JPH04341392A - Control method of microbe in water - Google Patents

Control method of microbe in water

Info

Publication number
JPH04341392A
JPH04341392A JP14134191A JP14134191A JPH04341392A JP H04341392 A JPH04341392 A JP H04341392A JP 14134191 A JP14134191 A JP 14134191A JP 14134191 A JP14134191 A JP 14134191A JP H04341392 A JPH04341392 A JP H04341392A
Authority
JP
Japan
Prior art keywords
water
microorganisms
potential
conductive substrate
sce
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14134191A
Other languages
Japanese (ja)
Other versions
JP3105024B2 (en
Inventor
Tadashi Matsunaga
是 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP03141341A priority Critical patent/JP3105024B2/en
Publication of JPH04341392A publication Critical patent/JPH04341392A/en
Application granted granted Critical
Publication of JP3105024B2 publication Critical patent/JP3105024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent pollution of the surface of a structure in water due to living things by a clean and moderate electrochemical means. CONSTITUTION:The process to adsorb microbe 12 in water on the surface of a conductive substrate 3 and sterilize them by applying positive voltage to the conductive substrate and the process to detach the sterilized microbe which is adsorbed on the surface of the conductive substrate from the substrate are carried out. Consequently, without using chemical substances which cause residual toxicity, the microbe in water can be sterilized by a clean electrochemical method and thus the biological pollution is effectively prevented under the moderate conditions not like a severe electrode sterilizing method using high voltage.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、水中において微生物を
電気化学的に制御する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for electrochemically controlling microorganisms in water.

【0002】0002

【従来の技術】蒸留水、海水あるいは水道水等の貧栄養
環境下では、微生物が液体層と固体層との界面に集合し
て増殖する。これは、水中に存在する希薄な有機物がこ
うした界面に吸着・濃縮されているので、微生物がその
有機物を栄養源にするためである。固体表面上で増殖し
た微生物は、再び水中へ拡散して水質汚染等を引き起し
たり、あるいは固体表面上に吸着したままスライム状物
質を分泌して表面を汚したりする。特に、海水中には多
数の微生物が存在し、病原性を示したり、海中構造物に
付着する等の問題を引き起こしている。また、海中構造
物は膨大な量の海水と常に接触しているので、その表面
では微生物の付着に始まる様々な海洋生物の繁殖が問題
となっている。これらの問題の発生機構は次の通りであ
る。まず付着性のグラム陰性菌が表面に吸着してスライ
ム状物質を多量に分泌する。続いて、他の微生物がこの
スライム層に集まって増殖し、微生物被膜を形成する。 更に、この微生物層の上に大型の生物が次々に繁殖する
ようになり、最終的に大型生物が表面を覆い尽くすこと
になる。
BACKGROUND OF THE INVENTION In an oligotrophic environment such as distilled water, seawater or tap water, microorganisms gather and proliferate at the interface between a liquid layer and a solid layer. This is because the dilute organic matter present in water is adsorbed and concentrated at these interfaces, and microorganisms use this organic matter as a nutrient source. Microorganisms that have grown on the solid surface either diffuse back into the water and cause water pollution, or they secrete a slime-like substance while adsorbed on the solid surface and stain the surface. In particular, a large number of microorganisms exist in seawater, causing problems such as being pathogenic and adhering to underwater structures. Furthermore, since underwater structures are constantly in contact with vast amounts of seawater, the proliferation of various marine organisms, including the attachment of microorganisms, on their surfaces has become a problem. The mechanism by which these problems occur is as follows. First, adherent Gram-negative bacteria adsorb to the surface and secrete a large amount of slime-like material. Subsequently, other microorganisms gather in this slime layer and multiply, forming a microbial coating. Furthermore, large organisms begin to breed one after another on this microbial layer, and eventually the surface is covered with large organisms.

【0003】従来、こうした水中構造物表面における微
生物の付着増殖に対しては、例えば、塩素ガスや次亜塩
素酸等の殺菌剤の注入したり、有機スズ化合物等を表面
にコーティングする等のように、化学物質を使用して処
理する方法が行われてきた。しかし、これらの方法では
、使用した化学物質が水中に拡散して残留するので、残
留毒性の問題があった。
Conventionally, measures have been taken to prevent the adhesion and growth of microorganisms on the surfaces of underwater structures, such as injecting disinfectants such as chlorine gas or hypochlorous acid, or coating the surfaces with organic tin compounds, etc. For this reason, treatment methods using chemicals have been used. However, these methods have the problem of residual toxicity because the chemicals used diffuse and remain in the water.

【0004】0004

【発明が解決しようとする課題】本発明者は、残留毒性
の原因となる化学物質を使用せず、しかも効果的に前記
のような生物汚染を防止することのできる手段を開発す
るべく鋭意研究したところ、初期段階で水中構造物表面
に吸着してくる微生物を次々に電気化学的に殺菌しては
表面から脱離させることにより、微生物の付着増殖を制
御することができることを見出した。本発明は、かかる
知見に基づくものである。
[Problems to be Solved by the Invention] The present inventor has conducted extensive research in order to develop a means that can effectively prevent the above-mentioned biological contamination without using chemical substances that cause residual toxicity. They discovered that it is possible to control the adhesion and growth of microorganisms by electrochemically sterilizing microorganisms that adsorb to the surface of underwater structures one after another in the initial stage and then detaching them from the surface. The present invention is based on this knowledge.

【0005】[0005]

【課題を解決するための手段】従って、本発明は、水中
において、(1)導電性基板に正電位を印加することに
より、水中の微生物を前記導電性基板表面に吸着して殺
菌する工程と、(2)前記導電性基板に負電位を印加す
ることにより、前記導電性基板表面に吸着している殺菌
された微生物を脱離する工程とを行うことを特徴とする
、水中微生物の制御方法に関する。
[Means for Solving the Problems] Therefore, the present invention provides the steps of: (1) applying a positive potential to a conductive substrate in water to adsorb microorganisms in the water to the surface of the conductive substrate and sterilize them; , (2) a step of removing sterilized microorganisms adsorbed to the surface of the conductive substrate by applying a negative potential to the conductive substrate. Regarding.

【0006】本発明方法で用いる導電性基板は、全体が
導電性材料から形成されていてもよいが、少なくともそ
の表面(又は水中に浸漬している一部表面)が導電性で
あればよい。導電性基板の形状は特に制限されるもので
はないが、表面積が広く、水中の微生物を効率良く吸着
して直接接触し、電位を付与することのできるものが好
ましい。本発明方法で用いる導電性基板の好ましい態様
としては、例えば、微生物含有被処理液体中に浸漬させ
るシート状基板あるいは水中構造物や船舶等の水中表面
を前記の導電性基板で構成するものを挙げることができ
る。
The conductive substrate used in the method of the present invention may be entirely made of a conductive material, but it is only necessary that at least its surface (or a portion of the surface immersed in water) is conductive. Although the shape of the conductive substrate is not particularly limited, it is preferable that the conductive substrate has a large surface area, can efficiently adsorb microorganisms in water, can directly contact them, and can apply a potential. Preferred embodiments of the conductive substrate used in the method of the present invention include, for example, a sheet-like substrate immersed in a microorganism-containing liquid to be treated, or a substrate in which the underwater surface of an underwater structure or ship is made of the above-mentioned conductive substrate. be able to.

【0007】導電性基板の材質も特に制限されるもので
はないが、シート状基板や水中構造物や船舶等の広い表
面上に導電性表面層を形成することができる良好な可塑
性及び成形性を有することが好ましく、例えば、導電性
材料(例えば、グラファイト、カーボン、白金又は導電
性物質)をバインダーポリマーと混合してそのまま成形
した導電性基板、あるいは導電性材料含有塗料組成物を
用いて水中構造物表面に形成した導電性皮膜が好ましい
。バインダーポリマーとしては、シリコーン樹脂、酢酸
ビニル樹脂、塩化ビニル樹脂とポリウレタン樹脂との混
合物、スチレンブタジエンゴム、ウレタン樹脂、クロロ
プレンゴム、エポキシ樹脂等を挙げることができ、この
中ではシリコーン樹脂が好ましい。バインダーポリマー
と共に導電性高分子(例えば、ポリアニリン)を添加し
て抵抗値を低くすることもできる。
The material of the conductive substrate is not particularly limited, but it should have good plasticity and moldability so that a conductive surface layer can be formed on a wide surface such as a sheet-like substrate, an underwater structure, a ship, etc. For example, a conductive substrate formed by mixing a conductive material (e.g., graphite, carbon, platinum, or a conductive substance) with a binder polymer and forming it directly, or an underwater structure using a coating composition containing a conductive material. A conductive film formed on the surface of an object is preferred. Examples of the binder polymer include silicone resins, vinyl acetate resins, mixtures of vinyl chloride resins and polyurethane resins, styrene-butadiene rubber, urethane resins, chloroprene rubber, and epoxy resins, among which silicone resins are preferred. A conductive polymer (for example, polyaniline) may be added together with the binder polymer to lower the resistance value.

【0008】微生物を含む水中において導電性基板に正
電位を印加すると、水中の微生物を基板表面に吸着させ
ることができる。更に、基板に印加されている正電位に
は、基板表面に吸着して接触した微生物を電気化学的に
殺菌する作用がある。即ち、微生物は、正電位によって
基板表面に吸着させられ、表面上で殺菌される。印加す
る正電位は、+0〜+1.5vs.SCE、好ましくは
+0.5〜+1.5vs.SCEである。印加電位が+
0vs.SCE以下だと微生物を基板に吸着させて殺菌
することができず、+1.5vs.SCEを越えると水
や溶解している塩が電気分解して有毒ガスが発生したり
、導電性基板表面に金属が析出したりするので好ましく
ない。
[0008] When a positive potential is applied to a conductive substrate in water containing microorganisms, the microorganisms in the water can be adsorbed onto the surface of the substrate. Furthermore, the positive potential applied to the substrate has the effect of electrochemically sterilizing microorganisms that adsorb to and come into contact with the substrate surface. That is, microorganisms are adsorbed to the substrate surface by the positive potential and are sterilized on the surface. The positive potential to be applied is +0 to +1.5 vs. SCE, preferably +0.5 to +1.5 vs. It is SCE. Applied potential is +
0 vs. If it is less than SCE, microorganisms cannot be adsorbed to the substrate and sterilized, and +1.5 vs. Exceeding the SCE is undesirable because water and dissolved salts will be electrolyzed to generate toxic gases or metals will be deposited on the surface of the conductive substrate.

【0009】導電性基板に正電位を印加することからな
る微生物の吸着殺菌工程は、水中に存在する微生物の濃
度や種類、流速又は温度によっても異なるが、6時間以
下、好ましくは5〜30分間行うのが好ましい。電位印
加時間が6時間よりも長いと、基板上で殺菌された微生
物の上に他の微生物が吸着してしまう。後から吸着した
微生物は導電性基板と直接接触していないので、正電位
による電気化学的殺菌作用を受けることがない。従って
、生きたままの微生物が次々に基板表面上に吸着し、負
電位を印加する微生物の脱離工程を実施しても、表面状
の微生物を脱離することができなくなり、基板が汚染さ
れてしまう。
The adsorption sterilization process of microorganisms, which involves applying a positive potential to the conductive substrate, is carried out for up to 6 hours, preferably for 5 to 30 minutes, although it varies depending on the concentration and type of microorganisms present in the water, the flow rate, and the temperature. It is preferable to do so. If the potential application time is longer than 6 hours, other microorganisms will be adsorbed onto the microorganisms sterilized on the substrate. Since the microorganisms that are subsequently adsorbed are not in direct contact with the conductive substrate, they are not subjected to the electrochemical sterilization effect caused by the positive potential. Therefore, living microorganisms are adsorbed onto the substrate surface one after another, and even if a negative potential is applied to remove the microorganisms, the microorganisms on the surface cannot be removed and the substrate is contaminated. I end up.

【0010】続いて、導電性基板に負電位を印加すると
、基板表面に吸着していた微生物を脱離させることがで
きる。印加する負電位は、−0〜−0.4vs.SCE
、好ましくは−0.1〜−0.2vs.SCEである。 印加電位が−0vs.SCE以上だと、微生物を基板か
ら脱離させることができず、−0.4vs.SCEより
低いとpHが上昇するので好ましくない。また、負電位
を印加することからなる微生物の脱離工程は、表面に付
着している微生物の量や種類によっても異なるが、30
秒〜30分間、好ましくは1分〜5分間行うのが好まし
い。30秒よりも短いと殺菌された微生物の脱離が充分
でなく、次に正電位を印加する微生物の吸着殺菌工程を
行うと、殺菌された微生物の上に他の微生物が吸着して
しまう。また、30分よりも長いと、被処理液体の効果
的な殺菌を行うことができない。
[0010] Subsequently, by applying a negative potential to the conductive substrate, the microorganisms adsorbed to the substrate surface can be removed. The negative potential to be applied is -0 to -0.4 vs. SCE
, preferably -0.1 to -0.2 vs. It is SCE. When the applied potential is -0 vs. If it is above SCE, microorganisms cannot be detached from the substrate, and -0.4 vs. If it is lower than SCE, the pH will increase, which is not preferable. In addition, the microbial desorption process, which involves applying a negative potential, varies depending on the amount and type of microorganisms attached to the surface, but
It is preferable to carry out the heating for 1 minute to 5 minutes, preferably for 1 minute to 5 minutes. If it is shorter than 30 seconds, the desorption of the sterilized microorganisms will not be sufficient, and when a next microorganism adsorption sterilization step in which a positive potential is applied is performed, other microorganisms will be adsorbed onto the sterilized microorganisms. Furthermore, if the time is longer than 30 minutes, the liquid to be treated cannot be effectively sterilized.

【0011】本発明方法においては、前記の微生物の吸
着殺菌工程と脱離工程とを繰り返し実施するのが好まし
い。閉鎖容器中の微生物含有水に対して前記の吸着殺菌
工程と脱離工程とからなるサイクルを繰り返す処理を行
うと、その中に含まれている微生物が次々に基板表面に
吸着され、殺菌されては脱離されるので、最終的には実
質的にすべての微生物を殺菌することができる。また、
海水中の構造物等のような開放系で本発明方法を利用す
る場合には、前記のサイクルを繰り返し実施することに
より、構造物表面を汚染から永続的に防止することがで
きる。
In the method of the present invention, it is preferable to repeat the microbial adsorption sterilization step and the desorption step. When the microorganism-containing water in the closed container is subjected to a process that repeats the cycle consisting of the adsorption sterilization step and the desorption step, the microorganisms contained therein are successively adsorbed to the substrate surface and sterilized. is desorbed, so that virtually all microorganisms can be sterilized in the end. Also,
When the method of the present invention is used in an open system such as a structure in seawater, the surface of the structure can be permanently protected from contamination by repeating the above cycle.

【0012】本発明方法においては、導電性基板を作用
極とし、その導電性基板作用極に対して適当な対極、参
照極及びポテンシオスタットを用いて、導電性基板に印
加する電位を制御することが必要である。使用すること
のできる対極、参照極及びポテンシオスタットとしては
、導電性基板表面に、予め定められた電位を印加するこ
とができるものであれば特に制限されない。
In the method of the present invention, a conductive substrate is used as a working electrode, and a suitable counter electrode, reference electrode, and potentiostat are used to control the potential applied to the conductive substrate. It is necessary. The counter electrode, reference electrode, and potentiostat that can be used are not particularly limited as long as they can apply a predetermined potential to the surface of the conductive substrate.

【0013】本発明方法によって処理することのできる
水は、微生物を含有する水であれば特に制限されるもの
ではないが、例えば、海水、河川の水、湖沼の水、水道
水又は飲料水である。また、対象となる微生物も、それ
らの水の中に存在する微生物であれば特に制限されるも
のではなく、細菌、糸状菌、酵母、変形菌、藻類又は原
生動物等が含まれる。
[0013] The water that can be treated by the method of the present invention is not particularly limited as long as it contains microorganisms, but includes, for example, seawater, river water, lake water, tap water, or drinking water. be. Furthermore, the target microorganisms are not particularly limited as long as they exist in water, and include bacteria, filamentous fungi, yeast, amphiphiles, algae, protozoa, and the like.

【0014】[0014]

【実施例】以下、実施例によって本発明を具体的に説明
するが、これらは本発明の範囲を限定するものではない
[Examples] The present invention will now be explained in detail with reference to Examples, but these are not intended to limit the scope of the present invention.

【0015】以下の各実施例において、殺菌処理装置と
して図1に示す装置を用いた。この装置において、殺菌
処理槽1にはガラス基板2上に成形された導電性樹脂プ
レート電極3が配置されており、プレート電極3はポテ
ンシオスタット4と連絡している。ポテンシオスタット
4は、コントロール槽5に配置された参照極6及び対極
7とそれぞれ連絡している。殺菌処理槽1とコントロー
ル槽5とは、塩橋8によって連絡しており、殺菌処理槽
1の底部には攪拌装置9及び攪拌棒10が配置されてい
る。導電性樹脂プレート電極3としては、シリコーン樹
脂にグラファイト(Fluka 社)50重量%を添加
した材料を、ガラス基板2上にプレート状(26mm×
26mm×1.5mm)に成形したものを用い、対極7
には白金、そして参照極6には飽和甘コウ電極(SCE
)を用いた。 また、この装置により、殺菌処理槽1内の被処理水11
に含まれる微生物12を殺菌する。
In each of the following examples, the apparatus shown in FIG. 1 was used as a sterilization treatment apparatus. In this apparatus, a conductive resin plate electrode 3 molded on a glass substrate 2 is arranged in a sterilization treatment tank 1, and the plate electrode 3 is in communication with a potentiostat 4. The potentiostat 4 is in communication with a reference electrode 6 and a counter electrode 7 arranged in the control tank 5, respectively. The sterilization tank 1 and the control tank 5 are connected by a salt bridge 8, and a stirring device 9 and a stirring rod 10 are arranged at the bottom of the sterilization tank 1. The conductive resin plate electrode 3 is made of a material obtained by adding 50% by weight of graphite (Fluka Co., Ltd.) to silicone resin, and is placed on the glass substrate 2 in a plate shape (26 mm×
26 mm x 1.5 mm), and the counter electrode 7
is platinum, and reference electrode 6 is a saturated sweetened electrode (SCE).
) was used. Moreover, with this device, the water to be treated 11 in the sterilization treatment tank 1 is
sterilizes microorganisms 12 contained in the.

【0016】実施例1:付与電位が海水に与える影響図
1に示す装置を用いて付与電位が海水に与える影響を調
べた。三浦海岸で採取した海水(pH8.0)50ml
を殺菌処理槽1に入れ、350rpmで攪拌しながらプ
レート電極3に正電位を30分間室温にて印加し、電流
密度、残留塩素濃度及びpHの変化を測定した。測定結
果を示す図2から明らかなように、1.6Vvs.SC
E以下の電位では残留塩素(図2の▲)は測定されなか
った。更に、−0.4V〜+1.5Vvs.SCEの範
囲ではpH変化(図2の■)が認められなかった。従っ
て、−0.4V〜+1.5Vvs.SCEの範囲では塩
素やpH変化による殺菌は起こらない。
Example 1: Effect of applied potential on seawater The effect of applied potential on seawater was investigated using the apparatus shown in FIG. 50ml of seawater (pH 8.0) collected from Miura coast
was placed in the sterilization treatment tank 1, and while stirring at 350 rpm, a positive potential was applied to the plate electrode 3 at room temperature for 30 minutes, and changes in current density, residual chlorine concentration, and pH were measured. As is clear from FIG. 2 showing the measurement results, 1.6V vs. S.C.
Residual chlorine (▲ in FIG. 2) was not measured at a potential below E. Furthermore, −0.4V to +1.5V vs. No pH change (■ in Figure 2) was observed within the SCE range. Therefore, -0.4V to +1.5V vs. Sterilization by chlorine or pH changes does not occur within the SCE range.

【0017】実施例2:プレート電極の調製海洋付着細
菌ビブリオ・アルギノリチクス(Vibrio alg
inolyticus:ATCC 17749 )を、
マリンブロス(Marine broth) 2216
 (DIFCO Laboratory社)中で25℃
にて10時間好気的に培養した。培養後の菌体を遠心集
菌(10分間;2000g )した後、滅菌した海水で
よく洗浄した。続いて、ヘマサイトメーターを用いて1
05 cells/mlの試料水を調製した。この試料
水150mlにプレート電極3を浸漬し、電位を印加し
ないで350rpmで穏やかに攪拌しながら90分間放
置し、プレート電極3の表面に充分菌体を吸着させた。 滅菌した海水でこのプレート電極3を洗浄して表面に吸
着していない菌体を除去し、菌体付着プレート電極3を
調製した。
Example 2: Preparation of plate electrodes The marine adhering bacterium Vibrio alginolyticus
inolyticus: ATCC 17749),
Marine broth 2216
(DIFCO Laboratory) at 25°C.
The cells were cultured aerobically for 10 hours. After culturing, the bacterial cells were collected by centrifugation (10 minutes; 2000 g), and then thoroughly washed with sterilized seawater. Then, using a hemacytometer,
Sample water of 0.05 cells/ml was prepared. The plate electrode 3 was immersed in 150 ml of this sample water, and left to stand for 90 minutes with gentle stirring at 350 rpm without applying an electric potential, so that the bacterial cells were sufficiently adsorbed onto the surface of the plate electrode 3. This plate electrode 3 was washed with sterilized seawater to remove bacterial cells not adsorbed to the surface, thereby preparing a bacterial cell-attached plate electrode 3.

【0018】実施例3:負電位印加による脱離滅菌した
海水(pH8.0)150mlを入れてある殺菌処理槽
1に、前記の菌体付着プレート電極3(菌体付着量:8
.0×104 CFU/cm2 )を挿入し、350r
pmで穏やかに攪拌しながら−0.4Vvs.SCE〜
+0.4Vvs.SCEの電位を印加した。10分間電
位を印加した後、プレート電極3を殺菌処理槽1より取
り出した。殺菌処理槽1内の残留海水中に存在する菌体
(電位印加中にプレート電極3から脱離した菌体)をピ
ペッティングにより回収し、コロニー計数法により生菌
数を測定した。この測定結果を、電極単位面積当たりか
ら脱離した生菌体数として図3に示す。+0.4〜0V
vs.SCEの範囲では殺菌処理槽1の残留海水中から
約5.0×104 CFU/cm2 の菌体が回収され
たが、−0.4〜0Vvs.SCEの範囲では電位を低
下させるのに従って回収される菌体が増加し、−0.2
Vvs.SCEでは6.3×104 CFU/cm2 
の菌体、そして−0.4Vvs.SCEでは7.2×1
04 CFU/cm2 の菌体が回収された。
Example 3: The above-mentioned microbial cell adhesion plate electrode 3 (amount of bacterial adhesion: 8.0
.. 0x104 CFU/cm2) and 350r
-0.4V vs. pm with gentle stirring. SCE~
+0.4V vs. A potential of SCE was applied. After applying a potential for 10 minutes, the plate electrode 3 was taken out from the sterilization tank 1. Bacteria present in the residual seawater in the sterilization tank 1 (bacterium detached from the plate electrode 3 during potential application) were collected by pipetting, and the number of viable bacteria was measured by a colony counting method. The measurement results are shown in FIG. 3 as the number of viable bacteria detached per unit area of the electrode. +0.4~0V
vs. In the range of SCE, approximately 5.0 x 104 CFU/cm2 of bacterial cells were recovered from the residual seawater in sterilization treatment tank 1, but -0.4 to 0V vs. In the SCE range, as the potential decreases, the number of bacterial cells recovered increases, and -0.2
V vs. 6.3×104 CFU/cm2 in SCE
of bacterial cells, and -0.4V vs. 7.2×1 in SCE
04 CFU/cm2 of bacterial cells were recovered.

【0019】実施例4:正電位印加による殺菌滅菌した
海水(pH8.0)150mlを入れてある殺菌処理槽
1に、前記の菌体付着プレート電極3(菌体付着量:5
.6×103 CFU/cm2 )を挿入し、350r
pmで穏やかに攪拌しながら0Vvs.SCE〜+1.
5Vvs.SCEの電位を10分間印加した。正電位の
印加処理後、−0.4Vvs.SCEの電位を2分間印
加してプレート電極3から菌体を脱離させ、プレート電
極3を殺菌処理槽1より取り出し、殺菌処理槽1内の残
留海水中に存在する菌体(電位印加中にプレート電極3
から脱離した菌体)をピペッティングにより回収し、コ
ロニー計数法により生菌数を測定した。この測定結果を
、電極単位面積当たりから脱離した生菌体数として図4
に示す。印加電位を上昇させるのに従って回収される生
菌体数が減少した。即ち、0Vvs.SCEでは約1.
8×103 CFU/cm2 の菌体が回収されたが、
+1.0Vvs.SCEでは約1.3×103 CFU
/cm2 の菌体、そして+1.5Vvs.SCEでは
約0.2×103 CFU/cm2 の菌体が回収され
た。
Example 4: Sterilization by applying a positive potential The above-mentioned bacterial cell adhesion plate electrode 3 (amount of bacterial adhesion: 5
.. 6×103 CFU/cm2) and 350r
0V vs. with gentle stirring at pm. SCE~+1.
5V vs. The SCE potential was applied for 10 minutes. After applying positive potential, -0.4Vvs. The SCE potential is applied for 2 minutes to detach the bacterial cells from the plate electrode 3, and the plate electrode 3 is removed from the sterilization tank 1. Plate electrode 3
The bacterial cells detached from the cells were collected by pipetting, and the number of viable bacteria was determined by colony counting. Figure 4 shows the measurement results as the number of viable bacteria detached per unit area of the electrode.
Shown below. As the applied potential was increased, the number of viable cells recovered decreased. That is, 0V vs. Approximately 1.
Although 8×103 CFU/cm2 of bacterial cells were recovered,
+1.0V vs. Approximately 1.3 x 103 CFU in SCE
/cm2 of bacterial cells, and +1.5V vs. Approximately 0.2 x 103 CFU/cm2 of bacterial cells were recovered by SCE.

【0020】実施例5:正電位印加時間の影響滅菌した
海水(pH8.0)150mlを入れてある殺菌処理槽
1に、菌体付着プレート電極3(菌体付着量:5.6×
103 CFU/cm2 )を挿入し、350rpmで
穏やかに攪拌しながら+1.5Vvs.SCEの電位を
1分間、5分間、10分間及び30分間印加した後、そ
れぞれ−0.4Vvs.SCEの電位を2分間印加して
プレート電極3から菌体を脱離させ、プレート電極3を
殺菌処理槽1より取り出し、殺菌処理槽1内の残留海水
中に存在する菌体(電位印加中にプレート電極3から脱
離した菌体)をピペッティングにより回収し、コロニー
計数法により生菌数を測定した。この測定結果を、電極
単位面積当たりから脱離した生菌体数として図5に示す
。1分後には約2.3×103 CFU/cm2 、5
分後には約1.0×103 CFU/cm2 まで低下
した。
Example 5: Effect of positive potential application time In a sterilization tank 1 containing 150 ml of sterilized seawater (pH 8.0), a bacterial cell adhesion plate electrode 3 (amount of bacterial adhesion: 5.6×
103 CFU/cm2) and +1.5V vs. with gentle stirring at 350 rpm. After applying the SCE potential for 1 minute, 5 minutes, 10 minutes and 30 minutes, -0.4V vs. The SCE potential is applied for 2 minutes to detach the bacterial cells from the plate electrode 3, and the plate electrode 3 is removed from the sterilization tank 1. The bacterial cells detached from the plate electrode 3) were collected by pipetting, and the number of viable bacteria was measured by colony counting. The measurement results are shown in FIG. 5 as the number of viable bacteria detached per unit area of the electrode. Approximately 2.3×103 CFU/cm2, 5 after 1 minute
After a minute, it decreased to about 1.0×10 3 CFU/cm 2 .

【0021】 実施例6:菌体の吸着・殺菌及び脱離処理及び比較例ヘ
マサイトメーターを用いて1.0×103 cells
/mlに調整した海水(pH8.0)50mlを入れて
ある殺菌処理槽1に、菌体が付着していないプレート電
極3を挿入し、350rpmで穏やかに攪拌しながら(
1)+1.0Vvs.SCEの正電位を10分間印加す
る吸着・殺菌工程、及び (2)−0.2Vvs.SCEの負電位を2分間印加す
る脱離工程 からなる処理サイクルを繰り返し実施し、1ml中の生
菌体数をコロニー計測法によって計測した。結果を示す
図6において、前記の処理サイクルを繰り返し実施した
場合を■で、電位を一切印加しなかった場合(対照)を
●でプロットした。対照では、1時間後に1.1×10
3 cells /ml、6時間後に1.2×103 
cells /ml、10時間後に5.0×103 c
ells /ml、そして12時間に9.3×103 
cells /mlまで菌体が増加した。一方、正電位
と負電位とを交互に印加する前記の処理サイクルを実施
した場合には、6時間以後は生菌が認められなくなり、
電気化学的殺菌が効率よく行われたことが分かる。
Example 6: Adsorption, sterilization and desorption treatment of bacterial cells and comparative example 1.0×103 cells using a hemacytometer
Plate electrode 3 with no bacterial cells attached was inserted into sterilization tank 1 containing 50 ml of seawater (pH 8.0) adjusted to pH 8.0.
1) +1.0V vs. Adsorption and sterilization step of applying SCE positive potential for 10 minutes, and (2) -0.2V vs. A treatment cycle consisting of a desorption step in which a negative potential of SCE was applied for 2 minutes was repeatedly performed, and the number of viable bacterial cells in 1 ml was counted by colony counting method. In FIG. 6 showing the results, the case where the above treatment cycle was repeated is plotted with ■, and the case where no potential was applied (control) is plotted with ●. In the control, 1.1 x 10 after 1 hour
3 cells/ml, 1.2 x 103 after 6 hours
cells/ml, 5.0×103c after 10 hours
cells/ml and 9.3 x 103 in 12 hours
The number of bacterial cells increased to cells/ml. On the other hand, when carrying out the above-mentioned treatment cycle in which positive potential and negative potential are applied alternately, viable bacteria are no longer observed after 6 hours;
It can be seen that electrochemical sterilization was performed efficiently.

【0022】また、比較例として、+1.0Vvs.S
CEの正電位又は−0.2Vvs.SCEの負電位をず
っと印加し続けて同様に処理した。結果を示す図7にお
いて、+1.0Vvs.SCEの正電位をずっと印加し
続けた場合(1時間後に1.3×103 cells 
/ml、6時間後に2.0×103 cells /m
l、10時間後に7.0×103 cells /ml
、そして12時間に12.4×103cells /m
lまで菌体が増加)を▲で、−0.2Vvs.SCEの
負電位をずっと印加し続けた場合(1時間後に1.4×
103 cells /ml、6時間後に1.6×10
3 cells /ml、10時間後に5.6×103
 cells /ml、そして12時間に11.8×1
03 cells /mlまで菌体が増加)を■で、そ
して電位を一切印加しなかった場合(対照)を●でプロ
ットした。
[0022] Also, as a comparative example, +1.0V vs. S
Positive potential of CE or -0.2V vs. The same treatment was carried out while continuously applying the negative potential of SCE. In FIG. 7 showing the results, +1.0V vs. When the positive potential of SCE is continuously applied (1.3 × 103 cells after 1 hour)
/ml, 2.0×103 cells/m after 6 hours
l, 7.0×103 cells/ml after 10 hours
, and 12.4×103cells/m in 12 hours
▲, -0.2V vs. If the negative potential of SCE is continuously applied (1.4× after 1 hour)
103 cells/ml, 1.6 x 10 after 6 hours
3 cells/ml, 5.6 x 103 after 10 hours
cells/ml, and 11.8 x 1 in 12 hours
03 cells/ml) is plotted as ■, and the case where no potential was applied (control) is plotted as ●.

【0023】参考例:導電性プレート電極材料の検討シ
リコーン樹脂、エチレン酢酸ビニル共重合樹脂、塩化ビ
ニルとポリウレタン樹脂との混合物、スチレンプタジエ
ンゴム、ウレタン樹脂、クロロプレンゴム、エポキシ樹
脂に、それぞれグラファイト(Fluka社)を、49
重量%、64重量%、59重量%、63重量%、70重
量%、60重量%、及び46重量%混合し、ガラス基板
上にプレート状に成形し、カーボンファイバーをリード
線として電極とした。この電極表面とリード線との二点
間の抵抗値を測定したところ、20〜50Ω程度の低い
抵抗値を示した。なお、フェリシアナイドのサイクリッ
クボルタメトリー測定を行ったところ、シリコーン樹脂
とクロロプレンゴムを用いた場合には、その酸化還元ピ
ークが確認できた。
Reference example: Study of conductive plate electrode materials Silicone resin, ethylene vinyl acetate copolymer resin, mixture of vinyl chloride and polyurethane resin, styrene-ptadiene rubber, urethane resin, chloroprene rubber, epoxy resin, graphite ( Fluka Inc.), 49
% by weight, 64% by weight, 59% by weight, 63% by weight, 70% by weight, 60% by weight, and 46% by weight were mixed, formed into a plate shape on a glass substrate, and made into an electrode using carbon fiber as a lead wire. When the resistance value between two points between the electrode surface and the lead wire was measured, it showed a low resistance value of about 20 to 50 Ω. In addition, when cyclic voltammetry measurement of ferricyanide was performed, the redox peak was confirmed when silicone resin and chloroprene rubber were used.

【0024】次に、シリコーン樹脂をバインダーポリマ
ーとして用いたプレート電極のグラファイト含有率に対
する抵抗値を測定したところ、グラファイト含有率が3
5重量%、42重量%及び50重量%と増加していくに
つれて、抵抗値がそれぞれ、160Ω、42Ω及び11
Ωと減少していくことがわかった。また含有率が、50
重量%以上で約11Ωとほぼ一定の抵抗値を示した。ま
た、ここに電導性高分子であるポリアニリン(精製アニ
リンを1N−HCl中で過硫酸アンモニウムを酸化剤と
して─5℃にて一晩攪拌して調製)を添加したところ抵
抗値がさらに減少することがわかった。
Next, when the resistance value of the plate electrode using silicone resin as the binder polymer was measured with respect to the graphite content, it was found that the graphite content was 3.
As the resistance increases to 5%, 42%, and 50% by weight, the resistance increases to 160Ω, 42Ω, and 11%, respectively.
It was found that the value decreases as Ω. Also, the content rate is 50
It showed a nearly constant resistance value of about 11Ω at weight % or more. Furthermore, when polyaniline, a conductive polymer (prepared by stirring purified aniline in 1N HCl with ammonium persulfate as an oxidizing agent and stirring overnight at -5°C), the resistance value further decreased. Understood.

【0025】[0025]

【発明の効果】本発明方法によれば、残留毒性の原因と
なる化学物質を使用する従来法とは異なり、水質汚染を
起こさないクリーンな電気化学的方法によって水中の微
生物を殺菌することができ、しかも高電圧を用いる非常
に過酷な従来の電極殺菌方法等とも異なる緩和な条件下
で、効果的に生物汚染を防止することができる。
[Effects of the Invention] According to the method of the present invention, microorganisms in water can be sterilized using a clean electrochemical method that does not cause water pollution, unlike conventional methods that use chemical substances that cause residual toxicity. Moreover, biological contamination can be effectively prevented under mild conditions, which is different from the extremely harsh conventional electrode sterilization method using high voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明方法を実施するための装置を模式的に示
す説明図である。
FIG. 1 is an explanatory diagram schematically showing an apparatus for carrying out the method of the present invention.

【図2】海水に電位を印加した場合の効果を示すグラフ
である。
FIG. 2 is a graph showing the effect of applying a potential to seawater.

【図3】正電位及び負電位が微生物に与える効果を示す
グラフである。
FIG. 3 is a graph showing the effects of positive and negative potentials on microorganisms.

【図4】正電位が微生物に与える効果を示すグラフであ
る。
FIG. 4 is a graph showing the effect of positive potential on microorganisms.

【図5】正電位を長時間印加した場合の効果を示すグラ
フである。
FIG. 5 is a graph showing the effect of applying a positive potential for a long time.

【図6】正電位及び負電位を交互に印加する処理を実施
した場合の効果を示すグラフである。
FIG. 6 is a graph showing the effect of applying a positive potential and a negative potential alternately.

【図7】一定の正電位又は負電位を印加し続ける処理を
実施した場合の効果を示すグラフである。
FIG. 7 is a graph showing the effect of performing a process of continuously applying a constant positive potential or negative potential.

【符号の説明】[Explanation of symbols]

1  殺菌処理槽 2  ガラス基板 3  導電性樹脂プレート電極 4  ポテンシオスタット 5  コントロール槽 6  対極 7  参照極 8  塩橋 9  攪拌装置 10  攪拌棒 11  被処理水 12  微生物 1 Sterilization treatment tank 2 Glass substrate 3 Conductive resin plate electrode 4 Potentiostat 5 Control tank 6. Opposite 7 Reference pole 8 Salt Bridge 9 Stirring device 10 Stirring rod 11 Water to be treated 12 Microorganisms

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  水中において、導電性基板に正電位を
印加することにより、水中の微生物を前記導電性基板表
面に吸着して殺菌する工程と、前記導電性基板に負電位
を印加することにより、前記導電性基板表面に吸着して
いる殺菌された微生物を脱離する工程とを行うことを特
徴とする、水中微生物の制御方法。
1. A step of sterilizing microorganisms in the water by adsorbing them to the surface of the conductive substrate by applying a positive potential to the conductive substrate in water, and a step of sterilizing microorganisms in the water by applying a negative potential to the conductive substrate. A method for controlling microorganisms in water, comprising the steps of: desorbing sterilized microorganisms adsorbed on the surface of the conductive substrate.
JP03141341A 1991-05-17 1991-05-17 How to control microbes in water Expired - Lifetime JP3105024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03141341A JP3105024B2 (en) 1991-05-17 1991-05-17 How to control microbes in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03141341A JP3105024B2 (en) 1991-05-17 1991-05-17 How to control microbes in water

Publications (2)

Publication Number Publication Date
JPH04341392A true JPH04341392A (en) 1992-11-27
JP3105024B2 JP3105024B2 (en) 2000-10-30

Family

ID=15289710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03141341A Expired - Lifetime JP3105024B2 (en) 1991-05-17 1991-05-17 How to control microbes in water

Country Status (1)

Country Link
JP (1) JP3105024B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448968A (en) * 1991-06-27 1995-09-12 Ostlie; Lars Infraacoustic/electric fish fence
US5653052A (en) * 1991-04-03 1997-08-05 Ocean Environmental Technologies Limited Method for immobilizing or killing swimming larvae in a mass of fresh water, and an electric trap for practicing such a method
JP2001198572A (en) * 2000-01-18 2001-07-24 Pentel Corp Electrochemically antifouling method and device
JP2002136972A (en) * 2000-10-31 2002-05-14 Pentel Corp Electrochemical antistaining method and apparatus
JP2012147754A (en) * 2011-01-21 2012-08-09 Japan Agengy For Marine-Earth Science & Technology Method for immobilizing and preparing living microorganism

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5653052A (en) * 1991-04-03 1997-08-05 Ocean Environmental Technologies Limited Method for immobilizing or killing swimming larvae in a mass of fresh water, and an electric trap for practicing such a method
US5448968A (en) * 1991-06-27 1995-09-12 Ostlie; Lars Infraacoustic/electric fish fence
JP2001198572A (en) * 2000-01-18 2001-07-24 Pentel Corp Electrochemically antifouling method and device
JP2002136972A (en) * 2000-10-31 2002-05-14 Pentel Corp Electrochemical antistaining method and apparatus
JP2012147754A (en) * 2011-01-21 2012-08-09 Japan Agengy For Marine-Earth Science & Technology Method for immobilizing and preparing living microorganism

Also Published As

Publication number Publication date
JP3105024B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
Thrash et al. Direct and indirect electrical stimulation of microbial metabolism
Zhang et al. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes
Khatoon et al. Bacterial succession and degradative changes by biofilm on plastic medium for wastewater treatment
CN111117914B (en) Salt-tolerant heterotrophic aerobic nitrobacteria strain, culture method, bacterial liquid and application
Singh et al. Microbial biofilms: development, structure, and their social assemblage for beneficial applications
Bright et al. Amino acid assimilation and respiration by attached and free-living populations of a marine Pseudomonas sp.
JP3105024B2 (en) How to control microbes in water
Okochi et al. Electrochemical sterilization of bacteria using a graphite electrode modified with adsorbed ferrocene
KR101439728B1 (en) Continuous removal of perchlorate and nitrate using enriched sulfur-oxidizing microorganisms
CN107099483B (en) Composite biological agent and application thereof in treatment of mercury-containing wastewater
KR101432076B1 (en) Enrichment culture method of perchlorate or nitrate reducing bacteria
CN115386520B (en) Rhodococcus pyridine-philic RL-GZ01 strain and application thereof
JP3526469B2 (en) Antifouling method for underwater structures
JP3668976B2 (en) Electrochemical control method and antifouling method for aquatic organisms
Okochi et al. Electrochemical disinfection of marine bacteria using an electro-conductive paint and its application for prevention of biofouling
JPH09248554A (en) Electrochemical control method of aquatic organism and antifouling method
US8790907B2 (en) Method for detachment and preparation of living microorganisms
JP3888756B2 (en) Electrochemical control method, antifouling method and antifouling device for aquatic organisms
JP4630018B2 (en) Microbial accumulation culture method
JPH1057987A (en) Denitrification device of water
JP3697650B2 (en) Electrochemical control method and antifouling method for aquatic organisms
JP2002210491A (en) Decomposing method for cyano compound and iron-cyano complex
EP2514819B1 (en) Method for immobilizing living microorganisms and method for preparing living microorganisms
CN116119836B (en) Bioreactor for treating organic pollutants in toxic sewage and application method thereof
Okochi et al. Electrochemical control of bacterial cell accumulation on submerged glass surfaces

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11