面部25
aと該テーパ面部25aと連続し該幅広鍔部22
の外周面に連なつて傾斜するテーパ面部25bを
備えている。 該合成樹脂製上部ケース3は円筒面部31と該
円筒面部31の下端に連なる平面部32と該円筒
面部31の上端部に一体に形成された下方に開口
する環状凹溝33を有する径方向突出部34と該
平面部31の下面に該円筒面部31と径方向に所
定間隔へだてて形成された環状垂下部35と該垂
下部35と環状溝36を隔てて該平面部32の外
周縁に形成された係合垂下部37とを備えてい
る。 該係合垂下部37はその内周面に基部から外方
に向けて傾斜するテーパ面部37aと該テーパ面
部37aと連続し該垂下部37の下端に連なつて
傾斜するテーパ面部37bを備えている。 38は該上部ケース3に形成された複数個の中
空部であり、該中空部38により該上部ケース3
はその肉厚が可及的に均一に形成されている。 該合成樹脂軸受片4は円筒軸受部41と該円筒
軸受部41の下端に一体に形成された径方向外方
に拡がるスラスト軸受部42とを備えている。 該合成樹脂軸受片4は該円筒軸受部41の内面
を該下部ケース2の円筒部21外周面に、該スラ
スト軸受部42の下面を該下部ケース2の幅広鍔
部22の上面にそれぞれ摺接されて配されてお
り、該上部ケース3は該円筒面部31を該軸受片
4の円筒部41外面に、該平面部32を該軸受片
4のスラスト軸受部42の上面にそれぞれ摺接さ
せるとともに径方向突出部34の環状凹溝33を
該下部ケース2の環状拡径突部27に、環状垂下
部35を該下部ケース2の環状溝24にそれぞれ
係合させ、かつ係合垂下部37を該下部ケース2
の係合突起部25に弾性装着させて相対回転可能
に組合わされている。 そして、該上部ケース3の径方向突出部34の
環状凹溝33と該下部ケース2の環状拡径突部2
7との係合部、該上部ケース3の環状垂下部35
と下部ケース2の環状溝24との係合部および該
上部ケース3の係合垂下部37と下部ケース2の
係合突起部25との弾性装着部にはそれぞれラビ
リンス作用による密封部が形成されており、該密
封部により該軸受片4と上、下部ケース3,2間
に形成される摺動面は外部からの塵埃等異物の侵
入から保護されている。 第3図は上述した構成からなる合成樹脂軸受1
をストラツト型サスペンシヨンに適用した例を示
す縦断面図、第4図は第3図の部分拡大断面図で
ある。 該ストラツト型サスペンシヨンは、車軸と一体
となつた外筒Cの中に油圧式シヨツクアブソーバ
(オイルダンパ)を内蔵したストラツトアツセン
ブリAにコイルスプリングBを組合わせてなるも
ので、第3図中、SはコイルスプリングBの上部
バネ座シートである。該ストラツトアツセンブリ
AのピストンロツドRはマウントインシユレータ
Mを介して車体側取付部材Dに結合されている。 このストラツト型サスペンシヨンはコイルスプ
リングBから入力される大荷重を軸受を介して車
体側へ、シヨツクアブソーバのピストンロツドR
から入力される微振動荷重をマウントインシユレ
ータMを介して車体側へ伝達させる型式のもので
ある。 そして、合成樹脂軸受1は、下部ケース2の円
筒部21内面を上部バネ座シートSの突起部S1
係合させ、幅広鍔部22の下面を該上部バネ座シ
ートSの平面部S2に着座させる。上部ケース3の
上面を車体側取付部材Dに一体的に固定され周縁
部に湾曲部E1を有する係合板Eの下面に当接さ
せ、外周面を該湾曲部E1に係合させ、該合成樹
脂軸受1の上、下部ケース3,2は軸受片4を介
して相対回転可能に該上部バネ座シートSと車体
側取付部材Dとの間に配置されている。 第5図は合成樹脂軸受の第2実施例を示す縦断
面図である。 この第2実施例は、前期第1実施例の合成樹脂
軸受1の合成樹脂製上部ケース3の構成を変更す
ることにより、他のストラツト型サスペンシヨン
への適用を可能としたものである。 すなわち、上部ケース3は円筒部31aと該円
筒部31aの上端に内方に突出して形成された径
方向突出部34と該円筒部31aの下端に一体に
形成された径方向外方に拡がる平面部32と該平
面部32の下面に該円筒部31aと径方向外方に
所定間隔へだてて形成された環状垂下部35と該
垂下部35と環状溝36を隔てて該平面部32の
外周縁に形成された係合垂下部37とを備えてい
る。 該係合垂下部37はその内周面に基部から外方
に向けて傾斜するテーパ面部37aと該テーパ面
部37aと連続し該垂下部37の下端に連なつて
傾斜するテーパ面部37bを備えている。 下部ケース2は円筒部21の端部外周面に形成
された環状段部26aを備えており、その他の構
成は前期第1実施例と同様の構成を採る。 そして、前期第1実施例と同様の構成を採る合
成樹脂軸受片4は該円筒軸受部41の内面を該下
部ケース2の円筒部21外周面に、該スラスト軸
受部42の下面を該下部ケース2の幅広鍔部22
の上面にそれぞれ摺接させて配されており、該上
部ケース3は該円筒部31の内面円筒面部を該軸
受片4の円筒部41外面に、該平面部32を該軸
受片4のスラスト軸受部42の上面にそれぞれ摺
接させるとともに径方向突出部34を該下部ケー
ス2の環状段部26aに、環状垂下部35を該下
部ケース2の環状溝24にそれぞれ係合させ、か
つ係合垂下部37を該下部ケース2の係合突起部
25に弾性装着させて相対回転可能に組合わされ
ている。 そして、該上部ケース3の径方向突出部34と
該下部ケース2の環状段部26aとの係合部、該
上部ケース3の環状垂下部35と下部ケース2の
環状溝24との係合部および該上部ケース3の係
合垂下部37と下部ケース2の係合突起部25と
の弾性装着部にはそれぞれラビリンス作用による
密封部が形成されており、該密封部により該軸受
片4と上、下部ケース3,2間の摺動面は外部か
らの塵埃等異物の侵入から保護されている。 第6図は上記第2実施例の合成樹脂軸受1を前
記第3図に示したサスペンシヨンとは異なる型式
のサスペンシヨンに適用した例である。 すなわち、このサスペンシヨンはコイルスプリ
ングBから入力される大荷重およびシヨクアブソ
ーバのピストンロツドRから入力される微小振動
荷重をマウントインシユレータMを介して車体側
に伝達する型式である。 そして、合成樹脂軸受1は下部ケース2の円筒
部21内面をピストンロツドRの外周面に摺接嵌
挿せしめるとともに該下部ケース2の幅広鍔部2
2下面を上部バネ座シートSの平面部S1に当接せ
してかつ幅広鍔部22の外周面を該上部バネ座シ
ートSの平面部S2に形成された環状凸部S3に係合
せしめる。該上部ケース3の平面部33上面を車
体側取付部材Dに当接せしめて、該合成樹脂軸受
1の上、下部ケース3,2は軸受片4を介して相
対回転可能に該上部バネ座シートSと車体側取付
部材Dとの間に配置されている。 第7図は合成樹脂軸受1の第3実施例を示す縦
断面図である。 この第3実施例は前述した第4図および第6図
に示したサスペンシヨンへの適用を可能としたも
のである。 図において、合成樹脂製下部ケース2は円筒部
21と該円筒部21の上端に一体に形成された径
方向外方に拡がる幅広鍔部22と該円筒部21の
下端に一体に形成された内方に突出する径方向突
出部28を備えており、その他の構成は前記第1
実施例と同様の構成を採る。 合成樹脂製軸受片4は円筒軸受部41と該円筒
軸受部41の上端に一体に形成された径方向外方
に拡がるスラスト軸受部42を備えている。 合成樹脂製上部ケース3は円筒部31aと該円
筒部31aの上端に一体に形成された径方向外方
に拡がる平面部32と外円筒部31aの下端外面
に環状係合段部39を備えており、その他の構成
は前記第1実施例と同様の構成を採る。 そして、該軸受片4は該円筒軸受部41の外面
を該下部ケース2の円筒部21内周面に、該スラ
スト軸受部42の下面を該下部ケース2の幅広鍔
部22の上面にそれぞれ摺接させて配されてお
り、該上部ケース3は該円筒部31の外面円筒面
部を該軸受片4の円筒部41内面に、該平面部3
2を該軸受片4のスラスト軸受部42の上面にそ
れぞれ摺接させるとともに環状係合段部39を該
下部ケース2の径方向突出部28に、環状垂下部
35を該下部ケース2の環状溝24にそれぞれ係
合させ、かつ係合垂下部37を該下部ケース2の
係合突起部25に弾性挿着させて相対回転可能に
組合わされている。 そして、該上部ケース3の環状係合段部39と
該下部ケース2の径方向突出部28との係合部、
該上部ケース3の環状垂下部35と下部ケース2
の環状溝24との係合部および該上部ケース3の
係合垂下部37と下部ケース2の係合突起部25
との弾性装着部にはそれぞれラビリンス作用によ
る密封部が形成されており、該密封部により該軸
受片4と上、下部ケース3,2間の摺動面は外部
からの塵埃等異物の侵入から保護されている。 この第3実施例の合成樹脂軸受1は前述した第
4図および第6図に示したサスペンシヨンへの適
用を可能とするもので、第8図は第3実施例の合
成樹脂軸受1を第6図に示すサスペンシヨンと同
様の型式のサスペンシヨンに適用した例を示すも
のである。 合成樹脂軸受1は下部ケース2の円筒部21内
面をピストンロツドRの外周面に摺接嵌挿せしめ
るとともに該下部ケース2の円筒部21を上部バ
ネ座シートSの孔S4に嵌合せしめ、かつ下部ケー
ス2の幅広鍔部22下面を上部バネ座シートSの
平面部S2に当接せしめる。該上部ケース3の平面
部33上面を車体側取付部材Dに当接せしめて、
該合成樹脂軸受1の上、下部ケース3,2は軸受
片4を介して相対回転可能に該上部バネ座シート
Sと車体側取付部材Dとの間に配置されている。 このようにストラツト型サスペンシヨンに組込
まれた各実施例からなる合成樹脂軸受1に、サス
ペンシヨンの構造に起因するラジアル荷重が作用
した場合、当該ラジアル荷重は該下部ケース2の
円筒部21と軸受片4の円筒軸受部41あるいは
軸受片4の円筒軸受部41と該上部ケース3の円
筒面部との間のいずれか摩擦係数の小さい方の摺
動によつて円滑に許容される。 また、車体荷重は、該下部ケース2の幅広鍔部
22の上面と軸受片4のスラスト軸受部42下面
および該軸受片4のスラスト軸受部42上面と上
部ケース3の平面部31下面とで支持されるとと
もにスラスト荷重は該下部ケース2の幅広鍔部2
2の上面と軸受片4のスラスト軸受部42下面あ
るいは該軸受片4のスラスト軸受部42上面と上
部ケース3の平面部31下面との間のいずれか摩
擦係数の小さい方の摺動によつて許容される。 また、軸受摺動面への塵埃等の侵入は、上部ケ
ース3と下部ケース2との間に形成されたラビリ
ンス作用による密封部によつて防止されるので、
当該塵埃等の侵入に起因する摩擦特性の低下は防
止され、長期間にわたる安定したステアリング操
作が維持される。
Thrust load: 350Kg, Rocking angle: ±35° Rocking speed: 60cpm Lubrication: Apply silicone grease to the sliding surface at startup.The amount of wear is the change in the dimensions of the bearing piece after 1 million cycles of the above test. Indicates the amount (mm). As described above, by selecting the synthetic resins for the upper and lower cases and the bearing piece based on the above test results, a synthetic resin bearing having excellent frictional characteristics can be obtained. [Function/Effects] The synthetic resin bearing of the present invention having the above-described configuration has the following unique functions and effects. Even if a radial load due to the structure of the suspension is applied to the synthetic resin bearing, the radial load will be applied to the outer surface of the cylindrical portion of the lower case and the inner surface of the cylindrical bearing portion of the bearing piece, or between the outer surface of the cylindrical bearing portion of the bearing piece and the upper part. Smooth sliding is allowed between the inner surface of the cylindrical surface of the case and the one with the smaller coefficient of friction. The weight of the vehicle is supported by the upper surface of the wide flange of the lower case, the lower surface of the thrust bearing of the bearing piece, the upper surface of the thrust bearing of the bearing piece, and the flat surface of the upper case, and the thrust load is carried by the wide flange of the lower case. This is allowed by sliding between the upper surface of the flange and the lower surface of the thrust bearing of the bearing piece, or between the upper surface of the thrust bearing of the bearing piece and the flat surface of the upper case, whichever has a smaller coefficient of friction. The sliding surface between the bearing piece and the upper and lower cases is protected by a labyrinth seal formed between the upper and lower cases, preventing dust from entering the sliding surface. As a result, smooth steering operation is maintained over a long period of time without deterioration of frictional characteristics due to intrusion of dust and the like. As a result of the above effects, the conventional dust seal made of a rubber elastic body is not required, and there is no increase in steering force during steering operation due to the dust seal. Since the upper case and the lower case are assembled by elastic insertion, the assembly work is not only extremely easy, but also the bearing can be handled as a unit, making it extremely easy to assemble the bearing into the strut assembly. It becomes easier. [Embodiments] Hereinafter, the present invention will be explained in detail with reference to FIGS. 1 to 4 of the accompanying drawings showing embodiments thereof. 1 and 2 show a first embodiment. In the figure, reference numeral 1 denotes a synthetic resin bearing, and the bearing 1 consists of a synthetic resin lower case 2, a synthetic resin upper case 3, and synthetic resin bearing pieces 4 arranged in the upper and lower cases. The synthetic resin lower case 2 includes a cylindrical portion 21, a wide flange 22 integrally formed at the lower end of the cylindrical portion 21 and extending radially outward, and a wide flange 22 extending radially outward from the cylindrical portion 21 on the upper surface of the flange 22. An annular protrusion 23 formed at predetermined intervals, an engaging protrusion 25 formed on the peripheral edge of the flange 22 with an annular groove 24 between the annular protrusion 23 and the cylindrical protrusion 23 on the end surface of the cylindrical part 21. An annular diameter-enlarging protrusion 27 that expands in diameter with the inner surface of the portion 21 and the stepped portion 26
It is equipped with The engagement protrusion 25 has the protrusion 25 on its outer peripheral surface.
Tapered surface portion 25 that slopes outward from the end of
a and the wide flange portion 22 that is continuous with the tapered surface portion 25a.
It is provided with a tapered surface portion 25b that is continuous with the outer circumferential surface of and slopes. The synthetic resin upper case 3 has a radial protrusion having a cylindrical surface portion 31, a flat surface portion 32 continuous to the lower end of the cylindrical surface portion 31, and an annular groove 33 opening downward and integrally formed at the upper end of the cylindrical surface portion 31. an annular hanging portion 35 formed on the lower surface of the flat portion 31 at a predetermined interval in the radial direction from the cylindrical surface portion 31; and an annular hanging portion 35 formed on the outer peripheral edge of the flat portion 32 with an annular groove 36 between the hanging portion 35 and the annular groove 36. The engaging hanging portion 37 is provided with The engaging hanging portion 37 includes, on its inner peripheral surface, a tapered surface portion 37a that slopes outward from the base, and a tapered surface portion 37b that slopes and continues with the tapered surface portion 37a and continues to the lower end of the hanging portion 37. There is. Reference numeral 38 indicates a plurality of hollow parts formed in the upper case 3, and the hollow parts 38 allow the upper case 3 to
is formed so that its wall thickness is as uniform as possible. The synthetic resin bearing piece 4 includes a cylindrical bearing portion 41 and a thrust bearing portion 42 that is integrally formed at the lower end of the cylindrical bearing portion 41 and extends outward in the radial direction. The synthetic resin bearing piece 4 slides the inner surface of the cylindrical bearing portion 41 to the outer peripheral surface of the cylindrical portion 21 of the lower case 2, and the lower surface of the thrust bearing portion 42 to the upper surface of the wide flange portion 22 of the lower case 2. The upper case 3 has the cylindrical surface portion 31 in sliding contact with the outer surface of the cylindrical portion 41 of the bearing piece 4, and the flat portion 32 in sliding contact with the upper surface of the thrust bearing portion 42 of the bearing piece 4. The annular groove 33 of the radial protrusion 34 is engaged with the annular enlarged diameter protrusion 27 of the lower case 2, and the annular hanging part 35 is engaged with the annular groove 24 of the lower case 2, and the engaging hanging part 37 is engaged with the annular groove 24 of the lower case 2. The lower case 2
It is elastically attached to the engaging protrusion 25 of and combined so as to be relatively rotatable. The annular groove 33 of the radial protrusion 34 of the upper case 3 and the annular enlarged diameter protrusion 2 of the lower case 2
7, the annular hanging portion 35 of the upper case 3
A sealing portion is formed by a labyrinth effect at the engaging portion between the upper case 3 and the annular groove 24 of the lower case 2, and at the elastic attachment portion between the engaging hanging portion 37 of the upper case 3 and the engaging projection portion 25 of the lower case 2. The sealing portion protects the sliding surfaces formed between the bearing piece 4 and the upper and lower cases 3 and 2 from intrusion of foreign matter such as dust from the outside. Figure 3 shows a synthetic resin bearing 1 having the above-mentioned configuration.
FIG. 4 is a partially enlarged sectional view of FIG. 3. The strut-type suspension is made up of a strut assembly A that has a hydraulic shock absorber (oil damper) built into an outer cylinder C that is integrated with the axle, and a coil spring B, as shown in Figure 3. Inside, S is the upper spring seat of the coil spring B. A piston rod R of the strut assembly A is connected to a mounting member D on the vehicle body side via a mount insulator M. This strut type suspension transfers the large load input from the coil spring B to the vehicle body through the bearing, and transfers it to the piston rod R of the shock absorber.
This type transmits the slight vibration load input from the mount insulator M to the vehicle body side. Then, the synthetic resin bearing 1 engages the inner surface of the cylindrical portion 21 of the lower case 2 with the protruding portion S 1 of the upper spring seat sheet S, and the lower surface of the wide collar portion 22 engages with the flat surface portion S 2 of the upper spring seat sheet S. have them seated. The upper surface of the upper case 3 is brought into contact with the lower surface of the engagement plate E, which is integrally fixed to the vehicle body side mounting member D and has a curved portion E 1 at the peripheral edge, and the outer peripheral surface is engaged with the curved portion E 1 . The upper and lower cases 3 and 2 of the synthetic resin bearing 1 are arranged between the upper spring seat S and the vehicle body side mounting member D so as to be relatively rotatable via the bearing piece 4. FIG. 5 is a longitudinal sectional view showing a second embodiment of the synthetic resin bearing. This second embodiment can be applied to other strut-type suspensions by changing the structure of the synthetic resin upper case 3 of the synthetic resin bearing 1 of the first embodiment. That is, the upper case 3 includes a cylindrical portion 31a, a radial protrusion 34 formed at the upper end of the cylindrical portion 31a to protrude inwardly, and a flat surface extending outward in the radial direction integrally formed at the lower end of the cylindrical portion 31a. part 32, an annular hanging part 35 formed on the lower surface of the flat part 32 at a predetermined interval radially outward from the cylindrical part 31a, and an outer peripheral edge of the flat part 32 with an annular groove 36 separating the hanging part 35. The engagement hanging portion 37 is formed in the following manner. The engaging hanging portion 37 includes, on its inner peripheral surface, a tapered surface portion 37a that slopes outward from the base, and a tapered surface portion 37b that slopes and continues with the tapered surface portion 37a and continues to the lower end of the hanging portion 37. There is. The lower case 2 includes an annular stepped portion 26a formed on the outer circumferential surface of the end of the cylindrical portion 21, and other configurations are similar to those of the first embodiment. The synthetic resin bearing piece 4, which has the same configuration as the first embodiment, has the inner surface of the cylindrical bearing section 41 on the outer peripheral surface of the cylindrical section 21 of the lower case 2, and the lower surface of the thrust bearing section 42 on the lower case. 2 wide flange 22
The upper case 3 has the inner cylindrical surface of the cylindrical portion 31 contacting the outer surface of the cylindrical portion 41 of the bearing piece 4, and the flat portion 32 contacting the thrust bearing of the bearing piece 4. The radial protrusion 34 is brought into sliding contact with the upper surface of the lower case 2, and the annular hanging part 35 is brought into sliding contact with the annular groove 24 of the lower case 2. The portion 37 is elastically attached to the engagement protrusion 25 of the lower case 2 so as to be relatively rotatable. An engaging portion between the radial protrusion 34 of the upper case 3 and the annular stepped portion 26a of the lower case 2, and an engaging portion between the annular hanging portion 35 of the upper case 3 and the annular groove 24 of the lower case 2. A sealing portion by a labyrinth effect is formed in the elastic attachment portion of the engaging hanging portion 37 of the upper case 3 and the engaging projection portion 25 of the lower case 2, and the sealing portion allows the bearing piece 4 and the upper The sliding surface between the lower cases 3 and 2 is protected from intrusion of foreign matter such as dust from the outside. FIG. 6 shows an example in which the synthetic resin bearing 1 of the second embodiment is applied to a suspension of a different type from the suspension shown in FIG. 3. That is, this suspension is of a type that transmits a large load input from the coil spring B and a minute vibration load input from the piston rod R of the shock absorber to the vehicle body via the mount insulator M. The synthetic resin bearing 1 slides and fits the inner surface of the cylindrical portion 21 of the lower case 2 onto the outer circumferential surface of the piston rod R, and the wide flange 2 of the lower case 2.
2, the lower surface thereof is brought into contact with the flat part S1 of the upper spring seat sheet S, and the outer peripheral surface of the wide collar part 22 is engaged with the annular convex part S3 formed in the flat part S2 of the upper spring seat sheet S. Match. The upper surface of the flat part 33 of the upper case 3 is brought into contact with the vehicle body side mounting member D, and the upper and lower cases 3 and 2 of the synthetic resin bearing 1 are relatively rotatable via the bearing piece 4, so that the upper spring seat seat It is arranged between S and the vehicle body side mounting member D. FIG. 7 is a longitudinal sectional view showing a third embodiment of the synthetic resin bearing 1. This third embodiment can be applied to the suspension shown in FIGS. 4 and 6 described above. In the figure, the synthetic resin lower case 2 has a cylindrical portion 21, a wide flange portion 22 integrally formed at the upper end of the cylindrical portion 21 and expanding outward in the radial direction, and an inner portion integrally formed at the lower end of the cylindrical portion 21. It is provided with a radial protrusion 28 that protrudes in the direction, and the other configuration is the first
The same configuration as in the embodiment is adopted. The synthetic resin bearing piece 4 includes a cylindrical bearing portion 41 and a thrust bearing portion 42 integrally formed at the upper end of the cylindrical bearing portion 41 and extending radially outward. The synthetic resin upper case 3 includes a cylindrical part 31a, a flat part 32 integrally formed at the upper end of the cylindrical part 31a and extending outward in the radial direction, and an annular engagement step part 39 on the outer surface of the lower end of the outer cylindrical part 31a. Other configurations are similar to those of the first embodiment. The bearing piece 4 slides the outer surface of the cylindrical bearing portion 41 onto the inner peripheral surface of the cylindrical portion 21 of the lower case 2, and slides the lower surface of the thrust bearing portion 42 onto the upper surface of the wide flange portion 22 of the lower case 2. The upper case 3 has the outer cylindrical surface portion of the cylindrical portion 31 on the inner surface of the cylindrical portion 41 of the bearing piece 4, and the flat portion 3 on the inner surface of the cylindrical portion 41 of the bearing piece 4.
2 are brought into sliding contact with the upper surface of the thrust bearing part 42 of the bearing piece 4, and the annular engagement step part 39 is brought into contact with the radial protrusion part 28 of the lower case 2, and the annular hanging part 35 is brought into contact with the annular groove of the lower case 2. 24, and the engaging hanging portions 37 are elastically inserted into the engaging protrusions 25 of the lower case 2 so that they can rotate relative to each other. and an engagement portion between the annular engagement step portion 39 of the upper case 3 and the radial protrusion 28 of the lower case 2;
The annular hanging part 35 of the upper case 3 and the lower case 2
the engaging part with the annular groove 24 of the upper case 3, the engaging hanging part 37 of the upper case 3, and the engaging protrusion 25 of the lower case 2.
A sealing portion is formed in each elastic mounting portion of the bearing piece 4 and the upper and lower cases 3 and 2 by a labyrinth action, and the sliding surface between the bearing piece 4 and the upper and lower cases 3 and 2 is protected from the intrusion of foreign matter such as dust from the outside. protected. The synthetic resin bearing 1 of the third embodiment can be applied to the suspensions shown in FIGS. 4 and 6, and FIG. 8 shows the synthetic resin bearing 1 of the third embodiment. This is an example in which the present invention is applied to a suspension of the same type as the suspension shown in FIG. In the synthetic resin bearing 1, the inner surface of the cylindrical portion 21 of the lower case 2 is slidably fitted onto the outer peripheral surface of the piston rod R, and the cylindrical portion 21 of the lower case 2 is fitted into the hole S4 of the upper spring seat S. The lower surface of the wide flange 22 of the lower case 2 is brought into contact with the flat surface S2 of the upper spring seat sheet S. The upper surface of the flat part 33 of the upper case 3 is brought into contact with the vehicle body side mounting member D,
The upper and lower cases 3 and 2 of the synthetic resin bearing 1 are arranged between the upper spring seat S and the vehicle body side mounting member D so as to be relatively rotatable via the bearing piece 4. When a radial load due to the structure of the suspension acts on the synthetic resin bearing 1 of each embodiment incorporated in the strut-type suspension in this way, the radial load is applied to the cylindrical portion 21 of the lower case 2 and the bearing. Smooth sliding is allowed between the cylindrical bearing portion 41 of the piece 4 or the cylindrical bearing portion 41 of the bearing piece 4 and the cylindrical surface portion of the upper case 3, whichever has a smaller coefficient of friction. Further, the vehicle body load is supported by the upper surface of the wide flange 22 of the lower case 2, the lower surface of the thrust bearing portion 42 of the bearing piece 4, the upper surface of the thrust bearing portion 42 of the bearing piece 4, and the lower surface of the flat portion 31 of the upper case 3. At the same time, the thrust load is applied to the wide flange 2 of the lower case 2.
2 and the lower surface of the thrust bearing part 42 of the bearing piece 4, or between the upper surface of the thrust bearing part 42 of the bearing piece 4 and the lower surface of the flat part 31 of the upper case 3, whichever has a smaller coefficient of friction. Permissible. In addition, since the intrusion of dust and the like into the bearing sliding surface is prevented by the labyrinth seal formed between the upper case 3 and the lower case 2,
Deterioration of frictional characteristics due to the intrusion of dust and the like is prevented, and stable steering operation is maintained over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案合成樹脂軸受の第1実施例を示
す縦断面図(第2図の−線断面図)、第2図
は第1図の平面図、第3図は該軸受をストラツト
型サスペンシヨンに適用した例を示す縦断面図、
第4図は第3図の部分拡大断面図、第5図は第2
実施例を示す縦断面図、第6図は第2実施例の軸
受を他のストラツト型サスペンシヨンに適用した
例を示す縦断面図、第7図は第3実施例を示す縦
断面図、第8図は第3実施例の軸受を第6図と同
様の型式のストラツト型サスペンシヨンに適用し
た例を示す縦断面図である。 1……合成樹脂軸受、2……合成樹脂製下部ケ
ース、21……円筒部、22……幅広鍔部、23
……環状突起部、24……環状溝、25……係合
突起部、3……合成樹脂製上部ケース、31……
円筒面部、32……平面部、34……環状垂下
部、35……環状溝、36……係合垂下部、4…
…合成樹脂軸受片、41……円筒軸受部、42…
…スラスト軸受部。
Fig. 1 is a longitudinal cross-sectional view (cross-sectional view taken along the - line in Fig. 2) showing the first embodiment of the synthetic resin bearing of the present invention, Fig. 2 is a plan view of Fig. 1, and Fig. 3 is a strut-type bearing. A vertical cross-sectional view showing an example of application to a suspension.
Figure 4 is a partially enlarged sectional view of Figure 3, and Figure 5 is a cross-sectional view of Figure 2.
6 is a longitudinal sectional view showing an example in which the bearing of the second embodiment is applied to another strut-type suspension; FIG. 7 is a longitudinal sectional view showing the third embodiment; FIG. 8 is a longitudinal sectional view showing an example in which the bearing of the third embodiment is applied to a strut-type suspension of the same type as that of FIG. 6. DESCRIPTION OF SYMBOLS 1...Synthetic resin bearing, 2...Synthetic resin lower case, 21...Cylindrical part, 22...Wide flange part, 23
...Annular protrusion, 24...Annular groove, 25...Engaging protrusion, 3...Synthetic resin upper case, 31...
Cylindrical surface part, 32... Plane part, 34... Annular hanging part, 35... Annular groove, 36... Engagement hanging part, 4...
...Synthetic resin bearing piece, 41...Cylindrical bearing part, 42...
...Thrust bearing section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 円筒部と該円筒部の端部に一体に形成された径
方向外方に拡がる幅広鍔部を備えた合成樹脂製下
部ケースと、円筒軸受部と該円筒軸受部の端部に
一体に形成された径方向に拡がるスラスト軸受部
を備えた合成樹脂製軸受片と、円筒面部と該円筒
面部に連なる平面部を備えた合成樹脂製上部ケー
スとからなり、該軸受片は円筒軸受部の内面およ
びスラスト軸受部の下面を該下部ケースの円筒部
外面および幅広鍔部の上面にそれぞれ摺接せしめ
て配されており、該上部ケースは円筒面部および
平面部を該軸受片の円筒軸受部外面およびスラス
ト軸受部上面にそれぞれ摺接せしめて配されてい
るとともに該上部ケースは下部ケースに弾性装着
されて組合わされており、該軸受片と上、下部ケ
ース間の摺動面は該上、下部ケース間に形成され
たラビリンス作用による密封部によつて保護され
ていることを特徴とする合成樹脂軸受。
A synthetic resin lower case including a cylindrical portion and a wide flange extending radially outward formed integrally at the end of the cylindrical portion, a cylindrical bearing portion and an end portion of the cylindrical bearing portion. It consists of a synthetic resin bearing piece with a thrust bearing part that expands in the radial direction, and a synthetic resin upper case with a cylindrical surface part and a flat part connected to the cylindrical surface part. The lower surface of the thrust bearing is arranged in sliding contact with the outer surface of the cylindrical portion and the upper surface of the wide flange of the lower case. The upper case is arranged in sliding contact with the upper surface of the bearing part, and the upper case is elastically attached to the lower case, and the sliding surface between the bearing piece and the upper and lower cases is the sliding surface between the upper and lower cases. A synthetic resin bearing characterized in that it is protected by a sealed portion formed by a labyrinth action.
JP1987195742U 1987-12-25 1987-12-25 Expired JPH0434254Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987195742U JPH0434254Y2 (en) 1987-12-25 1987-12-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987195742U JPH0434254Y2 (en) 1987-12-25 1987-12-25

Publications (2)

Publication Number Publication Date
JPH01100922U JPH01100922U (en) 1989-07-06
JPH0434254Y2 true JPH0434254Y2 (en) 1992-08-14

Family

ID=31486402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987195742U Expired JPH0434254Y2 (en) 1987-12-25 1987-12-25

Country Status (1)

Country Link
JP (1) JPH0434254Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122233A (en) * 1996-10-21 1998-05-12 Oiles Ind Co Ltd Thrust bearing made of synthetic resin

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001132761A (en) * 1999-11-08 2001-05-18 Koyo Seiko Co Ltd Thrust ball bearing
JP6322889B2 (en) * 2013-02-15 2018-05-16 オイレス工業株式会社 Synthetic plastic plain bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122233A (en) * 1996-10-21 1998-05-12 Oiles Ind Co Ltd Thrust bearing made of synthetic resin

Also Published As

Publication number Publication date
JPH01100922U (en) 1989-07-06

Similar Documents

Publication Publication Date Title
JP2600937Y2 (en) Synthetic resin bearing
EP1548303B1 (en) Sliding bearing
US9458887B2 (en) Synthetic resin-made thrust sliding bearing
US7993061B2 (en) Sliding bearing
US7273317B2 (en) Thrust sliding bearing
US7198406B2 (en) Thrust sliding bearing
WO2012093450A1 (en) Thrust sliding bearing and mounting structure of a strut-type suspension using said thrust sliding bearing
JP3709939B2 (en) Synthetic resin bearing
JPH08159160A (en) Synthetic resin thrust bearing
JP3921714B2 (en) Thrust bearing made of synthetic resin
JPH026263Y2 (en)
JP4174081B2 (en) Synthetic resin bearing
JPH0434254Y2 (en)
JPS6246933Y2 (en)
JPH0452488Y2 (en)
JP2004263771A (en) Thrust sliding bearing
JPH021532Y2 (en)
JPH0732979Y2 (en) Synthetic resin bearing
JPH0221631Y2 (en)
JPH0328183Y2 (en)
JPH0328185Y2 (en)
JPH0131777Y2 (en)
JPS6136827Y2 (en)
JPH0328184Y2 (en)
JP3509195B2 (en) Synthetic resin thrust bearing