JP4630018B2 - Microbial accumulation culture method - Google Patents

Microbial accumulation culture method Download PDF

Info

Publication number
JP4630018B2
JP4630018B2 JP2004242939A JP2004242939A JP4630018B2 JP 4630018 B2 JP4630018 B2 JP 4630018B2 JP 2004242939 A JP2004242939 A JP 2004242939A JP 2004242939 A JP2004242939 A JP 2004242939A JP 4630018 B2 JP4630018 B2 JP 4630018B2
Authority
JP
Japan
Prior art keywords
chromium
culture
hexavalent chromium
culture solution
cultured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004242939A
Other languages
Japanese (ja)
Other versions
JP2006055134A (en
Inventor
伯夫 松本
直也 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2004242939A priority Critical patent/JP4630018B2/en
Publication of JP2006055134A publication Critical patent/JP2006055134A/en
Application granted granted Critical
Publication of JP4630018B2 publication Critical patent/JP4630018B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、微生物の集積培養方法に関する。さらに詳述すると、本発明は、特定の物質に対し還元活性と耐性を有する培養対象微生物を、前記物質を溶解させた培養液中で選択的に集積培養する微生物の集積培養方法であって、培養対象微生物以外の微生物に対して前記物質が毒性等の生育環境を悪化させる性質を有している場合の微生物の集積培養方法に関するものである。   The present invention relates to a method for accumulating and culturing microorganisms. More specifically, the present invention relates to a method for collecting and culturing microorganisms that selectively accumulate and cultivate a microorganism to be cultured having a reduction activity and resistance to a specific substance in a culture solution in which the substance is dissolved, The present invention relates to a method for accumulating microorganisms when the substance has a property of deteriorating the growth environment such as toxicity to microorganisms other than the microorganism to be cultured.

クロム還元菌は、嫌気的環境で培養すると、培地中に含まれる有害な六価クロムを三価に還元する作用がある。三価クロムは、溶解度が低いため、沈殿させて溶液から分離することができる。このようにクロム還元菌の作用は、六価クロムで汚染された排水や土壌を浄化するのに有効である。   When chromium-reducing bacteria are cultured in an anaerobic environment, they have the effect of reducing harmful hexavalent chromium contained in the medium to trivalent. Since trivalent chromium has low solubility, it can be precipitated and separated from the solution. Thus, the action of the chromium-reducing bacteria is effective in purifying drainage and soil contaminated with hexavalent chromium.

ところで、クロム還元菌の培養には、六価クロムを培養液中に溶解させて行うが、培養初期段階においては六価クロムの毒性のために、六価クロムに耐性のあるクロム還元菌が優先的に増殖することができる。しかし、クロム還元菌の作用によって次第に培養液中の六価クロム濃度が減少してくると、それまで増殖ができないでいた雑多な菌群が増殖を開始してくるといった問題があった。これは、クロム還元菌を用いた浄化を考える際に、クロム還元菌の集積培養を困難なものとする要因となりうる。このような、雑多な菌群の増殖を防ぐには、(1)クロム還元菌を純粋分離し、雑菌の混入のないクリーンな環境で培養操作を実施する、(2)六価クロムを連続的に培地に添加しながら培養を実施する、などの手法が考えられる。   By the way, culturing chromium-reducing bacteria is performed by dissolving hexavalent chromium in the culture solution. However, in the early stage of culture, chromium-reducing bacteria resistant to hexavalent chromium are given priority because of the toxicity of hexavalent chromium. Can multiply. However, when the hexavalent chromium concentration in the culture solution gradually decreases due to the action of the chromium-reducing bacteria, there is a problem that a variety of bacterial groups that could not grow until then start to grow. This can be a factor that makes it difficult to enrich and culture chromium-reducing bacteria when considering purification using chromium-reducing bacteria. In order to prevent the growth of such a diverse group of bacteria, (1) purely isolate chromium-reducing bacteria and carry out the culture operation in a clean environment free from contamination with bacteria (2) continuous hexavalent chromium. For example, the culture may be performed while adding to the medium.

なお、クロム還元菌を用いた六価クロムの除去方法として、特開平2−268899号公報、特開2002−281960号公報に開示されている技術がある。   As a method for removing hexavalent chromium using chromium-reducing bacteria, there are techniques disclosed in JP-A-2-268899 and JP-A-2002-281960.

特開平2−268899号JP-A-2-268899 特開2002−281960号JP 2002-281960 A

しかしながら、上記(1)の手法においては、特殊な培養環境を整える必要があり、簡便な培養方法とはなりえない。また、上記(2)の手法においては、結果的に有害である六価クロムを大量に使用することとなり、好ましくない。   However, the technique (1) requires a special culture environment and cannot be a simple culture method. In the method (2), hexavalent chromium which is harmful as a result is used in a large amount, which is not preferable.

そして、これらの不都合は、六価クロムを使用したクロム還元菌の培養に限るものではなく、毒性のある物質を使用した培養であって、その物質に耐性のある微生物の培養についても同様である。   These inconveniences are not limited to the culture of chromium-reducing bacteria using hexavalent chromium, but the same applies to the culture of microorganisms that are resistant to such substances. .

本発明は、培養の対象となる微生物の選択的な培養を簡便に行うことができる微生物の集積培養方法を提供することを目的とする。また、本発明は、微生物の培養に有害物質を使用する場合、その有害物質を大量に使用しなくても培養の対象となる微生物を選択的に集積培養することができる微生物の集積培養方法を提供することを目的とする。   An object of the present invention is to provide a method for accumulating and culturing microorganisms, which can easily perform selective culturing of microorganisms to be cultured. Further, the present invention provides a method for accumulating and cultivating microorganisms that can selectively cultivate microorganisms to be cultured without using a large amount of the harmful substances when toxic substances are used for culturing microorganisms. The purpose is to provide.

かかる目的を達成するために、請求項1記載の微生物の集積培養方法は、培養対象微生物が還元活性を有し且つ耐性があり培養対象微生物以外の微生物に対して毒性を有している物質である六価クロム、銀、銅、水銀、ヨウ素、亜ヒ酸、マンガン、ニッケル、亜セレン酸のいずれか1つを溶解させた培養液中に有機物を含ませて培養対象微生物を選択的に集積培養する際、培養対象微生物の有機物を利用した発酵の過程で還元された前記物質を培養液中に浸した電極に電位を与えることで酸化反応を生じさせて再生しながら培養を行うものである。 In order to achieve such an object, the method for collecting and culturing a microorganism according to claim 1 is a substance in which the microorganism to be cultured has a reducing activity and is resistant and toxic to microorganisms other than the microorganism to be cultured. Selective accumulation of microorganisms to be cultured by including organic substances in a culture solution in which any one of hexavalent chromium, silver, copper, mercury, iodine, arsenous acid, manganese, nickel, selenious acid is dissolved When culturing, culture is performed while regenerating by generating an oxidation reaction by applying an electric potential to an electrode immersed in the culture solution of the substance reduced in the fermentation process using the organic matter of the microorganism to be cultured. .

したがって、前記物質の溶解した培養液は培養対象微生物以外の雑多な微生物にとって生息し難いものとなる。このため、前記物質に耐性のある培養対象微生物を選択的に培養することができる。培養対象微生物の培養により培養液中の前記物質がつぎつぎに還元されることになるが、培養液中の電極に電位を与えて酸化反応を生じさせることで還元された前記物質を再生させることができる。このため、前記物質を新たに補充しなくても、培養液中の前記物質の濃度を維持することができる。   Therefore, the culture solution in which the substance is dissolved is difficult to live for various microorganisms other than the microorganism to be cultured. For this reason, the microorganisms to be cultured that are resistant to the substance can be selectively cultured. Although the substance in the culture solution is successively reduced by culturing the microorganism to be cultured, it is possible to regenerate the reduced substance by applying an electric potential to the electrode in the culture solution to cause an oxidation reaction. it can. For this reason, the concentration of the substance in the culture solution can be maintained without replenishing the substance.

また、請求項記載の微生物の集積培養方法は、培養液には有機物が含まれており、培養対象微生物は有機物を利用した発酵の過程で前記物質を還元するものである。即ち、培養対象微生物は呼吸するために前記物質を必要とするのではなく、発酵を行う過程で結果的に前記物質を還元する。 In the method for accumulating and culturing microorganisms according to claim 1 , the culture solution contains an organic substance, and the microorganism to be cultured reduces the substance in the course of fermentation using the organic substance. That is, the microorganism to be cultured does not need the substance for respiration, but eventually reduces the substance in the process of fermentation.

また、請求項記載の微生物の集積培養のように、前記物質は、六価クロム、銀、銅、水銀、ヨウ素、亜ヒ酸、マンガン、ニッケル、亜セレン酸のいずれか1つであることが好ましい。銀、銅、水銀、ヨウ素は、多くの種類の微生物に対し殺菌効果を有している。また、亜ヒ酸、マンガン、ニッケル、亜セレン酸は、多くの種類の微生物に対し生態毒性を有している。したがって、これらの物質に耐性のある微生物が、耐性の無い他の雑多な微生物に対し優先的に増殖する。 In addition, as in the culture of microorganisms according to claim 1 , the substance is any one of hexavalent chromium, silver, copper, mercury, iodine, arsenous acid, manganese, nickel, selenious acid. Is preferred. Silver, copper, mercury and iodine have a bactericidal effect against many types of microorganisms. Arsenite, manganese, nickel, and selenite have ecotoxicity against many types of microorganisms. Therefore, microorganisms resistant to these substances proliferate preferentially over other miscellaneous microorganisms that are not resistant.

また、請求項記載の微生物の集積培養方法は、培養対象微生物がクロム還元菌であり、前記物質が六価クロムであり、クロム還元菌によって還元された三価クロムを六価クロムに再生しながら培養を行うものである。 According to the method for collecting and culturing microorganisms according to claim 2, the microorganism to be cultured is a chromium reducing bacterium, the substance is hexavalent chromium, and the trivalent chromium reduced by the chromium reducing bacterium is regenerated into hexavalent chromium. While culturing.

したがって、培養液はクロム還元菌以外の雑多な微生物にとって生息し難いものとなる。このため、六価クロムに耐性のあるクロム還元菌を選択的に培養することができる。クロム還元菌の培養により培養液中の六価クロムがつぎつぎに三価クロムに還元されることになるが、培養液中に浸した電極に電位を与えて酸化反応を生じさせることで三価に還元されたクロムを六価に再生させることができる。このため、培養液中の六価クロムの濃度を維持することができる。   Therefore, the culture solution is difficult to live for miscellaneous microorganisms other than chromium-reducing bacteria. For this reason, chromium-reducing bacteria resistant to hexavalent chromium can be selectively cultured. Hexavalent chromium in the culture solution is subsequently reduced to trivalent chromium by culturing chromium-reducing bacteria, but the trivalent chromium is reduced by applying an electric potential to the electrode immersed in the culture solution to cause an oxidation reaction. Reduced chromium can be regenerated to hexavalent. For this reason, the density | concentration of the hexavalent chromium in a culture solution can be maintained.

また、請求項記載の微生物の集積培養方法は、培養対象微生物がウラン還元菌であり、前記物質が六価クロムであり、ウラン還元菌によって還元された三価クロムを六価クロムに再生しながら培養を行うものである。 According to a third aspect of the present invention, the microorganism to be cultured is a uranium-reducing bacterium, the substance is hexavalent chromium, and the trivalent chromium reduced by the uranium-reducing bacterium is regenerated into hexavalent chromium. While culturing.

したがって、培養液はウラン還元菌以外の雑多な微生物にとって生息し難いものとなる。このため、六価クロムに耐性のあるウラン還元菌を選択的に培養することができる。ウラン還元菌の培養により培養液中の六価クロムがつぎつぎに三価クロムに還元されることになるが、培養液中に浸した電極に電位を与えて酸化反応を生じさせることで三価に還元されたクロムを六価に再生させることができる。このため、培養液中の六価クロムの濃度を維持することができる。   Therefore, the culture solution is difficult to live for miscellaneous microorganisms other than uranium-reducing bacteria. For this reason, uranium reducing bacteria resistant to hexavalent chromium can be selectively cultured. Hexavalent chromium in the culture solution is subsequently reduced to trivalent chromium by culturing uranium-reducing bacteria, but it is trivalent by applying an electric potential to the electrode immersed in the culture solution to cause an oxidation reaction. Reduced chromium can be regenerated to hexavalent. For this reason, the density | concentration of the hexavalent chromium in a culture solution can be maintained.

しかして、請求項1記載の微生物の集積培養方法によれば、上述のようにして微生物を集積培養するので、培養液中に前記物質を補充しなくてもその濃度を維持することができる。このため、培養対象微生物の培養に適した環境を維持することができる。しかも、前記物質が培養対象微生物以外の微生物に対して毒性を有しているので、培養液が培養対象微生物以外の微生物にとって生息に適さないものとなる。このため、培養対象微生物以外の微生物の繁殖を抑え、培養対象微生物をより優先的に培養することができる。また、前記物質の再生には電気分解を利用するので、簡便であり、必要な装置類は簡単なもので足りる。このため、低コストで微生物を集積培養することができる。さらに、前記物質を再生して使用するので、その使用量が少量で足り、この点からもコストを安くすることができる。 Thus, according to the method for accumulating and culturing microorganisms described in claim 1, since the microorganisms are accumulated and cultured as described above, the concentration can be maintained without supplementing the substance in the culture solution. For this reason, the environment suitable for culture | cultivation of microorganisms for culture | cultivation can be maintained. In addition, since the substance is toxic to microorganisms other than the culture target microorganism, the culture solution is not suitable for inhabiting microorganisms other than the culture target microorganism. For this reason, reproduction of microorganisms other than culture target microorganisms can be suppressed, and culture target microorganisms can be cultured more preferentially. In addition, since the electrolysis is used for the regeneration of the substance, it is simple and only a simple apparatus is necessary. For this reason, microorganisms can be accumulated and cultured at low cost. Furthermore , since the said substance is regenerated | regenerated and used, the usage-amount is sufficient, and a cost can be reduced also from this point.

また、請求項記載の微生物の集積培養方法は、培養液には有機物が含まれており、培養対象微生物は有機物を利用した発酵の過程で前記物質を還元するものである。即ち、培養対象微生物は呼吸するために前記物質を必要とするのではなく、発酵を行う過程で結果的に前記物質を還元する。 In the method for accumulating and culturing microorganisms according to claim 1 , the culture solution contains an organic substance, and the microorganism to be cultured reduces the substance in the course of fermentation using the organic substance. That is, the microorganism to be cultured does not need the substance for respiration, but eventually reduces the substance in the process of fermentation.

また、請求項記載の微生物の集積培養のように、前記物質は、六価クロム、銀、銅、水銀、ヨウ素、亜ヒ酸、マンガン、ニッケル、亜セレン酸のいずれか1つであることが好ましい。銀、銅、水銀、ヨウ素は、多くの種類の微生物に対し殺菌効果を有している。また、亜ヒ酸、マンガン、ニッケル、亜セレン酸は、多くの種類の微生物に対し生態毒性を有している。したがって、これらの物質に耐性のある微生物を優先的に培養することができる。 In addition, as in the culture of microorganisms according to claim 1 , the substance is any one of hexavalent chromium, silver, copper, mercury, iodine, arsenous acid, manganese, nickel, selenious acid. Is preferred. Silver, copper, mercury and iodine have a bactericidal effect against many types of microorganisms. Arsenite, manganese, nickel, and selenite have ecotoxicity against many types of microorganisms. Therefore, microorganisms resistant to these substances can be preferentially cultured.

また、請求項記載の微生物の集積培養方法では、培養対象微生物がクロム還元菌であり、前記物質が六価クロムであり、クロム還元菌によって還元された三価クロムを六価クロムに再生しながら培養を行うので、培養液中に六価クロムを補充しなくてもその濃度を維持することができる。このため、クロム還元菌の培養に適した環境を維持することができる。六価クロムの再生には電気分解を利用するので、簡便であり、必要な装置類は簡単なもので足りる。このため、低コストでクロム還元菌を集積培養することができる。また、六価クロムを再生して使用するので、その使用量が少量で足り、安全性が高く、集積培養に要するコストを更に安くすることができる。 Further, in the microorganism culture method according to claim 2, the microorganism to be cultured is a chromium-reducing bacterium, the substance is hexavalent chromium, and the trivalent chromium reduced by the chromium-reducing bacterium is regenerated into hexavalent chromium. Since the culture is performed, the concentration can be maintained without supplementing the culture medium with hexavalent chromium. For this reason, the environment suitable for culture | cultivation of chromium reduction bacteria can be maintained. Since the electrolysis is used for the regeneration of hexavalent chromium, it is simple, and the necessary equipment is sufficient. For this reason, chromium-reducing bacteria can be accumulated and cultured at low cost. In addition, since hexavalent chromium is regenerated and used, a small amount is sufficient, safety is high, and the cost required for enrichment culture can be further reduced.

さらに、請求項記載の微生物の集積培養方法は、培養対象微生物がウラン還元菌であり、前記物質が六価クロムであり、ウラン還元菌によって還元された三価クロムを六価クロムに再生しながら培養を行うので、培養液中に六価クロムを補充しなくてもその濃度を維持することができる。このため、ウラン還元菌の培養に適した環境を維持することができる。六価クロムの再生には電気分解を利用するので、簡便であり、必要な装置類は簡単なもので足りる。このため、低コストでウラン還元菌を集積培養することができる。また、六価クロムを再生して使用するので、その使用量が少量で足り、安全性が高く、集積培養に要するコストを更に安くすることができる。即ち、クロム還元菌と同様の方法で、ウラン還元菌を選択的に集積培養することができる。 Furthermore, in the method for collecting and culturing microorganisms according to claim 3, the microorganism to be cultured is a uranium reducing bacterium, the substance is hexavalent chromium, and the trivalent chromium reduced by the uranium reducing bacterium is regenerated into hexavalent chromium. Since the culture is performed, the concentration can be maintained without supplementing the culture medium with hexavalent chromium. For this reason, the environment suitable for culture | cultivation of uranium reducing bacteria can be maintained. Since the electrolysis is used for the regeneration of hexavalent chromium, it is simple, and the necessary equipment is sufficient. For this reason, uranium-reducing bacteria can be accumulated and cultured at low cost. In addition, since hexavalent chromium is regenerated and used, a small amount is sufficient, safety is high, and the cost required for enrichment culture can be further reduced. That is, uranium-reducing bacteria can be selectively accumulated and cultured by the same method as chromium-reducing bacteria.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

図1に、本発明の微生物の集積培養方法の実施形態の一例を概念的に示す。本発明の微生物の集積培養方法は、培養対象微生物1が還元活性を有し且つ耐性のある物質2を溶解させた培養液3中で培養対象微生物1を選択的に集積培養する際、培養対象微生物1によって還元された物質2を培養液3中に浸した電極に電位を与えることで酸化反応を生じさせて再生しながら培養を行うものである。即ち、物質2に対し耐性のある培養対象微生物1を、耐性のない微生物に優先して培養を行うものである。本実施形態では、培養対象微生物1は六価クロムに耐性のあるクロム還元菌(以下、クロム還元菌1という)であり、物質2は六価クロム(以下、六価クロム2という)であり、クロム還元菌1によって還元された三価クロムを六価クロム2に再生しながら培養を行うものである。   FIG. 1 conceptually shows an example of an embodiment of the microorganism culture method of the present invention. The method for accumulating and culturing microorganisms according to the present invention is performed when the microorganism 1 to be cultured is selectively accumulated and cultured in a culture solution 3 in which a substance 2 having a reducing activity and a resistant substance is dissolved. Cultivation is performed while regenerating by generating an oxidation reaction by applying an electric potential to an electrode in which the substance 2 reduced by the microorganism 1 is immersed in the culture solution 3. That is, the culture target microorganism 1 resistant to the substance 2 is cultured in preference to the non-resistant microorganism. In this embodiment, the microorganism 1 to be cultured is a chromium-reducing bacterium resistant to hexavalent chromium (hereinafter referred to as chromium-reducing bacterium 1), and the substance 2 is hexavalent chromium (hereinafter referred to as hexavalent chromium 2). Culturing is performed while regenerating trivalent chromium reduced by chromium-reducing bacteria 1 into hexavalent chromium 2.

電解槽4はイオン交換膜5によって培養槽6と対極槽7に仕切られており、培養槽6には六価クロム2を含む培地に懸濁させたクロム還元菌1を、対極槽7には六価クロム2を含まない培地成分を含んだ溶液を充填している。また、培養槽6には陽極8を、対極槽7には陰極9を浸している。   The electrolytic cell 4 is divided into a culture tank 6 and a counter electrode tank 7 by an ion exchange membrane 5. The culture tank 6 contains chromium-reducing bacteria 1 suspended in a medium containing hexavalent chromium 2, and the counter electrode tank 7 contains A solution containing medium components not containing hexavalent chromium 2 is filled. Further, an anode 8 is immersed in the culture tank 6 and a cathode 9 is immersed in the counter electrode tank 7.

培養槽6中の培地には、例えば乳酸、酵母エキス等の有機物が投入されている。クロム還元菌1はこれらの有機物を使用して発酵を行い、その過程で六価クロム2を還元する。六価クロム2は、クロム還元菌1以外の微生物に対して毒性を有しており、その他の雑多な微生物の繁殖を抑えることができる。   The medium in the culture tank 6 is filled with organic substances such as lactic acid and yeast extract. Chromium reducing bacteria 1 ferment using these organic substances and reduce hexavalent chromium 2 in the process. Hexavalent chromium 2 is toxic to microorganisms other than chromium-reducing bacteria 1 and can suppress the propagation of other miscellaneous microorganisms.

つまり、六価クロム2が溶解した培養液3はクロム還元菌1にとっては増殖し易いものであるが、その他の雑多な微生物にとっては増殖し難いものであり、クロム還元菌1を選択的に培養することができる。クロム還元菌1の培養により培養液3中の六価クロム2がつぎつぎに還元されて三価クロムとなるが、陽極8に電位を与えることで三価クロムを六価クロム2に再生することができる。このため、培養液3中の六価クロム2の濃度を維持することができ、クロム還元菌1の優先的な培養に適した環境を維持することができる。   That is, the culture solution 3 in which the hexavalent chromium 2 is dissolved is easy to grow for the chromium-reducing bacteria 1, but is difficult for other miscellaneous microorganisms to grow, and the chromium-reducing bacteria 1 is selectively cultured. can do. By culturing chromium-reducing bacteria 1, hexavalent chromium 2 in the culture solution 3 is subsequently reduced to trivalent chromium. However, by applying a potential to the anode 8, trivalent chromium can be regenerated to hexavalent chromium 2. it can. For this reason, the density | concentration of the hexavalent chromium 2 in the culture solution 3 can be maintained, and the environment suitable for the preferential culture of the chromium reducing bacteria 1 can be maintained.

このように、本発明では電気分解によりクロムを三価から六価に再生するので、簡便であり、必要な装置類も簡単なもので足りる。このため、低コストでクロム還元菌1を集積培養することができる。また、培養槽6中の六価クロム2を再生して使用するので、六価クロム2の使用量が少量で足り、安全性が高く、集積培養に要するコストを更に安くすることができる。   As described above, in the present invention, chromium is regenerated from trivalent to hexavalent by electrolysis, which is simple and requires a simple apparatus. For this reason, the chromium-reducing bacteria 1 can be accumulated and cultured at a low cost. Moreover, since the hexavalent chromium 2 in the culture tank 6 is regenerated and used, a small amount of the hexavalent chromium 2 is sufficient, the safety is high, and the cost required for enrichment culture can be further reduced.

クロム還元菌1としては、例えば表1に掲げるものがある。即ち、例えばShwanella、Pseudomonas、Sulfate reducing bacteria、Arthrobacter、Bacillus、Aerococcus、Micrococcus、Aeromonas、Thermoanaerobacter、Cellulomonas、Geobacter、Streptomyces、Escherichia、Enterobacterである。ただし、これらのクロム還元菌1に限るものではない。   Examples of the chromium-reducing bacteria 1 include those listed in Table 1. That is, for example, Shwanella, Pseudomonas, Sulfate reducing bacteria, Arthrobacter, Bacillus, Aerococcus, Micrococcus, Aeromonas, Thermoanaerobacter, Cellulomonas, Geobacter, Streptomyces, Escherichia, Enterobacter. However, it is not limited to these chromium-reducing bacteria 1.

電気分解を行うために培養液3には、三価クロムを六価クロム2に酸化させることができる値の電位を与える。実験では、図6に示すように、1V付近の電位で三価クロムが六価クロム2に酸化された。したがって、三価クロムを六価クロム2に酸化させる電位は約1Vであると判断できるので、培養液3に1Vの電位をかけながら培養を行うことが好ましい。   In order to perform electrolysis, the culture solution 3 is given a potential that can oxidize trivalent chromium to hexavalent chromium 2. In the experiment, as shown in FIG. 6, trivalent chromium was oxidized to hexavalent chromium 2 at a potential near 1 V. Therefore, since it can be determined that the potential for oxidizing trivalent chromium to hexavalent chromium 2 is about 1 V, it is preferable to perform culture while applying a potential of 1 V to the culture solution 3.

また、培養液3中の六価クロム2の濃度が高すぎると、六価クロムの毒性によりクロム還元菌1自身も増殖し難くなるので、六価クロム2の濃度の上限値は、例えば0.5m mol/Lが好ましい。   In addition, if the concentration of hexavalent chromium 2 in the culture solution 3 is too high, the chromium-reducing bacterium 1 itself is difficult to grow due to toxicity of hexavalent chromium, so the upper limit of the concentration of hexavalent chromium 2 is, for example, 0. 5 mmol / L is preferred.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述の説明では、培養対象微生物がクロム還元菌1であったが、クロム還元菌1以外の微生物でも良い。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in the above description, the microorganism to be cultured is the chromium-reducing bacterium 1, but a microorganism other than the chromium-reducing bacterium 1 may be used.

また、上述の説明では、物質2として六価クロムを使用していたが、六価クロムに限るものではない。例えば、銀(Ag)、銅(Cu2+)、水銀(Hg2+)、ヨウ素(I)、亜ヒ酸(AsO )、マンガン(Mn2+)、ニッケル(Ni)、亜セレン酸(SeO 2−)のいずれかでも良い。即ち、これらの物質2に還元活性のある微生物1を、これらの物質2を再生しながら培養しても良い。六価クロム2と同様に銀、銅、水銀、ヨウ素も多くの種類の微生物に対し殺菌効果を有しており、銀、銅、水銀、ヨウ素に耐性のある微生物1を選択的に集積培養することができる。また、亜ヒ酸、マンガン、ニッケル、亜セレン酸は多くの種類の微生物に対し生態毒性を有しており、亜ヒ酸、マンガン、ニッケル、亜セレン酸に耐性のある微生物1を選択的に集積培養することができる。これらの場合にも、上述のクロム還元菌1を培養する場合と同様の効果を得ることができる。 In the above description, hexavalent chromium is used as the substance 2, but it is not limited to hexavalent chromium. For example, silver (Ag + ), copper (Cu 2+ ), mercury (Hg 2+ ), iodine (I 2 ), arsenous acid (AsO 2 ), manganese (Mn 2+ ), nickel (Ni + ), selenite Any of (SeO 3 2− ) may be used. That is, the microorganism 1 having a reducing activity on these substances 2 may be cultured while regenerating these substances 2. Like hexavalent chromium 2, silver, copper, mercury, and iodine have a bactericidal effect on many types of microorganisms, and microorganisms 1 resistant to silver, copper, mercury, and iodine are selectively accumulated and cultured. be able to. Arsenite, manganese, nickel and selenite have ecotoxicity against many types of microorganisms, and the microorganism 1 resistant to arsenite, manganese, nickel and selenite is selectively used. Accumulation culture can be performed. In these cases, the same effects as those obtained when the chromium-reducing bacteria 1 are cultured can be obtained.

なお、物質2が銀の場合、培養液3中のAgを銀還元菌1がAgに還元し、これを電気分解によってAgに再生することが考えられる。また、物質2が銅の場合、培養液3中のCu2+を銅還元菌1がCuに還元し、これを電気分解によってCu2+に再生することが考えられる。また、物質2が水銀の場合、培養液3中のHg2+を水銀還元菌1がHgに還元し、これを電気分解によってHg2+に再生することが考えられる。また、物質2がヨウ素の場合、培養液3中のIをヨウ素還元菌1がIに還元し、これを電気分解によってIに再生することが考えられる。また、物質2が亜ヒ酸の場合、培養液3中の亜ヒ酸を亜ヒ酸還元菌1がヒ素に還元し、これを電気分解によって亜ヒ酸に再生することが考えられる。また、物質2がマンガンの場合、培養液3中のMn2+をマンガン還元菌1がMnに還元し、これを電気分解によってMn2+に再生することが考えられる。また、物質2がニッケルの場合、培養液3中のNiをニッケル還元菌1がNiに還元し、これを電気分解によってNiに再生することが考えられる。また、物質2が亜セレン酸の場合、培養液3中の亜セレン酸を亜セレン酸還元菌1がセレンに還元し、これを電気分解によって亜セレン酸に再生することが考えられる。 In the case material 2 is silver, the Ag + in the culture solution 3 silver-reducing bacteria 1 is reduced to Ag, which is considered to play Ag + by electrolysis. Further, if the material 2 is copper, the Cu 2+ in the culture solution 3 copper reducing bacteria 1 is reduced to Cu, it is conceivable to play Cu 2+ by electrolysis. Moreover, when the substance 2 is mercury, it can be considered that mercury-reducing bacteria 1 reduce Hg 2+ in the culture solution 3 to Hg and regenerate it to Hg 2+ by electrolysis. Further, when the substance 2 is iodine, it is conceivable that the iodine-reducing bacteria 1 reduce I 2 in the culture solution 3 to I and regenerate it to I 2 by electrolysis. Moreover, when the substance 2 is arsenous acid, the arsenite in the culture solution 3 may be reduced to arsenic by the arsenite-reducing bacteria 1 and regenerated to arsenite by electrolysis. Moreover, when the substance 2 is manganese, it is possible that the manganese reducing bacteria 1 reduce Mn <2+> in the culture solution 3 to Mn, and this is regenerated to Mn <2+> by electrolysis. Further, if the material 2 is nickel, a Ni + in the culture solution 3 nickel reducing bacteria 1 is reduced to Ni, this is considered to play a Ni + by electrolysis. Moreover, when the substance 2 is selenious acid, it is possible that the selenite in the culture solution 3 is reduced to selenium by the selenite-reducing bacteria 1 and is regenerated to selenite by electrolysis.

また、物質2として六価クロム2を使用して、ウラン還元菌1を選択的に集積培養しても良い。即ち、ウラン還元菌1によって還元された三価クロムを培養液3中に流した電気により酸化反応を生じさせて六価クロム2に再生しながら培養を行うようにしても良い。この場合にも、クロム還元菌1を培養する場合と同様の効果を得ることができる。ウラン還元菌1として、六価クロムに対し還元活性を有し且つ耐性のあるものがある。ウランを溶解させた培養液3でウラン還元菌1を培養することが安全面、コスト面等で不利な場合がある。このような場合には、ウラン還元菌1を六価クロムを溶解させた培養液3中で培養することが安全面、コスト面等で有利となることも考えられる。   In addition, uranium reducing bacteria 1 may be selectively accumulated and cultured using hexavalent chromium 2 as substance 2. That is, the culture may be carried out while regenerating the hexavalent chromium 2 by causing an oxidation reaction by electricity in which trivalent chromium reduced by the uranium-reducing bacteria 1 is flowed into the culture solution 3. In this case, the same effect as that obtained when the chromium-reducing bacteria 1 is cultured can be obtained. As uranium-reducing bacteria 1, there is one having a reducing activity and resistance to hexavalent chromium. In some cases, culturing the uranium-reducing bacteria 1 in the culture solution 3 in which uranium is dissolved is disadvantageous in terms of safety, cost, and the like. In such a case, culturing the uranium-reducing bacteria 1 in the culture solution 3 in which hexavalent chromium is dissolved may be advantageous in terms of safety and cost.

本発明により、クロム還元菌1を良好に培養できることを確認するための実験を行った。使用した培養装置を図2に示す。電解槽4は外径75mm、高さ90mmのガラス製深底シャーレの内側を、一価の陽イオン透過性の交換膜(旭化成、K−192)5で仕切った二槽式とし、片方を培養槽6、もう一方を対極槽7とした。培養槽6には白金網(40mm×70mm、80mesh)製の陽極8、および銀・塩化銀参照電極10(HS−205C、東亜DKK社)を設置した。さらに、対極槽7には炭素板(40mm×70mm、4mm厚)を陰極9として設置した。これら3本の電極8,9,10を電位制御装置11に結線する事で、培養槽6内の陽極8の電位を厳密に設定可能とした 。   According to the present invention, an experiment was conducted to confirm that chromium-reducing bacteria 1 can be cultured well. The culture apparatus used is shown in FIG. The electrolytic cell 4 is a two-tank type in which the inside of a glass petri dish with an outer diameter of 75 mm and a height of 90 mm is partitioned by a monovalent cation-permeable exchange membrane (Asahi Kasei, K-192) 5 and one side is cultured. The tank 6 was used as the counter electrode tank 7 on the other side. The culture tank 6 was provided with an anode 8 made of platinum mesh (40 mm × 70 mm, 80 mesh) and a silver / silver chloride reference electrode 10 (HS-205C, Toa DKK). Further, a carbon plate (40 mm × 70 mm, 4 mm thickness) was installed as a cathode 9 in the counter electrode tank 7. By connecting these three electrodes 8, 9, 10 to the potential control device 11, the potential of the anode 8 in the culture tank 6 can be set strictly.

培養に際しては、電解槽4をアクリル製の嫌気ボックス12内に封入し、さらに嫌気ボックス全体を30度に設定した恒温槽(図示せず)内に設置した。嫌気ボックス12には、常時窒素ガスを注入し(0.2L/min)、嫌気雰囲気を維持した。   When culturing, the electrolytic cell 4 was enclosed in an acrylic anaerobic box 12, and the entire anaerobic box was installed in a thermostat (not shown) set at 30 degrees. Nitrogen gas was always injected into the anaerobic box 12 (0.2 L / min) to maintain an anaerobic atmosphere.

培養液3の組成を表2に、その中の金属溶液の組成を表3に示す。なお、以下の実験では、全てこの組成の培養液3を用いた。   The composition of the culture solution 3 is shown in Table 2, and the composition of the metal solution therein is shown in Table 3. In the following experiments, the culture solution 3 having this composition was used.

培養液3はまず、無機基本成分を調整後にオートクレーブ滅菌を施した。実験直前に、クロム塩および有機成分(Yeast Extract:0.2g/L、乳酸ナトリウム:1g/L)を混合し、フィルター(0.22μm,Millex-GS,MILLIPORE,Ireland)によりろ過除菌した。   The culture solution 3 was first subjected to autoclave sterilization after adjusting the inorganic basic components. Immediately before the experiment, chromium salts and organic components (Yeast Extract: 0.2 g / L, sodium lactate: 1 g / L) were mixed and sterilized by filtration with a filter (0.22 μm, Millex-GS, MILLIPORE, Ireland).

陽極8に+1.0Vの電位を与えながら2週間にわたり培養を行った。その結果を図3に示す。2週間の培養でクロム還元菌1の濃度が初期状態の約3倍に増加したことを確認できた。本発明によってクロム還元菌1を培養できることを確認できた。なお、クロム還元菌1の数は、光学顕微鏡観察による菌数カウントによって計測した。   Culturing was performed for 2 weeks while applying a potential of +1.0 V to the anode 8. The result is shown in FIG. It was confirmed that the concentration of chromium-reducing bacteria 1 increased to about 3 times the initial state after 2 weeks of culture. It was confirmed that chromium-reducing bacteria 1 can be cultured according to the present invention. The number of chromium-reducing bacteria 1 was measured by counting the number of bacteria by observation with an optical microscope.

また、微生物の形状に関する、より詳細な視覚的情報の取得を目的として、原子間力顕微鏡(AFM:Digital Instruments社、Nanoscope IIIa)による観察を行った。上記実験後の試料(本発明試料)と、比較のためにバイアル瓶を用いて培養を行った試料(比較試料)について観察を行った。AFM観察試料は、アセトン中で超音波洗浄したカバーガラス(MATSUNAMI,Micro cover glass,18×18mm)を用いて作成した。カバーガラス上に微生物の懸濁液50μLを滴下し、約1時間常温で静置後、カバーガラスを蒸留水中に10秒間浸漬させ、培養液3成分を洗い流した。その後、約1時間常温大気中で乾燥させ、測定に供した。AFM測定は大気中にておこない、探針の制御法はコンタクトモードを採用した。個々のサンプルに対し、20μm×20μmの領域をスキャンし、画像を取得した。なお、比較試料を得るためのバイアル瓶を用いた培養は、以下の通り行った。即ち、微生物懸濁液にクロム塩、および有機成分を添加し、100mL容のバイアル瓶に30mL注入し、ブチルゴム栓およびアルミキャップにより密栓した。続いて、バイアル瓶内のガスを窒素に置換し、最終ガス圧を1.5気圧に調整した。バイアル瓶は30度の恒温室にて振とう培養に供した。   In addition, for the purpose of obtaining more detailed visual information on the shape of microorganisms, observation was performed with an atomic force microscope (AFM: Digital Instruments, Nanoscope IIIa). The sample after the experiment (the sample of the present invention) and a sample (comparative sample) cultured using a vial for comparison were observed. The AFM observation sample was prepared using a cover glass (MATSUNAMI, Micro cover glass, 18 × 18 mm) ultrasonically cleaned in acetone. 50 μL of the microorganism suspension was dropped onto the cover glass and allowed to stand at room temperature for about 1 hour, and then the cover glass was immersed in distilled water for 10 seconds to wash away the three components of the culture solution. Then, it was dried in room temperature air for about 1 hour and used for measurement. AFM measurement was performed in the atmosphere, and the contact mode was adopted as the probe control method. For each sample, an area of 20 μm × 20 μm was scanned to obtain an image. In addition, culture | cultivation using the vial bottle for obtaining a comparative sample was performed as follows. That is, a chromium salt and an organic component were added to a microorganism suspension, and 30 mL was injected into a 100 mL vial and sealed with a butyl rubber stopper and an aluminum cap. Subsequently, the gas in the vial was replaced with nitrogen, and the final gas pressure was adjusted to 1.5 atmospheres. The vial was subjected to shaking culture in a constant temperature room at 30 degrees.

その結果を図4に示す。図4(A)は比較試料についての画像写真、図4(B)は本発明試料についての画像写真である。なお、各図中右下の線の長さは5μmに相当する。比較試料では複数種の微生物の増殖が確認されたのに対し、本発明試料では菌形のそろった単一の微生物の増殖が確認できた。本発明試料で確認された微生物はクロム還元菌1であり、本発明によってクロム還元菌1を選択的に集積培養を行うことができることを確認できた。   The result is shown in FIG. 4A is an image photograph of the comparative sample, and FIG. 4B is an image photograph of the sample of the present invention. The length of the lower right line in each figure corresponds to 5 μm. In the comparative sample, the growth of a plurality of types of microorganisms was confirmed, whereas in the sample of the present invention, the growth of a single microorganism having a uniform fungus shape was confirmed. The microorganism confirmed in the sample of the present invention is chromium-reducing bacteria 1, and it was confirmed that the chromium-reducing bacteria 1 can be selectively enriched and cultured according to the present invention.

さらに念のため、上記実験(陽極8に+1.0Vの電位を与えながらの実験)によって集積培養した微生物を、今度は陽極8に電位を与えずに2週間培養した。その結果を図5に示す。図5からも明らかなように、培養液3中の六価クロム2の濃度の減少が確認された。これにより、上記実験によって集積培養された微生物がクロム還元菌1であることを再確認できた。   As a precaution, the microorganisms accumulated and cultured by the above experiment (experiment while applying a potential of +1.0 V to the anode 8) were cultured for 2 weeks without applying a potential to the anode 8. The result is shown in FIG. As is clear from FIG. 5, a decrease in the concentration of hexavalent chromium 2 in the culture solution 3 was confirmed. Thereby, it was reconfirmed that the microorganism accumulated and cultured in the above experiment was the chromium-reducing bacterium 1.

陽極8に与える電位を決定するための実験を行った。クロムをはじめとする種々の電極活性物質2の酸化還元電位の測定は、電気化学アナライザー(ALSモデル660B、BAS社)を使用し、サイクリックボルタンメトリー(CV)法により実施した。この際、電解系は3極式で行い、電極反応を見るための作用極には白金円盤電極(面積:0.785mm、BAS社)を、参照電極には銀・塩化銀電極(RE−1B、BAS社)、さらに電流を流すための対極には白金棒電極(1mm径×5cm、自作)を使用した。それぞれの電極活性物質2、具体的には六価クロムについては1m mol/L濃度で調整し、銀,銅,水銀,ヨウ素,亜ヒ酸,マンガン,ニッケル,亜セレン酸については5m mol/L濃度で調整し、電解質溶液中に溶解させた。CV結果は、それぞれの物質2ごとに、物質2の入っていない電解質溶液をベースラインとして表示した。 Experiments were performed to determine the potential applied to the anode 8. The measurement of the oxidation-reduction potential of various electrode active materials 2 including chromium was performed by a cyclic voltammetry (CV) method using an electrochemical analyzer (ALS model 660B, BAS). At this time, the electrolysis system is a three-pole system, a platinum disk electrode (area: 0.785 mm 2 , BAS) is used as a working electrode for observing the electrode reaction, and a silver / silver chloride electrode (RE--) is used as a reference electrode. 1B, BAS), and a platinum rod electrode (1 mm diameter × 5 cm, self-made) was used as a counter electrode for further flowing current. Each electrode active substance 2, specifically hexavalent chromium, is adjusted to a concentration of 1 mmol / L, and silver, copper, mercury, iodine, arsenous acid, manganese, nickel, selenious acid is adjusted to 5 mmol / L. The concentration was adjusted and dissolved in the electrolyte solution. The CV result was displayed for each substance 2 as the baseline of the electrolyte solution not containing substance 2.

六価クロム2についての酸化電位の測定結果を図6に示す。図6において、薄い色の実線はクロムを含まない培養液3(バックグラウンド)についての測定結果、濃い色の実線は1m mol/Lのクロムイオンを含む培養液3についての測定結果である。なお、横軸(電位)は、銀塩化銀参照電極に対する値である(図7〜図14において同じ)。培養液3にクロムが存在する状態で、電気化学的に酸化還元を行わせると、0V付近(矢印A)に還元電流、+1V付近(矢印B)に酸化電流の増加が確認できた。これらはそれぞれ、Cr(VI)→Cr(III)、Cr(III)→Cr(VI)の反応に起因する電流値であると判断できる。これは、培養液3に常時+1Vの電位を加えることで、培養液3中のクロムをCr(VI)に保持できることを示している。したがって、培養中に与える電位は+1.0Vが適している。   The measurement result of the oxidation potential for hexavalent chromium 2 is shown in FIG. In FIG. 6, the light solid line is the measurement result for the culture solution 3 (background) not containing chromium, and the dark solid line is the measurement result for the culture solution 3 containing 1 mmol / L chromium ions. The horizontal axis (potential) is a value with respect to the silver-silver chloride reference electrode (same in FIGS. 7 to 14). When electrochemical reduction / reduction was carried out in the presence of chromium in the culture solution 3, an increase in reduction current was observed near 0 V (arrow A) and an increase in oxidation current was observed near +1 V (arrow B). These can be judged to be current values resulting from the reaction of Cr (VI) → Cr (III) and Cr (III) → Cr (VI), respectively. This indicates that chromium in the culture medium 3 can be held in Cr (VI) by always applying a potential of +1 V to the culture medium 3. Therefore, +1.0 V is suitable for the potential applied during the culture.

銀(Ag)についての酸化電位の測定結果を図7に示す。図7において、実線は銀を含まない培養液(バックグラウンド)についての測定結果、破線は5m mol/Lの銀イオンを含む培養液についての測定結果である。培養液に銀が存在する状態で、電気化学的に酸化還元を行わせると、+0.5V付近(矢印)に酸化電流の増加が確認できた。したがって、培養中に与える電位は、+0.5Vが適している。 The measurement result of the oxidation potential for silver (Ag + ) is shown in FIG. In FIG. 7, the solid line shows the measurement results for the culture solution (background) not containing silver, and the broken line shows the measurement results for the culture solution containing 5 mmol / L silver ions. When electrochemical reduction / reduction was carried out in the presence of silver in the culture solution, an increase in oxidation current was confirmed at around +0.5 V (arrow). Therefore, + 0.5V is suitable for the potential applied during the culture.

銅(Cu2+)についての酸化電位の測定結果を図8に示す。図8において、実線は銅を含まない培養液(バックグラウンド)についての測定結果、破線は5m mol/Lの銅イオンを含む培養液についての測定結果である。培養液に銅が存在する状態で、電気化学的に酸化還元を行わせると、0V付近と+0.2V付近(2つの矢印)に酸化電流の増加が確認できた。したがって、培養中に与える電位は、0V又は+0.2Vが適している。 The measurement result of the oxidation potential for copper (Cu 2+ ) is shown in FIG. In FIG. 8, the solid line shows the measurement results for the culture solution (background) not containing copper, and the broken line shows the measurement results for the culture solution containing 5 mmol / L copper ions. When electrochemical oxidation / reduction was carried out in a state where copper was present in the culture solution, an increase in oxidation current could be confirmed around 0 V and around +0.2 V (two arrows). Therefore, 0V or + 0.2V is suitable for the potential applied during the culture.

水銀(Hg2+)についての酸化電位の測定結果を図9に示す。図9において、実線は水銀を含まない培養液(バックグラウンド)についての測定結果、破線は5m mol/Lの水銀イオンを含む培養液についての測定結果である。培養液に水銀が存在する状態で、電気化学的に酸化還元を行わせると、+0.3V付近と+0.6V付近(2つの矢印)に酸化電流の増加が確認できた。したがって、培養中に与える電位は、+0.3V又は+0.6Vが適している。 The measurement result of the oxidation potential for mercury (Hg 2+ ) is shown in FIG. In FIG. 9, the solid line shows the measurement results for the culture solution (background) not containing mercury, and the broken line shows the measurement results for the culture solution containing 5 mmol / L mercury ions. When electrochemical oxidation / reduction was performed in the presence of mercury in the culture solution, an increase in oxidation current could be confirmed around +0.3 V and around +0.6 V (two arrows). Therefore, + 0.3V or + 0.6V is suitable for the potential applied during the culture.

ヨウ素(I)についての酸化電位の測定結果を図10に示す。図10において、実線はヨウ素を含まない培養液(バックグラウンド)についての測定結果、破線は5m mol/Lのヨウ素を含む培養液についての測定結果である。培養液にヨウ素が存在する状態で、電気化学的に酸化還元を行わせると、+0.5V付近と+0.8V付近(2つの矢印)に酸化電流の増加が確認できた。したがって、培養中に与える電位は、+0.5V又は+0.8Vが適している。 The measurement result of the oxidation potential for iodine (I 2 ) is shown in FIG. In FIG. 10, the solid line shows the measurement results for the culture solution (background) not containing iodine, and the broken line shows the measurement results for the culture solution containing 5 mmol / L iodine. When electrochemical oxidation / reduction was carried out in the presence of iodine in the culture solution, an increase in oxidation current was confirmed at around +0.5 V and around +0.8 V (two arrows). Therefore, + 0.5V or + 0.8V is suitable for the potential applied during the culture.

亜ヒ酸(AsO )についての酸化電位の測定結果を図11に示す。図11において、実線は亜ヒ酸を含まない培養液(バックグラウンド)についての測定結果、破線は5m mol/Lの亜ヒ酸を含む培養液についての測定結果である。培養液に亜ヒ酸が存在する状態で、電気化学的に酸化還元を行わせると、+0.7V付近(矢印)に酸化電流の増加が確認できた。したがって、培養中に与える電位は、+0.7Vが適している。 FIG. 11 shows the measurement results of the oxidation potential for arsenous acid (AsO 2 ). In FIG. 11, the solid line shows the measurement results for the culture solution (background) containing no arsenite, and the broken line shows the measurement results for the culture solution containing 5 mmol / L arsenous acid. When electrochemical oxidation / reduction was performed in the presence of arsenous acid in the culture solution, an increase in oxidation current was confirmed at around +0.7 V (arrow). Therefore, + 0.7V is suitable for the potential applied during the culture.

マンガン(Mn2+)についての酸化電位の測定結果を図12に示す。図12において、実線はマンガンを含まない培養液(バックグラウンド)についての測定結果、破線は5m mol/Lのマンガンイオンを含む培養液についての測定結果である。培養液にマンガンが存在する状態で、電気化学的に酸化還元を行わせると、+0.7V付近と+1.0V付近(2つの矢印)に酸化電流の増加が確認できた。したがって、培養中に与える電位は、+0.7V又は+1.0Vが適している。 The measurement result of the oxidation potential for manganese (Mn 2+ ) is shown in FIG. In FIG. 12, the solid line shows the measurement results for the culture solution (background) not containing manganese, and the broken line shows the measurement results for the culture solution containing 5 mmol / L manganese ions. When electrochemical reduction was carried out in the presence of manganese in the culture solution, an increase in oxidation current could be confirmed around +0.7 V and +1.0 V (two arrows). Therefore, + 0.7V or + 1.0V is suitable for the potential applied during the culture.

ニッケル(Ni)についての酸化電位の測定結果を図13に示す。図13において、実線はニッケルを含まない培養液(バックグラウンド)についての測定結果、破線は5m mol/Lのニッケルイオンを含む培養液についての測定結果である。培養液にニッケルが存在する状態で、電気化学的に酸化還元を行わせると、−0.4V付近(矢印)に酸化電流の増加が確認できた。したがって、培養中に与える電位は、−0.4Vが適している。 The measurement results of the oxidation potential for nickel (Ni + ) are shown in FIG. In FIG. 13, the solid line shows the measurement results for the culture solution (background) not containing nickel, and the broken line shows the measurement results for the culture solution containing 5 mmol / L nickel ions. When electrochemical oxidation / reduction was performed in a state where nickel was present in the culture solution, an increase in oxidation current was confirmed at around -0.4 V (arrow). Therefore, -0.4V is suitable for the potential applied during the culture.

亜セレン酸(SeO 2−)についての酸化電位の測定結果を図14に示す。図14において、実線は亜セレン酸を含まない培養液(バックグラウンド)についての測定結果、破線は5m mol/Lの亜セレン酸を含む培養液についての測定結果である。培養液に亜セレン酸が存在する状態で、電気化学的に酸化還元を行わせると、+0.5V付近(矢印)に酸化電流の増加が確認できた。したがって、培養中に与える電位は、+0.5Vが適している。 The measurement result of the oxidation potential for selenious acid (SeO 3 2− ) is shown in FIG. In FIG. 14, the solid line shows the measurement results for the culture solution (background) not containing selenite, and the broken line shows the measurement results for the culture solution containing 5 mmol / L selenious acid. When electrochemical reduction was carried out in the presence of selenious acid in the culture solution, an increase in oxidation current was confirmed at around +0.5 V (arrow). Therefore, + 0.5V is suitable for the potential applied during the culture.

培養液3中の六価クロム2の濃度の適正値を求めるための実験を行った。実験ではバイアル瓶を使用し、電位を与えない状態(六価クロム2の再生を行わない状態)で実験を行った。微生物懸濁液にクロム塩、および有機成分を添加し、100mL容のバイアル瓶に30mL注入し、ブチルゴム栓およびアルミキャップにより密栓した。続いて、バイアル瓶内のガスを窒素に置換し、最終ガス圧を1.5気圧に調整した。バイアル瓶は30度の恒温室にて振とう培養に供した。微生物として2箇所の土壌(土壌A、土壌B)から採取したクロム還元菌1を使用し、培養液3中の六価クロム2の初発濃度が0.1m mol/L、0.2m mol/L、0.5m mol/L、1.0m mol/Lの4つの値について実験を行った。また、比較のために、クロム還元菌1を投入しない場合(control)についても実験を行った。   An experiment was performed to determine the appropriate value of the concentration of hexavalent chromium 2 in the culture solution 3. In the experiment, a vial was used, and the experiment was performed in a state where no potential was applied (a state where hexavalent chromium 2 was not regenerated). Chromium salt and organic components were added to the microorganism suspension, and 30 mL was injected into a 100 mL vial, and sealed with a butyl rubber stopper and an aluminum cap. Subsequently, the gas in the vial was replaced with nitrogen, and the final gas pressure was adjusted to 1.5 atmospheres. The vial was subjected to shaking culture in a constant temperature room at 30 degrees. Using chromium-reducing bacteria 1 collected from two soils (soil A and soil B) as microorganisms, the initial concentration of hexavalent chromium 2 in the culture solution 3 is 0.1 mmol / L, 0.2 mmol / L , 0.5 mmol / L and 1.0 mmol / L were tested. For comparison, an experiment was also conducted for the case where the chromium-reducing bacteria 1 was not added (control).

まず最初に、クロム還元菌1による培養液3中の六価クロム濃度の時間変化についての測定結果を図15に示す。図15(A)は六価クロム2の初発濃度が0.1m mol/Lの場合、(B)は六価クロム2の初発濃度が0.2m mol/Lの場合、(C)は六価クロム2の初発濃度が0.5m mol/Lの場合、(D)は六価クロム2の初発濃度が1.0m mol/Lの場合である。なお、各図では縦軸のスケールが異なっている。六価クロム2の初発濃度が0.1と0.2m mol/Lの場合には、実験開始から1〜2週間で六価クロム2の濃度が0近くまで減少した。また、六価クロム2の初発濃度が0.5m mol/Lの場合には、六価クロム濃度の減少は僅かであった。一方、六価クロム2の初発濃度が1.0m mol/Lの場合、六価クロム濃度の有意な減少はみられなかった。   First, the measurement result about the time change of the hexavalent chromium concentration in the culture solution 3 by the chromium reducing bacteria 1 is shown in FIG. 15A shows the case where the initial concentration of hexavalent chromium 2 is 0.1 mmol / L, FIG. 15B shows the case where the initial concentration of hexavalent chromium 2 is 0.2 mmol / L, and FIG. When the initial concentration of chromium 2 is 0.5 mmol / L, (D) is the case where the initial concentration of hexavalent chromium 2 is 1.0 mmol / L. In each figure, the scale of the vertical axis is different. When the initial concentration of hexavalent chromium 2 was 0.1 and 0.2 mmol / L, the concentration of hexavalent chromium 2 decreased to nearly 0 in 1 to 2 weeks from the start of the experiment. When the initial concentration of hexavalent chromium 2 was 0.5 mmol / L, the decrease in hexavalent chromium concentration was slight. On the other hand, when the initial concentration of hexavalent chromium 2 was 1.0 mmol / L, no significant decrease in hexavalent chromium concentration was observed.

なお、培養液3中のクロムは、六価クロム2の状態では溶液中に溶解しているが、三価クロムの状態では沈殿するので、培養液3をフィルター(0.22μm,Millex-GS,MILLIPORE,Ireland)で三価クロムをろ過することにより、六価クロム2のみを抽出し、クロム濃度を分析した。クロムの定量にはICP発光分析装置(P8000、HITACHI社)を使用した。   Chromium in the culture solution 3 is dissolved in the solution in the hexavalent chromium 2 state, but precipitates in the trivalent chromium state, so the culture solution 3 is filtered (0.22 μm, Millex-GS, By filtering trivalent chromium with MILLIPORE, Ireland, only hexavalent chromium 2 was extracted and analyzed for chromium concentration. An ICP emission analyzer (P8000, HITACHI) was used for chromium determination.

次に、各初発濃度における菌濃度の時間変化についての測定結果を図16に示す。なお、図中縦軸は、クロム還元菌1を含む菌全体(クロム還元菌1以外の雑多な菌も含む)の濃度(cells/mL)である。また、図中右上四角枠内の数値(0.1/0.2/0.5/1.0)は、六価クロム2の初発濃度(m mol/L)を示している。図16(A)は土壌Aについての測定結果、図16(B)は土壌Bについての測定結果である。   Next, the measurement result about the time change of the microbe density | concentration in each initial concentration is shown in FIG. In addition, the vertical axis | shaft in a figure is the density | concentration (cells / mL) of the whole microbe (including miscellaneous microbes other than the chromium reducing microbe 1) containing the chromium reducing microbe 1. FIG. Moreover, the numerical value (0.1 / 0.2 / 0.5 / 1.0) in the upper right square frame in the figure shows the initial concentration (m mol / L) of hexavalent chromium 2. 16A shows the measurement results for soil A, and FIG. 16B shows the measurement results for soil B.

六価クロム初発濃度が0.2m mol/L以下の場合、培養後半では六価クロム2の濃度がほぼゼロになっている(図15(A)(B))ことから、図16(A)(B)の0.1、0.2m mol/Lで増えている菌は、雑多な菌も含まれていると考えられる。一方、六価クロム初発濃度0.5m mol/Lの場合、培養後半でも六価クロム2が維持されている(図15(C))ので、図16(A)(B)の0.5m mol/Lで増えている菌は、クロム還元菌1であると考えられる。すなわち、土壌A、土壌Bに含まれるクロム還元菌1は、与えられた培養液3環境において、少なくともそれぞれ、1.4×10cells/mL、6×10cells/mLまで増殖できることが確認できた。 When the initial concentration of hexavalent chromium is 0.2 mmol / L or less, the concentration of hexavalent chromium 2 is almost zero in the latter half of the culture (FIGS. 15A and 15B). It is considered that the bacteria increasing at 0.1 and 0.2 mmol / L in (B) include miscellaneous bacteria. On the other hand, when the initial concentration of hexavalent chromium is 0.5 mmol / L, hexavalent chromium 2 is maintained even in the latter half of the culture (FIG. 15C), so 0.5 mmol of FIGS. 16A and 16B. Bacteria increasing at / L is considered to be chromium-reducing bacteria 1. That is, it was confirmed that chromium-reducing bacteria 1 contained in soil A and soil B can grow to at least 1.4 × 10 9 cells / mL and 6 × 10 8 cells / mL, respectively, in the given culture medium 3 environment. did it.

なお、六価クロム2が培養液3中に残っているにもかかわらず、微生物1の増殖が止まっているのは、六価クロム2が微生物1の増殖に直接関与しない物質である(即ち、微生物が呼吸するのに六価クロム2を必要とするのではなく、微生物1の発酵の過程で六価クロム2を還元する)証であり、おそらくは増殖に必要な有機物が使い尽くされたためと考えられる。   It should be noted that although the hexavalent chromium 2 remains in the culture solution 3, the microorganism 1 has stopped growing because the hexavalent chromium 2 is not directly involved in the growth of the microorganism 1 (ie, This is evidence that hexavalent chromium 2 is reduced in the process of fermentation of microorganism 1, rather than requiring hexavalent chromium 2 for respiration, and probably because organic substances necessary for growth have been used up. It is done.

一方、六価クロム2の初発濃度1.0m mol/Lの場合、ここで増えているのはクロム還元菌1と考えられる(図15(D)より培養液3中に六価クロム2が存在しているため)が、0.5m mol/Lの場合に比べて明らかに菌体濃度が低いことから(図16)、1.0m mol/Lの場合の六価クロム2は、クロム還元菌1自体の増殖を阻害していると考えられる。   On the other hand, when the initial concentration of hexavalent chromium 2 is 1.0 mmol / L, it is considered that the increased amount is chromium-reducing bacteria 1 (from FIG. 15D, hexavalent chromium 2 is present in the culture solution 3). However, since the bacterial cell concentration is clearly lower than that in the case of 0.5 mmol / L (FIG. 16), hexavalent chromium 2 in the case of 1.0 mmol / L is a chromium-reducing bacterium. 1 is thought to inhibit the growth of itself.

以上より、培養液3中の六価クロム濃度が高過ぎても培養に適さないことがわかった。そして、具体的には、クロム還元菌1の集積培養の際には、0.5m mol/L以下の六価クロム濃度にて、培養液3中の六価クロム2がなくならないような条件の下で培養することが好ましいことがわかった。   From the above, it was found that the hexavalent chromium concentration in the culture medium 3 is not suitable for culture even if it is too high. Specifically, in the enrichment culture of the chromium-reducing bacteria 1, the hexavalent chromium 2 in the culture solution 3 is not lost at a hexavalent chromium concentration of 0.5 mmol / L or less. It has been found that it is preferable to culture under.

また、培養液3中の六価クロム濃度が低すぎるとクロム還元菌1以外の雑多な菌の繁殖を許してしまうことになるので、六価クロム濃度としては、最低でも雑多な菌の繁殖を抑えることができる濃度を確保する必要がある。例えば、0.1m mol程度の濃度を確保することが好ましい。   In addition, if the hexavalent chromium concentration in the culture solution 3 is too low, it will allow the breeding of miscellaneous bacteria other than the chromium-reducing bacteria 1, and therefore the hexavalent chromium concentration is at least the breeding of miscellaneous bacteria. It is necessary to secure a concentration that can be suppressed. For example, it is preferable to secure a concentration of about 0.1 mmol.

本発明の微生物の集積培養方法の実施形態の一例を示す概念図である。It is a conceptual diagram which shows an example of embodiment of the microorganisms accumulation culture method of this invention. クロム還元菌の集積培養の実験に使用した培養装置の概念図である。It is a conceptual diagram of the culture apparatus used for the experiment of accumulation culture of chromium reduction bacteria. クロム還元菌の集積培養の実験結果を示す図である。It is a figure which shows the experimental result of accumulation culture of chromium reduction bacteria. 培養後の微生物群の顕微鏡画像を示し、(A)は比較試料についての顕微鏡画像、(B)は本発明試料についての顕微鏡画像である。The microscope image of the microorganism group after culture | cultivation is shown, (A) is a microscope image about a comparative sample, (B) is a microscope image about this invention sample. 培養後の微生物がクロム還元菌であることを再確認するための実験結果を示す図である。It is a figure which shows the experimental result for reconfirming that the microorganisms after culture | cultivation are chromium reduction bacteria. クロムの酸化電位の測定結果を示す図である。It is a figure which shows the measurement result of the oxidation potential of chromium. 銀の酸化電位の測定結果を示す図である。It is a figure which shows the measurement result of the oxidation potential of silver. 銅の酸化電位の測定結果を示す図である。It is a figure which shows the measurement result of the oxidation potential of copper. 水銀の酸化電位の測定結果を示す図である。It is a figure which shows the measurement result of the oxidation potential of mercury. ヨウ素の酸化電位の測定結果を示す図である。It is a figure which shows the measurement result of the oxidation potential of iodine. 亜ヒ酸の酸化電位の測定結果を示す図である。It is a figure which shows the measurement result of the oxidation potential of arsenous acid. マンガンの酸化電位の測定結果を示す図である。It is a figure which shows the measurement result of the oxidation potential of manganese. ニッケルの酸化電位の測定結果を示す図である。It is a figure which shows the measurement result of the oxidation potential of nickel. 亜セレン酸の酸化電位の測定結果を示す図である。It is a figure which shows the measurement result of the oxidation potential of selenious acid. クロム還元菌による六価クロム濃度の時間変化を示し、(A)は六価クロム初発濃度が0.1m mol/Lの場合の測定結果、(B)は六価クロム初発濃度が0.2m mol/Lの場合の測定結果、(C)は六価クロム初発濃度が0.5m mol/Lの場合の測定結果、(D)は六価クロム初発濃度が1.0m mol/Lの場合の測定結果である。The time-dependent change in hexavalent chromium concentration due to chromium-reducing bacteria is shown. (A) is the measurement result when the initial concentration of hexavalent chromium is 0.1 mmol / L, and (B) is the initial concentration of hexavalent chromium of 0.2 mmol. Measurement result in the case of / L, (C) is the measurement result when the hexavalent chromium initial concentration is 0.5 mmol / L, (D) is the measurement when the hexavalent chromium initial concentration is 1.0 mmol / L. It is a result. 六価クロム初発濃度ごとのクロム還元菌濃度の時間変化を示し、(A)は土壌Aより採取したクロム還元菌についての測定結果、(B)は土壌Bより採取したクロム還元菌についての測定結果である。The time-dependent change in chromium-reducing bacteria concentration for each initial concentration of hexavalent chromium is shown, (A) is the measurement result for chromium-reducing bacteria collected from soil A, and (B) is the measurement result for chromium-reducing bacteria collected from soil B. It is.

符号の説明Explanation of symbols

1 培養対象微生物
2 六価クロム(物質)
3 培養液
1 Target microorganism 2 Hexavalent chromium (substance)
3 Culture solution

Claims (3)

培養対象微生物が還元活性を有し且つ耐性があり前記培養対象微生物以外の微生物に対して毒性を有している物質である六価クロム、銀、銅、水銀、ヨウ素、亜ヒ酸、マンガン、ニッケル、亜セレン酸のいずれか1つを溶解させた培養液中に有機物を含ませて前記培養対象微生物を選択的に集積培養する際、前記培養対象微生物の前記有機物を利用した発酵の過程で還元された前記物質を前記培養液中に浸した電極に電位を与えることで酸化反応を生じさせて再生しながら培養を行うことを特徴とする微生物の集積培養方法。 Hexavalent chromium, silver, copper, mercury, iodine, arsenous acid, manganese, which is a substance in which the microorganism to be cultured has a reducing activity and is resistant and toxic to microorganisms other than the microorganism to be cultured . In the process of fermentation using the organic matter of the microorganism to be cultured, when the microorganism to be cultured is selectively accumulated and cultured by including an organic substance in a culture solution in which any one of nickel and selenite is dissolved A method of accumulating and culturing microorganisms, comprising culturing while regenerating by generating an oxidation reaction by applying an electric potential to an electrode in which the reduced substance is immersed in the culture solution. 前記培養対象微生物はクロム還元菌であり、前記物質は六価クロムであり、前記クロム還元菌によって還元された三価クロムを六価クロムに再生しながら培養を行うことを特徴とする請求項1記載の微生物の集積培養方法。 The culturing target microorganism is a chromium-reducing bacterium, the substance is hexavalent chromium, and culture is performed while regenerating trivalent chromium reduced by the chromium-reducing bacterium into hexavalent chromium. A method for collecting and culturing microorganisms as described. 前記培養対象微生物はウラン還元菌であり、前記物質は六価クロムであり、前記ウラン還元菌によって還元された三価クロムを六価クロムに再生しながら培養を行うことを特徴とする請求項1記載の微生物の集積培養方法。 The cultivating target microorganism is a uranium reducing bacterium, the substance is hexavalent chromium, and the culturing is performed while regenerating the trivalent chromium reduced by the uranium reducing bacterium into hexavalent chromium. A method for collecting and culturing microorganisms as described.
JP2004242939A 2004-08-23 2004-08-23 Microbial accumulation culture method Expired - Fee Related JP4630018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004242939A JP4630018B2 (en) 2004-08-23 2004-08-23 Microbial accumulation culture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004242939A JP4630018B2 (en) 2004-08-23 2004-08-23 Microbial accumulation culture method

Publications (2)

Publication Number Publication Date
JP2006055134A JP2006055134A (en) 2006-03-02
JP4630018B2 true JP4630018B2 (en) 2011-02-09

Family

ID=36103119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004242939A Expired - Fee Related JP4630018B2 (en) 2004-08-23 2004-08-23 Microbial accumulation culture method

Country Status (1)

Country Link
JP (1) JP4630018B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5123503B2 (en) * 2006-09-04 2013-01-23 一般財団法人電力中央研究所 Microbial activity control method
JP5563774B2 (en) * 2009-03-12 2014-07-30 一般財団法人電力中央研究所 Electric culture device
JP5323543B2 (en) * 2009-03-12 2013-10-23 一般財団法人電力中央研究所 Electroculturing method and electroculturing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016023A (en) * 2002-06-12 2004-01-22 Central Res Inst Of Electric Power Ind Electric culture apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016023A (en) * 2002-06-12 2004-01-22 Central Res Inst Of Electric Power Ind Electric culture apparatus

Also Published As

Publication number Publication date
JP2006055134A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP5123503B2 (en) Microbial activity control method
Rowe et al. Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism
Philips et al. An Acetobacterium strain isolated with metallic iron as electron donor enhances iron corrosion by a similar mechanism as Sporomusa sphaeroides
Venzlaff et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria
Marsili et al. Voltammetry and growth physiology of Geobacter sulfurreducens biofilms as a function of growth stage and imposed electrode potential
Katuri et al. Electroactive biofilms on surface functionalized anodes: The anode respiring behavior of a novel electroactive bacterium, Desulfuromonas acetexigens
Zhou et al. Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells
Carmona-Martinez et al. High current density via direct electron transfer by the halophilic anode respiring bacterium Geoalkalibacter subterraneus
Lusk et al. The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica
CN108337894A (en) carbon fixation system and method
CN113607793B (en) Method for constructing biological film catalytic electrode with high activity
Yang et al. Shear stress affects biofilm structure and consequently current generation of bioanode in microbial electrochemical systems (MESs)
JP2009178145A (en) Method for culturing sulfate-reducing bacterium
JP4630018B2 (en) Microbial accumulation culture method
Qi et al. Low-biofouling anaerobic electro-conductive membrane bioreactor: The role of pH changes in bacterial inactivation and biofouling mitigation
Bird et al. Microbial survival and growth on non‐corrodible conductive materials
Bairi et al. Microbially induced corrosion of D9 stainless steel–zirconium metal waste form alloy under simulated geological repository environment
Abd El-Raheem et al. Biofilm and the electron transfer mechanism in bioelectrochemical systems
Nosek et al. Anode modification with Fe2O3 affects the anode microbiome and improves energy generation in microbial fuel cells powered by wastewater
JP3105024B2 (en) How to control microbes in water
JP4099601B2 (en) Method and apparatus for culturing aerobic chemical autotrophic bacteria by potential controlled electrolysis
Pillot et al. Effect of cathode properties on the thermophilic electrosynthesis of PolyHydroxyAlkanoates by Kyrpidia spormannii
WO2007023711A1 (en) Microbe culturing apparatus, incubator and culturing method
WO2017018934A1 (en) Device and method for growing a biofilm and measuring an electrical property thereof
Daryono et al. Using an electrochemical assay to determine the biofilm elasticity change as a response to toxicant exposure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4630018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees