JPH04342436A - Production of silica glass with high hydroxyl group concentration and silica glass with high hydroxyl group concentration obtained thereby - Google Patents

Production of silica glass with high hydroxyl group concentration and silica glass with high hydroxyl group concentration obtained thereby

Info

Publication number
JPH04342436A
JPH04342436A JP14114291A JP14114291A JPH04342436A JP H04342436 A JPH04342436 A JP H04342436A JP 14114291 A JP14114291 A JP 14114291A JP 14114291 A JP14114291 A JP 14114291A JP H04342436 A JPH04342436 A JP H04342436A
Authority
JP
Japan
Prior art keywords
silica glass
hydroxyl group
group concentration
high hydroxyl
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14114291A
Other languages
Japanese (ja)
Inventor
Kazuo Sanada
和夫 真田
Sadao Chigira
定雄 千吉良
Keiji Kaneda
恵司 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP14114291A priority Critical patent/JPH04342436A/en
Publication of JPH04342436A publication Critical patent/JPH04342436A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups

Abstract

PURPOSE:To obtain a silica glass having an ultrahigh hydroxyl group content of >=0.2wt.% and excellent characteristics of ultraviolet ray and radiation resistances. CONSTITUTION:Silica glass is held in a hydrogen atmosphere and exposed to radiation. In the process, heating is preferably carried out to increase the rate of reaction. Silica glass having 0.2-10wt.% hydroxyl group concentration is obtained according to the aforementioned method.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、耐紫外線特性および
耐放射線特性に優れた高水酸基濃度のシリカガラスを製
造する方法およびこれによって得られた高水酸基濃度シ
リカガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing silica glass with a high hydroxyl group concentration and excellent ultraviolet resistance and radiation resistance, and to a silica glass with a high hydroxyl group concentration obtained thereby.

【0002】0002

【従来の技術】シリカガラス(石英ガラス)の耐紫外線
特性および耐放射線特性を高める方策として、シリカガ
ラス中に水酸基(OH基)を多量に導入する方法が知ら
れている。このような水酸基を高濃度に導入したシリカ
ガラスを得るには、出発原料として塩化(SiCl4)
を用い、酸水素火炎中にて酸化反応、加水分解反応など
の反応を行い、直接ガラス化する方法が一般的である。
BACKGROUND OF THE INVENTION As a measure to improve the ultraviolet ray resistance and radiation resistance of silica glass, a method of introducing a large amount of hydroxyl groups (OH groups) into silica glass is known. In order to obtain silica glass with a high concentration of hydroxyl groups introduced, chloride (SiCl4) is used as a starting material.
A common method is to perform oxidation reactions, hydrolysis reactions, and other reactions in an oxyhydrogen flame to directly vitrify the material.

【0003】しかしながら、この方法では、得られるシ
リカガラス中の水酸基濃度は高々1000ppm(0.
1重量%)程度であり、この程度の水酸基濃度では、シ
リカガラスの耐紫外線特性や耐放射線特性を十分に高め
ることができない不満がある。シリカガラスの耐紫外線
特性、耐放射線特性は、それに含まれる水酸基濃度に比
例し、十分な耐紫外線特性を得るには、少なくとも10
000ppm(1重量%)程度の水酸基濃度が望まれる
ところである。
However, with this method, the concentration of hydroxyl groups in the obtained silica glass is at most 1000 ppm (0.
1% by weight), and there is a dissatisfaction that with this level of hydroxyl group concentration, the ultraviolet ray resistance and radiation resistance of silica glass cannot be sufficiently improved. The ultraviolet ray resistance and radiation resistance of silica glass are proportional to the concentration of hydroxyl groups contained in it, and in order to obtain sufficient ultraviolet ray resistance, it is necessary to
A hydroxyl group concentration of about 1,000 ppm (1% by weight) is desired.

【0004】0004

【発明が解決しようとする課題】よって、この発明にお
ける課題は、極めて高濃度の水酸基を含有するシリカガ
ラスを製造する方法およびこれによって得られたシリカ
ガラスを得ることにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for producing silica glass containing an extremely high concentration of hydroxyl groups, and to obtain the silica glass obtained thereby.

【0005】[0005]

【課題を解決するための手段】かかる課題は、シリカガ
ラスを水素雰囲気中に保持し、この状態で放射線照射す
る方法で解決される。また、この際、シリカガラスをそ
の軟化点以下の温度に加熱することで反応が促進される
[Means for Solving the Problems] This problem is solved by a method in which silica glass is held in a hydrogen atmosphere and irradiated with radiation in this state. Further, at this time, the reaction is promoted by heating the silica glass to a temperature below its softening point.

【0006】[0006]

【作用】放射線照射により、シリカガラス中にダングリ
ングボンド発生し、これにシリカガラスに拡散、侵入し
た水素が反応して水酸基が導入される。
[Operation] Due to radiation irradiation, dangling bonds are generated in the silica glass, and hydrogen that has diffused and penetrated into the silica glass reacts with the dangling bonds to introduce hydroxyl groups.

【0007】以下、この発明を詳しく説明する。この発
明の製法における出発材料としてのシリカガラスとして
は、純枠石英ガラスの他、これに種々のドーパントを含
有したもの、多成分ガラスなどが用いられ、溶融シリカ
ガラスやCVD法で得られたシリカガラスなどその製法
においても特に限定されず、さらにその形状も任意であ
る。このようなシリカガラスを耐熱耐圧容器内に収容し
、その内部に水素ガスを封入して内部を水素雰囲気とす
る。水素ガスとしては、純枠水素ガスの他に、水素とア
ルゴン、窒素等の不活性ガスとの混合ガスを用いてよく
、また酸素が混入していてもよい。容器内部の水素分圧
としては、1〜10Kg/cm2程度とすることが好ま
しい。
[0007] This invention will be explained in detail below. Silica glass used as a starting material in the manufacturing method of this invention includes pure framed quartz glass, glass containing various dopants, multi-component glass, and fused silica glass, silica glass obtained by CVD method, etc. There are no particular limitations on the manufacturing method of the glass or the like, and the shape thereof is also arbitrary. Such silica glass is housed in a heat-resistant and pressure-resistant container, and hydrogen gas is sealed inside to create a hydrogen atmosphere inside. As the hydrogen gas, in addition to pure frame hydrogen gas, a mixed gas of hydrogen and an inert gas such as argon or nitrogen may be used, or oxygen may be mixed therein. The hydrogen partial pressure inside the container is preferably about 1 to 10 kg/cm2.

【0008】このようなシリカガラスが収められた耐熱
耐圧容器に放射線を照射する。放射線源としては、コバ
ルトー60などのγ線源が好ましいが、ストロンチウム
−90などのβ線源を用いることもできる。線量率は1
04〜107R/hrの範囲とすることが好ましく、高
線量率での照射線の方が効率的に水酸基が導入される。 照射線量は水酸基濃度に比例し、所望の水酸基濃度によ
り決められるが、10000ppm程度の水酸基濃度を
得るには、107〜108R程度とされる。この放射線
照射はまた、容器内に放射線源を収容して行うこともで
きる。
A heat-resistant and pressure-resistant container containing such silica glass is irradiated with radiation. As the radiation source, a gamma ray source such as cobalt-60 is preferred, but a beta ray source such as strontium-90 can also be used. The dose rate is 1
It is preferable to set the range of 04 to 107 R/hr, and irradiation at a high dose rate introduces hydroxyl groups more efficiently. The irradiation dose is proportional to the hydroxyl group concentration and is determined by the desired hydroxyl group concentration, but in order to obtain a hydroxyl group concentration of about 10,000 ppm, it should be about 107 to 108R. This radiation irradiation can also be performed by housing the radiation source within the container.

【0009】この放射線照射の際、シリカガラスを加熱
することが反応が促進されて好ましい。加熱温度は30
0℃以上で、シリカガラスの軟化温度以下とされる。こ
の加熱により水素の拡散速度およびその水酸基の反応速
度が向上する。加熱には、耐熱耐圧容器全体を外部から
加熱する方法や容器内部に加熱源を収容してシリカガラ
スを主に加熱する方法などの適宜方法を採用することが
できる。
[0009] During this radiation irradiation, it is preferable to heat the silica glass to accelerate the reaction. The heating temperature is 30
The temperature is 0°C or higher and the softening temperature of silica glass is lower than the softening temperature of silica glass. This heating increases the diffusion rate of hydrogen and the reaction rate of its hydroxyl groups. For heating, an appropriate method can be employed, such as a method of heating the entire heat-resistant and pressure-resistant container from the outside, or a method of accommodating a heating source inside the container to mainly heat the silica glass.

【0010】このような水素雰囲気中での放射線照射に
より、シリカガラス中にダングリンク゛ボンドを発生し
、これに拡散し、侵入した水素が結合して水酸基が生成
する。水素のシリカガラス中での拡散はシリカガラスの
温度に比例するため、シリカガラスを加熱することが全
体の反応速度を高めるうえで重要となる。この方法では
、1重量%以上の水酸基をシリカガラスに導入すること
ができ、最高10重量%程度までの水酸基濃度のシリカ
ガラスを得ることができる。
[0010] Such radiation irradiation in a hydrogen atmosphere generates dangling bonds in the silica glass, which diffuses into the dangling bonds, and the hydrogen that enters bonds with them to form hydroxyl groups. Since the diffusion of hydrogen in silica glass is proportional to the temperature of silica glass, heating the silica glass is important in increasing the overall reaction rate. In this method, 1% by weight or more of hydroxyl groups can be introduced into silica glass, and silica glass with a hydroxyl group concentration of up to about 10% by weight can be obtained.

【0011】このようにして得られた高水酸基濃度シリ
カガラスは、耐紫外線特性、耐放射線特性が優れ、例え
ば原子炉等の放射線曝露環境下で使用される光ファイバ
やホトレジスト硬化用紫外線の導波路などに好適に使用
される。また、この発明では出発材料の形状が任意であ
り、ファイバ状、ロッド状、プレート状などの好みの形
状の高水酸基濃度のシリカガラスが製造できる。
The high hydroxyl group concentration silica glass thus obtained has excellent ultraviolet ray resistance and radiation resistance, and can be used, for example, in optical fibers used in radiation-exposed environments such as nuclear reactors and ultraviolet waveguides for curing photoresists. It is suitably used for such purposes. Further, in the present invention, the shape of the starting material can be arbitrary, and silica glass with a high hydroxyl group concentration can be produced in a desired shape such as a fiber, rod, or plate shape.

【0012】以下、実施例を示して作用、効果を明確に
する。 (実施例1)純枠溶融石英ガラス製ロッド(径20mm
)を出発材料として用いた。このロッドを以下に示す条
件下で処理し、水酸基を導入した。 放射線源      コバルトー60γ線源線量率  
      106R/hr水素圧力      3K
g/cm2 温度          300℃ 照射時間      100時間 線量          108R その結果、40000ppm(4重量%)の水酸基濃度
のシリカガラスが得られた。
[0012] Hereinafter, examples will be shown to clarify the functions and effects. (Example 1) Pure frame fused silica glass rod (diameter 20 mm
) was used as the starting material. This rod was treated under the conditions shown below to introduce hydroxyl groups. Radiation source Cobalt-60 gamma ray source dose rate
106R/hr hydrogen pressure 3K
g/cm2 Temperature: 300°C Irradiation time: 100 hours Dose: 108R As a result, silica glass with a hydroxyl group concentration of 40,000 ppm (4% by weight) was obtained.

【0013】(実施例2)実施例1において、処理条件
の照射時間を1時間とした以外は同様にして処理したと
ころ、5000ppm(0.5重量%)の水酸基濃度の
シリカガラスが得られた。
(Example 2) When the treatment was carried out in the same manner as in Example 1 except that the irradiation time was changed to 1 hour, silica glass with a hydroxyl group concentration of 5000 ppm (0.5% by weight) was obtained. .

【0014】(実施例3)実施例1において、処理条件
の温度を600℃とした以外は同様にして処理したとこ
ろ、80000ppm(8重量パーセント)の水酸基濃
度のシリカガラスが得られた。
(Example 3) When the same process as in Example 1 was carried out except that the temperature of the processing conditions was changed to 600°C, silica glass having a hydroxyl group concentration of 80,000 ppm (8 weight percent) was obtained.

【0015】[0015]

【発明の効果】以上説明したように、この発明の高水酸
基濃度シリカガラスの製法は、シリカガラスを水素雰囲
気中に置いた状態で放射線照射を行うものであるので、
0.2重量%以上の極めて高い水酸基濃度のシリカガラ
スを得ることができる。また、この発明の高水酸基濃度
のシリカガラスはその水酸基濃度が0.2〜10重量%
のものであるので、極めて優れた耐紫外線特性、耐放射
線特性を有するものとなる。
[Effects of the Invention] As explained above, the method for producing silica glass with a high hydroxyl group concentration of the present invention involves irradiating the silica glass with radiation while it is placed in a hydrogen atmosphere.
Silica glass having an extremely high hydroxyl group concentration of 0.2% by weight or more can be obtained. Moreover, the silica glass with a high hydroxyl group concentration of this invention has a hydroxyl group concentration of 0.2 to 10% by weight.
Therefore, it has extremely excellent ultraviolet ray resistance and radiation resistance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  シリカガラスを水素雰囲気中に置いた
状態で放射線照射を行うことを特徴とする高水酸基濃度
シリカガラスの製法。
1. A method for producing silica glass with a high hydroxyl group concentration, which comprises performing radiation irradiation while the silica glass is placed in a hydrogen atmosphere.
【請求項2】  請求項1記載の製法で作られ、水酸基
濃度が0.2〜10重量%の高水酸基濃度シリカガラス
2. Silica glass with a high hydroxyl group concentration, which is produced by the method according to claim 1 and has a hydroxyl group concentration of 0.2 to 10% by weight.
JP14114291A 1991-05-16 1991-05-16 Production of silica glass with high hydroxyl group concentration and silica glass with high hydroxyl group concentration obtained thereby Withdrawn JPH04342436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14114291A JPH04342436A (en) 1991-05-16 1991-05-16 Production of silica glass with high hydroxyl group concentration and silica glass with high hydroxyl group concentration obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14114291A JPH04342436A (en) 1991-05-16 1991-05-16 Production of silica glass with high hydroxyl group concentration and silica glass with high hydroxyl group concentration obtained thereby

Publications (1)

Publication Number Publication Date
JPH04342436A true JPH04342436A (en) 1992-11-27

Family

ID=15285148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14114291A Withdrawn JPH04342436A (en) 1991-05-16 1991-05-16 Production of silica glass with high hydroxyl group concentration and silica glass with high hydroxyl group concentration obtained thereby

Country Status (1)

Country Link
JP (1) JPH04342436A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983673A (en) * 1997-05-16 1999-11-16 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US6333283B1 (en) 1997-05-16 2001-12-25 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US6588236B2 (en) 1999-07-12 2003-07-08 Kitagawa Industries Co., Ltd. Method of processing a silica glass fiber by irradiating with UV light and annealing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983673A (en) * 1997-05-16 1999-11-16 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US6333283B1 (en) 1997-05-16 2001-12-25 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US6709997B2 (en) 1997-05-16 2004-03-23 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US6588236B2 (en) 1999-07-12 2003-07-08 Kitagawa Industries Co., Ltd. Method of processing a silica glass fiber by irradiating with UV light and annealing

Similar Documents

Publication Publication Date Title
Griscom Defect structure of glasses: Some outstanding questions in regard to vitreous silica
Wall et al. Gamma irradiation of polymethyl methacrylate and polystyrene
US5735921A (en) Method of reducing laser-induced optical damage in silica
Shelby Protonic species in vitreous silica
JPS6090852A (en) Treatment of glass for optical fiber
JPH04342436A (en) Production of silica glass with high hydroxyl group concentration and silica glass with high hydroxyl group concentration obtained thereby
JP3152410B2 (en) Manufacturing method of synthetic quartz glass member
Shao et al. Enhanced radiation resistance of ytterbium-doped silica fiber by pretreating on a fiber preform
GB2149392A (en) Surface treatment of glass
Shelby et al. Radiation‐induced isotope exchange in vitreous silica
Maddock et al. Annealing of radiolytic damage in some nitrates. Part 1.—Lead nitrate
JPS6090853A (en) Treatment of glass for optical fiber
Prowse et al. Single-line compounds for 155Gd Mössbauer spectroscopy
Al-Sheikhly et al. γ-Radioloysis of N 2 O-saturated Formate Solutions. A Chain Reaction
JP2522830B2 (en) Quartz glass material for semiconductor heat treatment and manufacturing method thereof
GB816412A (en) Improved silica glass and process for its manufacture
CA2246153C (en) Method for fabricating silica glass
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
Miller Radical Yield Measurements in Irradiated Aqueous Solutions: II. Radical Yields with 10.9-Mev Deuterons, 21.3-and 3.4-Mev Alpha Particles, and B (n, α) Li Recoil Radiations
JPS54134128A (en) Manufacture of basic material for light transmitting fiber
GB2226309A (en) Optical fibre manufacture
JP3036993B2 (en) Manufacturing method of synthetic quartz glass member
JPS63147839A (en) Doping method for porous glass base material
SAEKI et al. Comparison of 80‐keV D+ Ion Implantation with Thermal D2 Doping in Silica by FTIR and ESR Spectroscopy
Griscom Thermal Bleaching of γ-Ray-Induced Defect Centers in High Purity Fused Silica by Diffusion of Radiolytic Molecular Water

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806