JPH04342549A - Production of aminocarboxylic acid salt - Google Patents

Production of aminocarboxylic acid salt

Info

Publication number
JPH04342549A
JPH04342549A JP3308726A JP30872691A JPH04342549A JP H04342549 A JPH04342549 A JP H04342549A JP 3308726 A JP3308726 A JP 3308726A JP 30872691 A JP30872691 A JP 30872691A JP H04342549 A JPH04342549 A JP H04342549A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
aminocarboxylic acid
selectivity
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3308726A
Other languages
Japanese (ja)
Other versions
JP2968104B2 (en
Inventor
Yoshiaki Urano
浦野 好明
Yukio Sumino
角野 幸男
Takakiyo Goto
後藤 隆清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Publication of JPH04342549A publication Critical patent/JPH04342549A/en
Application granted granted Critical
Publication of JP2968104B2 publication Critical patent/JP2968104B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain an aminocarboxylic acid salt useful as a raw material for agricultural chemicals and pharmaceuticals, a chelating agent, a food additive, etc., in high yield and selectivity while suppressing the formation of by- products at a low cost enabling the repeated use of a catalyst. CONSTITUTION:The objective aminocarboxylic acid salt can be produced in high quality at a low cost by the oxidative dehydrogenation reaction of a compound of formula (R<1> and R<2> are H, hydroxyethyl, 1-18C alkyl, 2-3C aminoalkyl or 2-3C hydroxyalkylaminoalkyl) in the presence of an alkali metal and/or alkaline-earth metal hydroxide, a copper-containing catalyst and water while keeping the concentration of chromium ion, manganese ion, zinc ion, molybdenum ion or iron ion in the reaction liquid to <=10ppm each. There is little deterioration of the activity and selectivity of the catalyst after the repeated use of the catalyst and, accordingly, the catalyst can be recycled and reused in many times without using a reprocessing step to enable the simplification of the step and the reduction of the catalyst cost and facility cost.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】  本発明は、農薬、医薬品の原
料、キレート剤、食品添加物等として有用なアミノカル
ボン酸塩の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing aminocarboxylic acid salts useful as agricultural chemicals, raw materials for pharmaceuticals, chelating agents, food additives, and the like.

【0002】0002

【従来の技術】  アミノアルコールを水酸化アルカリ
、水及び銅含有触媒の共存下に反応させてアミノカルボ
ン酸塩を得る方法は知られている(特開昭60−416
44号、特開昭60−41645号、特開昭60−78
948号、特開昭60−78949号、特開昭60−9
7945号、特開昭60−100545号)。
[Prior Art] A method for obtaining an aminocarboxylic acid salt by reacting an aminoalcohol in the coexistence of an alkali hydroxide, water, and a copper-containing catalyst is known (Japanese Patent Laid-Open No. 60-416
No. 44, JP-A-60-41645, JP-A-60-78
No. 948, JP-A-60-78949, JP-A-60-9
No. 7945, JP-A-60-100545).

【0003】これらの方法においては、アミノカルボン
酸塩が約95%程度の高い選択率で得られるが、例えば
モノエタノールアミンを原料としてグリシン塩を製造す
る場合においては蓚酸塩、ジエタノールアミンを原料と
してイミノジ酢酸塩を製造する場合においてはグリシン
塩、トリエタノールアミンを原料としてニトリロトリ酢
酸塩を製造する場合においてはイミノジ酢酸塩、グリシ
ン塩などの副生物も生成する。これらの副生物は目的の
アミノカルボン酸塩の収率や製品純度を低下させるのみ
ならず、得られたアミノカルボン酸塩を更に農薬、医薬
品等の誘導品に導く際に反応や精製の過程で悪影響を及
ぼし、最終誘導品の総合的な収率や製品純度をも低下さ
せる。従って、アミノカルボン酸塩を選択的に高収率で
得る方法が望まれている。
In these methods, aminocarboxylic acid salts can be obtained with a high selectivity of about 95%, but for example, when producing glycine salts using monoethanolamine as a raw material, iminocarboxylic acid salts can be obtained using oxalate and diethanolamine as raw materials. When producing acetate, glycine salt is produced, and when producing nitrilotriacetate using triethanolamine as a raw material, by-products such as iminodiacetate and glycine salt are also produced. These by-products not only reduce the yield and product purity of the desired aminocarboxylic acid salts, but also cause problems during the reaction and purification process when the obtained aminocarboxylic acid salts are further converted into derivatives such as pesticides and pharmaceuticals. It has a negative impact and also reduces the overall yield and product purity of the final derivative. Therefore, a method for selectively obtaining aminocarboxylic acid salts in high yield is desired.

【0004】また、これらの方法においては、高価な触
媒を用いるので反応後の触媒を回収し繰り返し使用して
触媒費用を低減するのが望ましい。しかし、銅含有触媒
は繰り返し使用するにつれ、触媒活性や選択率などの触
媒性能が低下し、回収・再使用するにも限度がある。
Furthermore, since these methods use expensive catalysts, it is desirable to recover the catalyst after the reaction and use it repeatedly to reduce catalyst costs. However, as copper-containing catalysts are repeatedly used, catalytic performance such as catalytic activity and selectivity deteriorates, and there are limits to their recovery and reuse.

【0005】[0005]

【発明が解決しようとする課題】  本発明の目的は、
副生物が少なく、高収率、高選択率で、かつ触媒を多数
回に渡って回収し繰り返し使用でき、経済的に有利にア
ミノカルボン酸塩を製造する方法を提供することにある
[Problem to be solved by the invention] The purpose of the present invention is to
The object of the present invention is to provide an economically advantageous method for producing an aminocarboxylic acid salt with few by-products, high yield, high selectivity, and allowing the catalyst to be recovered and used repeatedly.

【0006】[0006]

【課題を解決するための手段】  本発明者らは、アミ
ノアルコールを銅含有触媒を用いて酸化脱水素してアミ
ノカルボン酸塩を得る方法について種々検討した結果、
反応液中にある種の金属イオンが存在していると触媒の
活性が低下したり前記副生物の生成が促進されることを
見いだし、更に鋭意検討した結果、本発明を完成した。 即ち、本発明は、下記一般式(1)
[Means for Solving the Problems] As a result of various studies on methods for obtaining aminocarboxylate salts by oxidative dehydrogenation of amino alcohols using copper-containing catalysts, the present inventors found that
The inventors discovered that the presence of certain metal ions in the reaction solution lowers the activity of the catalyst and promotes the production of the above-mentioned by-products, and as a result of further intensive studies, the present invention was completed. That is, the present invention provides the following general formula (1)

【0007】[0007]

【化2】[Case 2]

【0008】で表されるアミノアルコールから、アルカ
リ金属の水酸化物及び/又はアルカリ土類金属の水酸化
物、銅含有触媒及び水の共存下での酸化脱水素反応によ
ってアミノカルボン酸塩を製造する方法において、反応
液中のクロムイオン、マンガンイオン、亜鉛イオン、モ
リブデンイオンまたは鉄イオンの濃度をそれぞれ10p
pm以下に維持しながら反応を行うことを要旨とするア
ミノカルボン酸塩の製造方法である。
From the amino alcohol represented by In the method of
This is a method for producing an aminocarboxylic acid salt, the gist of which is to carry out the reaction while maintaining the temperature below pm.

【0009】本発明の方法により、一般式(1)で示さ
れるアミノアルコールの CH2OH基がCOO− 基
に酸化される。一般式(1)のR1 やR2 がヒドロ
キシエチル基の場合、これらの CH2OH基もCOO
− 基に酸化されるが、こうした複数のCOO− 基を
有するアミノカルボン酸の塩を得ることも本発明に含ま
れる。
According to the method of the present invention, the CH2OH group of the amino alcohol represented by the general formula (1) is oxidized to a COO- group. When R1 and R2 in general formula (1) are hydroxyethyl groups, these CH2OH groups are also COO
It is also within the scope of the present invention to obtain salts of aminocarboxylic acids which are oxidized to - groups, but which have a plurality of such COO- groups.

【0010】一般式(1)で示されるアミノアルコール
としては、例えば、モノエタノールアミン、ジエタノー
ルアミン、トリエタノールアミン、N−メチルエタノー
ルアミン、N,N−ジメチルエタノールアミン、N−エ
チルエタノールアミン、N−イソプロピルエタノールア
ミン、N−ブチルエタノールアミン、N−ノニルエタノ
ールアミン、N−(2−アミノエチル)エタノールアミ
ン、N−(3−アミノプロピル)エタノールアミン、N
,N−ジエチルエタノールアミン、N,N−ジブチルエ
タノールアミン、N−メチル  ジエタノールアミン、
N−エチル  ジエタノールアミン、N−イソプロピル
  ジエタノールアミン、N−ブチル  ジエタノール
アミン、N−エチル,N−(2−アミノエチル)エタノ
ールアミン、N−メチル,N−(3−アミノプロピル)
エタノールアミン、テトラヒドロキシエチルエチレンジ
アミン等がある。
Examples of the amino alcohol represented by the general formula (1) include monoethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, N,N-dimethylethanolamine, N-ethylethanolamine, and N-ethylethanolamine. Isopropylethanolamine, N-butylethanolamine, N-nonylethanolamine, N-(2-aminoethyl)ethanolamine, N-(3-aminopropyl)ethanolamine, N
, N-diethylethanolamine, N,N-dibutylethanolamine, N-methyl diethanolamine,
N-ethyl diethanolamine, N-isopropyl diethanolamine, N-butyl diethanolamine, N-ethyl, N-(2-aminoethyl)ethanolamine, N-methyl, N-(3-aminopropyl)
Examples include ethanolamine and tetrahydroxyethylethylenediamine.

【0011】これらの一般式(1)で示されるアミノア
ルコールを原料として対応するアミノカルボン酸がアル
カリ金属の塩及び/またはアルカリ土類金属の塩として
得られる。原料アミノアルコールと得られるアミノカル
ボン酸塩及び主要な副生物の具体例としては、モノエタ
ノールアミンを原料とする場合において得られるアミノ
カルボン酸塩はグリシン塩であり主要な副生物は蓚酸塩
;ジエタノールアミンを原料とする場合に得られるアミ
ノカルボン酸塩はイミノジ酢酸塩、主要な副生物はグリ
シン塩;トリエタノールアミンを原料とする場合に得ら
れるアミノカルボン酸塩はニトリロトリ酢酸塩、主要な
副生物はイミノジ酢酸塩およびグリシン塩である。同様
にその他のアミノアルコールを原料とする場合の[アミ
ノアルコール:得られるアミノカルボン酸塩:主要な副
生物]の組を例示すると、[N−メチルエタノールアミ
ン:N−メチルグリシン塩:蓚酸塩]、[N,N−ジメ
チルエタノールアミン:N,N−ジメチルグリシン塩:
蓚酸塩]、[N−エチルエタノールアミン:N−エチル
グリシン塩:蓚酸塩]、[N−メチルジエタノールアミ
ン:N−メチルイミノジ酢酸塩:N−メチルグリシン塩
]、[N−イソプロピルジエタノールアミン:N−イソ
プロピルイミノジ酢酸塩:N−イソプロピルグリシン塩
]、[N−ブチルジエタノールアミン:N−ブチルイミ
ノジ酢酸塩:N−ブチルグリシン塩]、[N−エチル,
N−(2−アミノエチル)エタノールアミン:N−エチ
ル,N−(2−アミノエチル)グリシン塩:蓚酸塩]、
[テトラヒドロキシエチルエチレンジアミン:エチレン
ジアミン四酢酸塩:蓚酸塩等]などが挙げられる。
Using these amino alcohols represented by the general formula (1) as raw materials, the corresponding aminocarboxylic acids can be obtained as alkali metal salts and/or alkaline earth metal salts. As a specific example of the raw material amino alcohol, the resulting aminocarboxylic acid salt, and the main by-products, when monoethanolamine is used as the raw material, the aminocarboxylic acid salt obtained is glycine salt, and the main by-product is oxalate; diethanolamine. The aminocarboxylate obtained when using triethanolamine as a raw material is iminodiacetate, the main by-product is glycine salt; the aminocarboxylate obtained when using triethanolamine as a raw material is nitrilotriacetate, the main by-product is glycine salt. iminodiacetate and glycine salt. Similarly, when other amino alcohols are used as raw materials, the following is an example of the set [amino alcohol: obtained aminocarboxylate: main by-product]: [N-methylethanolamine: N-methylglycine salt: oxalate] , [N,N-dimethylethanolamine: N,N-dimethylglycine salt:
oxalate], [N-ethylethanolamine: N-ethylglycine salt: oxalate], [N-methyldiethanolamine: N-methyliminodiacetate: N-methylglycine salt], [N-isopropyldiethanolamine: N-isopropylimino diacetate: N-isopropylglycine salt], [N-butyldiethanolamine: N-butyliminodiacetate: N-butylglycine salt], [N-ethyl,
N-(2-aminoethyl)ethanolamine: N-ethyl, N-(2-aminoethyl)glycine salt: oxalate],
Examples include [tetrahydroxyethylethylenediamine: ethylenediaminetetraacetate: oxalate, etc.].

【0012】本発明に用いられる触媒は、銅を必須成分
として含有するものである。銅の原料としては、金属銅
、例えば硝酸塩、硫酸塩、炭酸塩、酸化物、ハロゲン化
物、水酸化物等の無機物、例えば蟻酸塩、酢酸塩、プロ
ピオン酸塩、乳酸塩等の有機酸塩いずれも使用できる。 触媒の形態は特に限定されない。例えば金属銅表面を酸
化後水素により還元してえられた触媒、ラネー銅をアル
カリ水溶液で展開し得られた触媒、蟻酸銅、炭酸銅等を
熱分解及び/または還元して得られた活性化銅をそのま
ま、または耐アルカリ性担体に含浸したり無電解メッキ
したりして担持して使用することができる。好ましい担
体の例としては、酸化チタニウム、酸化ジルコニウム、
シリコンカーバイトなどが挙げられる。特に、反応への
活性、触媒の寿命の点から展開ラネー銅及び、共沈法ま
たは含浸法にて酸化ジルコニウム、シリコンカーバイト
に担持した銅触媒が好適に使用される。触媒の使用量は
、アミノアルコールに対して1〜70重量%、好ましく
は5〜50重量%である。本発明に用いられる触媒の粒
度は小さすぎると触媒の分離の際に不利である。例えば
、触媒を沈降させて分離する場合には沈降速度が遅くな
り、また濾過して分離する場合には濾過速度が遅くなる
。一方、粒度が大きすぎると沈降性は良くなるが、触媒
の分散を良くするために大きな攪拌動力が必要となり、
また触媒の有効表面積が少なくなるので触媒活性が低下
する。従って、触媒の粒度は2〜300μの範囲内であ
るのが好ましい。但し、この反応を固定床流通式の反応
器を用いて行なうような場合は、圧力損失を少なくする
必要があるので触媒の粒度はもっと大きなものが好適で
ある。また、本発明に用いられる触媒の比表面積は小さ
すぎると触媒活性が低くて多量の触媒を用いることにな
る。従って、BET測定法において1m2/g 以上で
あるのが好ましい。
The catalyst used in the present invention contains copper as an essential component. Raw materials for copper include metallic copper, inorganic substances such as nitrates, sulfates, carbonates, oxides, halides, and hydroxides, and organic acid salts such as formates, acetates, propionates, and lactates. can also be used. The form of the catalyst is not particularly limited. For example, a catalyst obtained by oxidizing a metallic copper surface and then reducing it with hydrogen, a catalyst obtained by developing Raney copper with an alkaline aqueous solution, an activated catalyst obtained by thermally decomposing and/or reducing copper formate, copper carbonate, etc. Copper can be used as it is, or by being impregnated into an alkali-resistant carrier or supported by electroless plating. Examples of preferred carriers include titanium oxide, zirconium oxide,
Examples include silicon carbide. In particular, from the viewpoint of reaction activity and catalyst life, expanded Raney copper and copper catalysts supported on zirconium oxide or silicon carbide by coprecipitation or impregnation are preferably used. The amount of catalyst used is 1 to 70% by weight, preferably 5 to 50% by weight, based on the amino alcohol. If the particle size of the catalyst used in the present invention is too small, it is disadvantageous when separating the catalyst. For example, when the catalyst is separated by sedimentation, the sedimentation rate is slow, and when the catalyst is separated by filtration, the filtration rate is slow. On the other hand, if the particle size is too large, sedimentation properties will improve, but large stirring power will be required to improve the dispersion of the catalyst.
Furthermore, since the effective surface area of the catalyst decreases, the catalytic activity decreases. Therefore, the particle size of the catalyst is preferably within the range of 2 to 300 microns. However, when this reaction is carried out using a fixed bed flow type reactor, the particle size of the catalyst is preferably larger because it is necessary to reduce pressure loss. Furthermore, if the specific surface area of the catalyst used in the present invention is too small, the catalyst activity will be low and a large amount of catalyst will be used. Therefore, it is preferable that it is 1 m2/g or more in the BET measurement method.

【0013】本発明で使用するアルカリ金属の水酸化物
あるいはアルカリ土類金属の水酸化物としては、特に水
酸化ナトリウム、水酸化カリウムなどが好適に使用され
る。これらはフレーク、粉末、ペレット等及びそれらの
水溶液のいずれも用いることができるが、水溶液で使用
するのが取り扱い易い。アルカリ金属の水酸化物あるい
はアルカリ土類金属の水酸化物の使用量は反応に使用す
るアミノアルコールの水酸基に対して当量以上、好まし
くは1.0〜2.0当量の範囲内である。
As the alkali metal hydroxide or alkaline earth metal hydroxide used in the present invention, sodium hydroxide, potassium hydroxide, etc. are particularly preferably used. Although flakes, powders, pellets, etc. and aqueous solutions thereof can be used, it is easier to handle them when they are used as an aqueous solution. The amount of the alkali metal hydroxide or alkaline earth metal hydroxide used is at least an equivalent, preferably within the range of 1.0 to 2.0 equivalents, relative to the hydroxyl group of the amino alcohol used in the reaction.

【0014】本発明は水の存在下で行う。水を使用する
ことにより、アミノアルコールとアルカリ金属水酸化物
を均一系で反応でき、その結果、アミノカルボン酸塩が
高収率で得られる。反応に用いられる水の量はアミノア
ルコールに対して10重量%以上、好ましくは50〜5
00重量%の範囲内である。
The present invention is carried out in the presence of water. By using water, the amino alcohol and the alkali metal hydroxide can be reacted in a homogeneous system, and as a result, the aminocarboxylic acid salt can be obtained in high yield. The amount of water used in the reaction is 10% by weight or more, preferably 50 to 5% by weight based on the amino alcohol.
00% by weight.

【0015】本発明においては、反応液中に存在するク
ロムイオン、マンガンイオン、亜鉛イオン、モリブデン
イオンまたは鉄イオンの濃度をそれぞれ10ppm以下
で反応させる。これらのイオンは触媒性能に影響を与え
、もしこの条件を満たさないで反応を行なう場合には触
媒の活性が低下したり副生物が増加したりする。
In the present invention, the reaction is carried out at a concentration of chromium ion, manganese ion, zinc ion, molybdenum ion, or iron ion present in the reaction solution, each at 10 ppm or less. These ions affect the catalyst performance, and if the reaction is carried out without satisfying these conditions, the activity of the catalyst will decrease and by-products will increase.

【0016】これらのイオンが反応液中に混入する要因
として、原料のアミノアルコール、アルカリ金属の水酸
化物、アルカリ土類金属の水酸化物、水あるいは触媒中
にこれらの金属イオンが含まれていたり、反応器、付属
している機器、配管等を構成する材質からイオンが溶出
することが考えられる。特にこの反応を回分式攪拌槽、
連続式攪拌槽、流動床式反応槽等の反応器を用いて行な
う場合、反応中に懸濁している触媒によって器壁が摩耗
することがあり、反応器材質としてクロム、モリブデン
、マンガン、亜鉛または鉄を含む材質を用いた場合には
これらのイオンが反応液中に混入し易い。従って、その
ような材質を用いる場合には反応液中のこれらのイオン
濃度が10ppmを超えないように反応温度、攪拌条件
等についてよく検討する必要がある。また、触媒を回収
し繰り返し使用する場合には触媒分離装置や貯槽の材質
の選定、装置の運転条件などについてもよく検討する必
要がある。
[0016] The reason why these ions are mixed into the reaction solution is that these metal ions are contained in the raw material amino alcohol, alkali metal hydroxide, alkaline earth metal hydroxide, water, or catalyst. In addition, ions may be eluted from the materials that make up the reactor, attached equipment, piping, etc. In particular, this reaction can be carried out in a batch-type stirred tank.
When using a reactor such as a continuous stirred tank or a fluidized bed reactor, the walls of the reactor may be worn away by the catalyst suspended during the reaction. When a material containing iron is used, these ions are likely to be mixed into the reaction solution. Therefore, when using such materials, it is necessary to carefully consider the reaction temperature, stirring conditions, etc. so that the concentration of these ions in the reaction solution does not exceed 10 ppm. In addition, when collecting and repeatedly using the catalyst, it is necessary to carefully consider the selection of materials for the catalyst separation device and storage tank, and the operating conditions of the device.

【0017】反応温度はアミノアルコール及び生成した
アミノカルボン酸の炭素−窒素結合の熱分解及び水素化
分解を防ぐため220℃以下の温度、通常120〜21
0℃、好ましくは140〜200℃の温度範囲内で行わ
れる。
The reaction temperature is 220° C. or lower, usually 120° C. to 21° C., in order to prevent thermal decomposition and hydrogenolysis of the carbon-nitrogen bonds of the amino alcohol and the produced aminocarboxylic acid.
It is carried out within a temperature range of 0°C, preferably 140-200°C.

【0018】この反応は、酸化脱水素反応であって水素
の発生を伴うため、できるだけ反応圧力を下げる方が反
応速度の面から好ましい。通常、反応を液相で進めるた
めの最低圧力以上、好ましくは5〜50kg/cm2G
 の範囲内である。
Since this reaction is an oxidative dehydrogenation reaction and involves the generation of hydrogen, it is preferable from the viewpoint of reaction rate to lower the reaction pressure as much as possible. Usually, the minimum pressure for proceeding the reaction in the liquid phase or higher, preferably 5 to 50 kg/cm2G
is within the range of

【0019】反応の形式はバッチ、セミバッチ、連続反
応いずれの方法も用いることができる。
Batch, semi-batch, or continuous reaction methods can be used for the reaction.

【0020】本発明の方法により反応した後の反応混合
物を濾過して触媒を分離し、濾液として目的とするアミ
ノカルボン酸塩の水溶液が得られる。あるいは反応混合
物を静置して触媒を沈降させ、上澄み液として目的とす
るアミノカルボン酸塩の水溶液が得られる。こうして得
られたアミノカルボン酸塩の水溶液を必要に応じて適宜
精製して高品質のアミノカルボン酸塩を製品として得る
ことができる。一方、濾過あるいは沈降などによって分
離した触媒は回収してそのまま次の反応に再使用するこ
とができる。もちろん、回収した触媒を必要に応じて適
宜再生処理を行って使用してもよい。
After the reaction according to the method of the present invention, the reaction mixture is filtered to separate the catalyst, and an aqueous solution of the desired aminocarboxylic acid salt is obtained as a filtrate. Alternatively, the reaction mixture is allowed to stand still to allow the catalyst to precipitate, and the desired aqueous solution of the aminocarboxylic acid salt is obtained as a supernatant liquid. The aqueous solution of the aminocarboxylic acid salt thus obtained can be appropriately purified as required to obtain a high-quality aminocarboxylic acid salt as a product. On the other hand, the catalyst separated by filtration or sedimentation can be recovered and reused as is for the next reaction. Of course, the recovered catalyst may be used after being appropriately regenerated as required.

【0021】[0021]

【発明の効果】  本発明の方法により、蓚酸塩、グリ
シン塩などの副生物が少なく目的とするアミノカルボン
酸塩を高収率、高選択率で製造できる。また、触媒を回
収・繰り返し使用する場合にも触媒の活性や選択率の低
下が少なく、ほとんどの場合に触媒の再生処理工程を必
要とせずに多数回に渡って循環再使用でき、その結果工
程が簡略化でき、触媒費用や設備費用が低減できて、高
品質の製品が安価に供給できる。
EFFECTS OF THE INVENTION According to the method of the present invention, the desired aminocarboxylic acid salt can be produced in high yield and high selectivity with few by-products such as oxalate and glycine salt. In addition, even when the catalyst is recovered and used repeatedly, there is little decline in catalyst activity or selectivity, and in most cases, the catalyst can be recycled and reused many times without the need for a catalyst regeneration process. can be simplified, catalyst costs and equipment costs can be reduced, and high-quality products can be supplied at low cost.

【0022】[0022]

【実施例】  以下、実施例により本発明を具体的に説
明する。但し、本発明はこれらの実施例により制限され
るものではない。
[Examples] The present invention will be specifically explained below with reference to Examples. However, the present invention is not limited to these Examples.

【0023】ここでアミノアルコールの転化率およびア
ミノカルボン酸の選択率は下記の式から導き出される。
[0023] Here, the conversion rate of amino alcohol and the selectivity of aminocarboxylic acid are derived from the following formula.

【0024】アミノアルコールの転化率(%)=反応し
たアミノアルコールのモル数/反応に供したアミノアル
コールのモル数×100 アミノカルボン酸の選択率(%)=生成したアミノカル
ボン酸のモル数/反応したアミノアルコールのモル数×
100 実施例1 ジエタノールアミン80g、水酸化ナトリウム64g、
水170g、および平均粒子径20μ,BET表面積1
9m2/g の展開ラネー銅8gを上澄み液抜き出し管
を設けたステンレスに銅金属を内張りした内容積500
mlのオートクレーブに仕込み、水素ガスで3回内部置
換したのち、反応温度170℃、反応圧力10kg/c
m2G で、水素の発生がなくなるまで反応を行った。 反応に要した時間は170℃に昇温後5時間であった。 反応終了後、80℃まで降温し、この温度で10分間静
置した後、上澄み液抜き出し管から上澄み液283gを
抜き出した。
Conversion rate of amino alcohol (%) = Number of moles of reacted amino alcohol/Number of moles of amino alcohol subjected to reaction x 100 Selectivity of aminocarboxylic acid (%) = Number of moles of aminocarboxylic acid produced/ Number of moles of reacted amino alcohol ×
100 Example 1 80 g of diethanolamine, 64 g of sodium hydroxide,
170g of water, average particle size 20μ, BET surface area 1
9m2/g of developed Raney copper (8g) is made of stainless steel with a supernatant liquid extraction pipe and lined with copper metal, with an internal volume of 500.
ml into an autoclave, and after internally purging with hydrogen gas three times, the reaction temperature was 170°C and the reaction pressure was 10kg/c.
The reaction was carried out at m2G until no hydrogen was generated. The time required for the reaction was 5 hours after the temperature was raised to 170°C. After the reaction was completed, the temperature was lowered to 80° C., and after standing at this temperature for 10 minutes, 283 g of supernatant liquid was extracted from the supernatant liquid extraction tube.

【0025】抜き出した上澄み液を等速電気泳動法によ
り分析したところ、ジエタノールアミンの転化率は99
.2%、イミノジ酢酸ナトリウムの選択率は99.3%
であり、副生したグリシンナトリウムの選択率は0.5
%であった。なお、オートクレーブ中に残る上澄み液の
量は予め把握してあり、これらの数値はその分も加味し
たものである。また、抜き出した上澄み液には懸濁物は
認められず、原子吸光分析法により分析した結果、鉄イ
オンは2ppmであったがクロムイオン、マンガンイオ
ン、亜鉛イオンおよびモリブデンイオンはいずれも検出
されなかった(1ppm未満)。
[0025] When the extracted supernatant liquid was analyzed by isotachophoresis, the conversion rate of diethanolamine was 99.
.. 2%, selectivity of sodium iminodiacetate is 99.3%
, and the selectivity of by-produced glycine sodium is 0.5
%Met. Note that the amount of supernatant liquid remaining in the autoclave was known in advance, and these values were taken into account. In addition, no suspended matter was observed in the extracted supernatant, and as a result of analysis using atomic absorption spectrometry, iron ions were found to be 2 ppm, but chromium ions, manganese ions, zinc ions, and molybdenum ions were not detected. (less than 1 ppm).

【0026】オートクレーブ中に残った触媒を用いて以
下の繰り返し実験を行ない、触媒の繰り返し活性を検討
した。
The following repeated experiments were conducted using the catalyst remaining in the autoclave to examine the repeated activity of the catalyst.

【0027】水酸化ナトリウム64g、水170gから
なる水溶液をオートクレーブに追加し、攪拌を開始して
ジエタノールアミン80gを追加して1回目と同様の反
応条件で繰り返し実験を行った。この操作を触媒の使用
回数が10回になるまで繰り返したところ、10回目に
要した反応時間は昇温後8時間、10回目の上澄み液を
分析した結果、ジエタノールアミンの転化率は99.0
%、イミノジ酢酸ナトリウムの選択率は98.4%であ
り、副生したグリシンナトリウムの選択率は1.2%で
あった。また、原子吸光分析法により分析した結果、鉄
イオンは2ppmであったがクロムイオン、マンガンイ
オン、亜鉛イオンおよびモリブデンイオンはいずれも検
出されなかった。
An aqueous solution consisting of 64 g of sodium hydroxide and 170 g of water was added to the autoclave, stirring was started, 80 g of diethanolamine was added, and the experiment was repeated under the same reaction conditions as the first time. When this operation was repeated until the catalyst was used 10 times, the reaction time required for the 10th time was 8 hours after the temperature was raised, and as a result of analyzing the supernatant liquid from the 10th time, the conversion rate of diethanolamine was 99.0.
%, the selectivity of sodium iminodiacetate was 98.4%, and the selectivity of by-produced sodium glycinate was 1.2%. Further, as a result of analysis by atomic absorption spectrometry, iron ions were found to be 2 ppm, but chromium ions, manganese ions, zinc ions, and molybdenum ions were not detected.

【0028】実施例2 オキシ塩化ジルコニウム24.8gと硝酸銅4.0gを
水300mlに溶解した溶液へ水酸化ナトリウム水溶液
を添加し水酸化物を沈澱せしめ、この沈澱を水洗し乾燥
後、空気中500℃、3時間加熱処理し、水素気流中2
30℃、6時間還元処理して銅及びジルコニウム含有触
媒を調製した。この触媒の平均粒子径は2μ,BET表
面積は61m2/g であった。
Example 2 An aqueous sodium hydroxide solution was added to a solution of 24.8 g of zirconium oxychloride and 4.0 g of copper nitrate dissolved in 300 ml of water to precipitate the hydroxide. The precipitate was washed with water, dried, and then exposed to air. Heat treated at 500°C for 3 hours, then heated in a hydrogen stream for 2 hours.
A catalyst containing copper and zirconium was prepared by reduction treatment at 30° C. for 6 hours. This catalyst had an average particle diameter of 2 μm and a BET surface area of 61 m 2 /g.

【0029】展開ラネー銅の代わりにこの銅及びジルコ
ニウム含有触媒8gを用いた他は実施例1と同じ条件で
反応を行なった。反応に要した時間は170℃に昇温後
5時間であった。反応終了後、80℃まで降温し、この
温度で1晩静置した後、上澄み液抜き出し管から上澄み
液283gをゆっくりと抜き出した。
The reaction was carried out under the same conditions as in Example 1, except that 8 g of this copper- and zirconium-containing catalyst was used in place of the developed Raney copper. The time required for the reaction was 5 hours after the temperature was raised to 170°C. After the reaction was completed, the temperature was lowered to 80° C., and after standing at this temperature overnight, 283 g of supernatant liquid was slowly drawn out from the supernatant liquid extraction tube.

【0030】抜き出した上澄み液には微量の懸濁物が認
められた。上澄み液を濾過した後分析したところ、ジエ
タノールアミンの転化率は99.0%、イミノジ酢酸ナ
トリウムの選択率は99.5%であり、グリシンナトリ
ウムの選択率は0.4%であり、鉄イオンは2ppmあ
ったがクロムイオン、マンガンイオン、亜鉛イオンおよ
びモリブデンイオンはいずれも検出されなかった。
A small amount of suspended matter was observed in the supernatant liquid taken out. When the supernatant was filtered and analyzed, the conversion rate of diethanolamine was 99.0%, the selectivity of sodium iminodiacetate was 99.5%, the selectivity of sodium glycinate was 0.4%, and the selectivity of sodium ion was 99.0%. Although the amount was 2 ppm, chromium ions, manganese ions, zinc ions, and molybdenum ions were not detected.

【0031】比較例1 ステンレス製のオートクレーブを用いた他は実施例1と
同じ操作で触媒の使用回数が3回になるまで反応を行な
った。3回目に要した反応時間は昇温後13時間であっ
た。3回目の反応後抜き出した上澄み液を分析した結果
、ジエタノールアミンの転化率は97.5%、イミノジ
酢酸ナトリウムの選択率は93.5%、副生したグリシ
ンナトリウムの選択率は3.5%であった。また、鉄イ
オンが25ppm、クロムイオンが10ppm検出され
た。
Comparative Example 1 The reaction was carried out in the same manner as in Example 1 except that a stainless steel autoclave was used until the catalyst was used three times. The reaction time required for the third time was 13 hours after the temperature was raised. As a result of analyzing the supernatant liquid extracted after the third reaction, the conversion rate of diethanolamine was 97.5%, the selectivity of sodium iminodiacetate was 93.5%, and the selectivity of by-produced sodium glycinate was 3.5%. there were. Further, 25 ppm of iron ions and 10 ppm of chromium ions were detected.

【0032】このように比較例1では触媒活性の低下、
選択率の低下などが実施例1より顕著であった。
As described above, in Comparative Example 1, the catalyst activity decreased,
The decrease in selectivity was more remarkable than in Example 1.

【0033】比較例2 原料を仕込む際に、水170gの代わりに塩化第一鉄1
26ppmを含む水170gを用いた(従って、仕込原
料に対して鉄イオンを30ppm添加したことになる)
他は実施例1と同じ操作で反応を1回行なった。反応に
要した時間は170℃に昇温後10時間であった。反応
終了後、冷却し、反応混合物を濾過し、反応生成物を濾
液として得た。濾液を分析した結果、ジエタノールアミ
ンの転化率は98.5%、イミノジ酢酸ナトリウムの選
択率は97.3%、副生したグリシンナトリウムの選択
率は2.3%であった。
Comparative Example 2 When preparing raw materials, 1 ferrous chloride was added instead of 170 g of water.
170 g of water containing 26 ppm was used (therefore, 30 ppm of iron ions were added to the raw materials)
The reaction was carried out once in the same manner as in Example 1 except for the following. The time required for the reaction was 10 hours after the temperature was raised to 170°C. After the reaction was completed, the reaction mixture was cooled and filtered to obtain a reaction product as a filtrate. As a result of analyzing the filtrate, the conversion rate of diethanolamine was 98.5%, the selectivity of sodium iminodiacetate was 97.3%, and the selectivity of by-produced sodium glycinate was 2.3%.

【0034】比較例3 原料を仕込む際に、水170gの代わりに硝酸クロム(
III)254ppmを含む水170gを用いた(従っ
て、仕込原料に対してクロムイオンを30ppm添加し
たことになる)他は比較例2と同じ操作を行なった。 反応に要した時間は170℃に昇温後12時間であった
。濾液を分析した結果、ジエタノールアミンの転化率は
98.5%、イミノジ酢酸ナトリウムの選択率は96.
1%、副生したグリシンナトリウムの選択率は3.2%
であった。
Comparative Example 3 When charging raw materials, chromium nitrate (
III) The same operation as in Comparative Example 2 was performed except that 170 g of water containing 254 ppm of chromium ions was used (therefore, 30 ppm of chromium ions were added to the raw materials). The time required for the reaction was 12 hours after the temperature was raised to 170°C. Analysis of the filtrate revealed that the conversion rate of diethanolamine was 98.5% and the selectivity of sodium iminodiacetate was 96.
1%, and the selectivity of by-product sodium glycine is 3.2%.
Met.

【0035】比較例4 原料を仕込む際に、水170gの代わりに塩化モリブデ
ン(II)97ppmを含む水170gを用いた(従っ
て、仕込原料に対してモリブデンイオンを30ppm添
加したことになる)他は比較例2と同じ操作を行なった
。反応に要した時間は170℃に昇温後7時間であった
。濾液を分析した結果、ジエタノールアミンの転化率は
99.1%、イミノジ酢酸ナトリウムの選択率は95.
0%、副生したグリシンナトリウムの選択率は4.2%
であった。
Comparative Example 4 When charging the raw materials, 170 g of water containing 97 ppm of molybdenum chloride (II) was used instead of 170 g of water (therefore, 30 ppm of molybdenum ions were added to the raw materials). The same operation as in Comparative Example 2 was performed. The time required for the reaction was 7 hours after the temperature was raised to 170°C. Analysis of the filtrate revealed that the conversion rate of diethanolamine was 99.1% and the selectivity of sodium iminodiacetate was 95.
0%, selectivity of by-product sodium glycinate is 4.2%
Met.

【0036】比較例5 原料を仕込む際に、水170gの代わりに臭化亜鉛19
1ppmを含む水170gを用いた(従って、仕込原料
に対して亜鉛イオンを30ppm添加したことになる)
他は比較例2と同じ操作を行なった。反応に要した時間
は170℃に昇温後9時間であった。濾液を分析した結
果、ジエタノールアミンの転化率は97.9%、イミノ
ジ酢酸ナトリウムの選択率は93.1%、副生したグリ
シンナトリウムの選択率は4.8%であった。
Comparative Example 5 When charging raw materials, 19 g of zinc bromide was added instead of 170 g of water.
170g of water containing 1ppm was used (therefore, 30ppm of zinc ions were added to the raw materials)
The other operations were the same as in Comparative Example 2. The time required for the reaction was 9 hours after the temperature was raised to 170°C. As a result of analyzing the filtrate, the conversion rate of diethanolamine was 97.9%, the selectivity of sodium iminodiacetate was 93.1%, and the selectivity of by-produced sodium glycinate was 4.8%.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  下記一般式(1) 【化1】 で表されるアミノアルコールから、アルカリ金属の水酸
化物及び/又はアルカリ土類金属の水酸化物、銅含有触
媒及び水の共存下での酸化脱水素反応によってアミノカ
ルボン酸塩を製造する方法において、反応液中のクロム
イオン、マンガンイオン、亜鉛イオン、モリブデンイオ
ンまたは鉄イオンの濃度をそれぞれ10ppm以下に維
持しながら反応を行うことを特徴とするアミノカルボン
酸塩の製造方法。
[Claim 1] An amino alcohol represented by the following general formula (1) [Claim 1] in the coexistence of an alkali metal hydroxide and/or an alkaline earth metal hydroxide, a copper-containing catalyst, and water. A method for producing an aminocarboxylic acid salt by the oxidative dehydrogenation reaction of A method for producing an aminocarboxylic acid salt.
JP3308726A 1990-12-28 1991-11-25 Method for producing aminocarboxylate Expired - Lifetime JP2968104B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP40877090 1990-12-28
JP2-408770 1991-05-17

Publications (2)

Publication Number Publication Date
JPH04342549A true JPH04342549A (en) 1992-11-30
JP2968104B2 JP2968104B2 (en) 1999-10-25

Family

ID=18518185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3308726A Expired - Lifetime JP2968104B2 (en) 1990-12-28 1991-11-25 Method for producing aminocarboxylate

Country Status (1)

Country Link
JP (1) JP2968104B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043587A (en) * 2015-08-28 2017-03-02 株式会社日本触媒 Manufacturing method of aminocarboxylic acid salt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043587A (en) * 2015-08-28 2017-03-02 株式会社日本触媒 Manufacturing method of aminocarboxylic acid salt

Also Published As

Publication number Publication date
JP2968104B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
JP2916256B2 (en) Method for producing aminocarboxylate
JP2939335B2 (en) Method for producing aminocarboxylate
JP4546958B2 (en) Method for producing 4-aminodiphenylamine
JPH0747125B2 (en) Method for producing acetic acid derivative
EP0133696B1 (en) Method of purifying cyclohexanone containing by-product organic acid
JPH04342549A (en) Production of aminocarboxylic acid salt
JP2804877B2 (en) Production method of aminocarboxylate
US5536888A (en) Process for producing diol compounds
JP2569104B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
EP1067114B1 (en) Method of preparing amino-, imino- and nitrilocarbonxylic acids and silver-promoted copper catalyst for use in said method
JPH072743A (en) Production of aminocarboxylic acid salt
JP3089023B2 (en) Regeneration method of Raney copper catalyst
JP3761231B2 (en) Nickel and molybdenum-containing Raney copper catalyst for aminocarboxylate production and method for producing aminocarboxylate using the same
JP3129547B2 (en) Method for producing glycolate
JPH09151168A (en) Production of beta-alanine salt
JPH0153863B2 (en)
JP3551511B2 (en) Method for producing hydrogenation catalyst for alcohol production
JP3089020B2 (en) Catalyst regeneration method
JPS59157039A (en) Production of xylylene glycol
JPS6193146A (en) Production of ethylenediaminetetraacetate
JPH0153864B2 (en)
JPH0459752A (en) Production of acrylamide
JPH11240856A (en) Production of alkoxyethylamine
JPH05148191A (en) Production of amino compound
JPH10195003A (en) Production of alkylene glycol

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 13