JPH04340972A - Electrostatic charge image developing toner - Google Patents

Electrostatic charge image developing toner

Info

Publication number
JPH04340972A
JPH04340972A JP3113024A JP11302491A JPH04340972A JP H04340972 A JPH04340972 A JP H04340972A JP 3113024 A JP3113024 A JP 3113024A JP 11302491 A JP11302491 A JP 11302491A JP H04340972 A JPH04340972 A JP H04340972A
Authority
JP
Japan
Prior art keywords
post
agent
toner
treating agent
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3113024A
Other languages
Japanese (ja)
Inventor
Hiroshi Fukao
深尾 博
Tetsuo Sano
哲夫 佐野
Ichiro Izumi
一郎 出水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP3113024A priority Critical patent/JPH04340972A/en
Publication of JPH04340972A publication Critical patent/JPH04340972A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve electrification characteristics, electrification stability and environmental stability of a toner by incorporating a post-treating agent which is made hydrophobic by heating at specified temp. so that hydroxyl groups is condensed on the surface and further treating with a hydrophobe. CONSTITUTION:The post-treating agent is such one having hydroxyl groups on its surface, and for example, silicate such as silica and alumina produced by wet or dry method, titania, alumina calcium carbonate, barium titanum, zinc oxide, or mixture of these having 10-100mum average particle size can be used. This post-treating agent is heated at 200-600 deg.C, preferably at 400-500 deg.C to condense OH groups on the surface and to make the surface hydrophobic. This post-treating agent is further treated with a hydrophobe agent. Thereby, OH groups remaining on the surface even after the heat treatment couple with the hydrophobe and the surface of the post-treating agent is made further hydrophobic. The electrification characteristics and the like of the post-treating agent thus treated are not affected so much by the hydrophobe.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電子写真、静電記録、
静電印刷等に於ける静電荷像を現像する静電荷像現像用
トナーに関する。
[Industrial Application Field] The present invention is applicable to electrophotography, electrostatic recording,
The present invention relates to a toner for developing electrostatic images in electrostatic printing and the like.

【0002】0002

【従来の技術】電子写真等においては、トナーとキャリ
アとの混合系現像剤を用いたカスケード現像法(アメリ
カ合衆国特許(USP)第2297691号、USP第
2618552号)もしくは磁気ブラシ現像法(USP
第2832311号)によるか、またはトナーのみから
なる現像剤を用いたタッチダウン現像法(USP第41
21931号)、非磁性一成分現像法(USP第373
1146号)などにより、静電荷像を可視化してまたは
静電荷像を反転現像により可視化して高品質な安定した
画像をえる。
[Prior Art] In electrophotography, a cascade development method (United States Patent (USP) No. 2297691, USP No. 2618552) or a magnetic brush development method (USP No. 2618552) using a mixed developer of toner and carrier is used.
No. 2,832,311) or touchdown development using a developer consisting only of toner (USP No. 41).
No. 21931), non-magnetic one-component development method (USP No. 373)
No. 1146), etc., or by visualizing the electrostatic charge image by reversal development to obtain a high-quality stable image.

【0003】これらの現像法に適用するトナーとしては
、バインダーとしての熱可塑性樹脂に帯電制御剤として
の染料、着色剤としての顔料または離型剤としてワック
ス等を加えて混練、粉砕、分級を行い平均粒径が4〜2
5μmのトナー粒子としたものが用いられている。そし
て一般的にトナーに流動性を付与したりクリーニング性
を向上させたりするためにシリカ、チタニアまたはアル
ミナ等の無機微粉末が後処理剤として添加される。
[0003] Toners applied to these development methods are prepared by adding a dye as a charge control agent, a pigment as a coloring agent, or a wax as a release agent to a thermoplastic resin as a binder, and then kneading, crushing, and classifying the mixture. Average particle size is 4-2
Toner particles having a diameter of 5 μm are used. Generally, inorganic fine powder such as silica, titania, or alumina is added as a post-treatment agent in order to impart fluidity to the toner and improve cleaning properties.

【0004】これらの無機微粉末は水に対するぬれ性が
高くその結果トナーの流動性や摩擦帯電性に湿度が大き
く影響する。このような環境の影響を防ぐため、通常こ
れらの無機微粉末の表面を疎水化剤を用い表面処理した
ものを用いてトナーとし、複写機等の現像装置に適用す
る(例えばUSP第3720617号、特公昭54−2
0344号公報)。
[0004] These inorganic fine powders have high wettability with water, and as a result, humidity greatly affects the fluidity and triboelectric charging properties of the toner. In order to prevent such environmental influences, the surface of these inorganic fine powders is usually treated with a hydrophobizing agent and used as a toner, which is applied to developing devices such as copying machines (for example, USP No. 3720617, Special Public Service 1974-2
Publication No. 0344).

【0005】これらの疎水化剤としては、一般的にシラ
ンカップリング剤が使用されている。例えばシリカ(二
酸化ケイ素)粒子の表面の水酸基をシランカップリング
剤から誘導されるシラノール基との間で反応して疎水化
されている。しかし、シランカップリング剤等のカップ
リング剤は絶縁特性にすぐれているため、疎水化度の高
い後処理剤を含有するトナーは、カップリング剤の影響
を強く受け撹拌を続けると、トナー帯電量が除々に蓄積
されるチャージアップ現象が現れる。このようにトナー
帯電量が高くなっていくと、初期の十分な複写画像濃度
の確保が困難となる。また、水分が吸着しやすくなり環
境下での帯電量の変化が大きくなる等の問題がある。
Silane coupling agents are generally used as these hydrophobizing agents. For example, hydroxyl groups on the surface of silica (silicon dioxide) particles are made hydrophobic by reacting with silanol groups derived from a silane coupling agent. However, since coupling agents such as silane coupling agents have excellent insulating properties, toners containing post-treatment agents with a high degree of hydrophobicity are strongly affected by the coupling agents, and if agitation is continued, the toner charge will increase. A charge-up phenomenon occurs in which the amount of energy gradually accumulates. As the toner charge amount increases in this way, it becomes difficult to ensure a sufficient initial density of the copied image. In addition, there is a problem that moisture is easily adsorbed and the amount of charge changes greatly in the environment.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記事情に鑑
みなされたものであり、帯電特性およびその環境安定性
に優れたトナーを提供することを目的とする。本発明は
、トナーへの後処理剤に対して、従来行なっていたカッ
プリング処理の前に後処理剤を一定温度下で加熱し、表
面水酸基(−OH)を脱水縮合することにより疎水化処
理を施した後処理剤をトナーに含有させることにより達
成される。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a toner having excellent charging characteristics and environmental stability. In the present invention, the post-treatment agent for toner is hydrophobized by heating the post-treatment agent at a constant temperature to dehydrate and condense the surface hydroxyl groups (-OH) before the conventional coupling treatment. This is achieved by incorporating a post-processing agent into the toner.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は温度
200℃〜600℃で加熱処理し、表面の水酸基を加熱
縮合させて疎水化し、さらに疎水化剤で疎水化処理した
後処理剤を含有する静電荷像現像用トナーに関する。
[Means for Solving the Problems] That is, the present invention contains a post-treatment agent that is heated at a temperature of 200°C to 600°C to heat-condense the hydroxyl groups on the surface to make it hydrophobic, and then treated with a hydrophobizing agent to make it hydrophobic. The present invention relates to a toner for developing electrostatic images.

【0008】本発明が適用可能な後処理剤としては、表
面に水酸基(−OH基)を有するもの、例えば乾式法ま
たは湿式法で製造したシリカ(二酸化ケイ素)、アルミ
ナ(酸化アルミニウム)、ケイ酸アルミニウム、ケイ酸
マグネシウムなどのケイ酸塩、チタニア(二酸化チタン
)、アルミナ炭酸カルシウム、チタンバリウム、酸化亜
鉛など、またはその混合物を含み、通常平均粒径10〜
100mμのものを使用する。
Post-treatment agents to which the present invention can be applied include those having a hydroxyl group (-OH group) on the surface, such as silica (silicon dioxide), alumina (aluminum oxide), and silicic acid produced by a dry or wet method. Contains aluminum, silicates such as magnesium silicate, titania (titanium dioxide), alumina calcium carbonate, titanium barium, zinc oxide, etc., or mixtures thereof, and usually has an average particle size of 10 to
Use one with a diameter of 100 mμ.

【0009】本発明は、上記後処理剤を温度200〜6
00℃、好ましくは400〜500℃で加熱処理を施す
。このような加熱処理を施すことにより、後処理剤の表
面OH基は、縮合し、表面疎水化が達成される。
[0009] In the present invention, the above-mentioned post-treatment agent is heated to a temperature of 200 to 6
Heat treatment is performed at 00°C, preferably 400 to 500°C. By performing such heat treatment, the surface OH groups of the post-treatment agent are condensed and surface hydrophobization is achieved.

【0010】加熱縮合により、例えば、シリカ粒子の表
面に存在するOH基(図1)は、2つのOH基から1つ
の水分子(H2O)が脱離して、縮合し、図2に示した
エーテル性結合が生成し、表面疎水化が1部達成される
と考えられている。加熱処理温度が200℃より低いと
、後処理剤の表面OH基は、縮合するものの、加熱が終
了すると元のOH基にもどってしまい、疎水化が十分に
達成されない。また、加熱処理温度が600℃より高い
と、上記した脱水縮合反応以外の反応がおこるため、脱
水、縮合による疎水化を行なうことができない。
By thermal condensation, for example, the OH groups present on the surface of the silica particles (Figure 1), one water molecule (H2O) is detached from two OH groups and condensed, forming the ether shown in Figure 2. It is believed that surface hydrophobization is partially achieved through the formation of chemical bonds. If the heat treatment temperature is lower than 200° C., the surface OH groups of the post-treatment agent will condense, but will return to the original OH groups after heating, and hydrophobization will not be achieved sufficiently. Furthermore, if the heat treatment temperature is higher than 600° C., reactions other than the above-mentioned dehydration condensation reaction occur, so that hydrophobization by dehydration and condensation cannot be performed.

【0011】以上のようにして加熱処理した後処理剤を
疎水化剤で処理する。こうすることにより、前記加熱処
理後も表面に残るOH基が疎水化剤とカップリングし、
後処理剤表面がさらに疎水化される。図3にジメチルク
ロルシランでOH基をカップリングした後の表面の状態
図を例示した。表面は、加熱処理により生成したエーテ
ル性結合、および後処理剤により疎水化されている。こ
のように疎水化された後処理剤は、表面が部分的に疎水
化剤でカップリングしているにすぎないので、帯電特性
等が疎水化剤の影響を強く受けずに、チャージアップ等
の防止、帯電安定性、環境安定性等に効果があると考え
ている。
The post-treatment agent heat-treated as described above is treated with a hydrophobizing agent. By doing this, the OH groups remaining on the surface even after the heat treatment are coupled with the hydrophobizing agent,
The surface of the post-treatment agent is further made hydrophobic. FIG. 3 illustrates a phase diagram of the surface after coupling of OH groups with dimethylchlorosilane. The surface is made hydrophobic by ether bonds generated by heat treatment and by a post-treatment agent. The surface of the post-treatment agent that has been hydrophobized in this way is only partially coupled with the hydrophobizing agent, so its charging characteristics are not strongly affected by the hydrophobizing agent, and it does not cause charge-up etc. We believe that it is effective in preventing static electricity, stabilizing static electricity, and stabilizing the environment.

【0012】一方、加熱疎水化を経ず、直接に疎水化剤
で疎水化処理を施すと、図4に示したように、表面は、
疎水化剤で覆われた状態となり、帯電特性等が疎水化剤
の影響を強く受け、チャージアップ等の問題、それに伴
う環境不安定性の問題が生じると考えている。
On the other hand, when hydrophobization treatment is directly performed using a hydrophobizing agent without undergoing heat hydrophobization, the surface becomes as shown in FIG.
It is believed that the material is covered with a hydrophobizing agent, and its charging characteristics are strongly influenced by the hydrophobizing agent, leading to problems such as charge-up and associated environmental instability.

【0013】後処理剤に施す疎水化剤としては、シラン
系、チタネート系、アルミニウム系、ジルコアルミネー
ト系等の各種のカップリング剤およびシリコーンオイル
等が用いられる。シラン系ではクロロシラン、アルキル
シラン、アルコキシシラン、シラザン等を挙げることが
できる。
[0013] As the hydrophobizing agent applied to the post-treatment agent, various coupling agents such as silane type, titanate type, aluminum type and zircoaluminate type, silicone oil, etc. are used. Examples of silanes include chlorosilane, alkylsilane, alkoxysilane, and silazane.

【0014】具体的に例えばSpecifically, for example,

【化1】[Chemical formula 1]

【化2】 等を挙げることができる。[Case 2] etc. can be mentioned.

【0015】チタネート系では例えば[0015] For titanate series, for example,

【化3】[Chemical formula 3]

【化4】[C4]

【化5】 等を挙げることができる。[C5] etc. can be mentioned.

【0016】シリコーンオイル系では、例えば[0016] For silicone oil systems, for example,

【化6】[C6]

【化7】[C7]

【化8】 等を挙げることができ特に限定するものではない。[Chemical formula 8] etc., but is not particularly limited.

【0017】疎水化剤を用いて後処理剤粉末の表面を処
理するには、次のような方法による。まず、疎水化剤単
独かまたはテトラヒドロフラン(THF)、トルエン、
酢酸エチル、メチルエチルケトンあるいはアセトン等の
溶剤を用いて混合希釈し、後処理剤粉末をブレンダー等
で強制的に撹拌しつつカップリング剤の希釈液を滴下し
たりスプレーしたりして充分混合する。次に得られた混
合物をバット等に移してオーブンに入れ加熱し乾燥させ
る。その後再びブレンダーにて撹拌し充分に解砕する。 このような方法において各々の疎水化剤は同時に用いて
処理してもよい。このような乾式法の他に後処理剤を疎
水化剤を有機溶剤に溶かした溶液に浸漬し、乾燥させ解
砕するというような湿式による処理法もある。
The following method is used to treat the surface of the post-treatment agent powder using a hydrophobizing agent. First, a hydrophobizing agent alone or tetrahydrofuran (THF), toluene,
Mix and dilute with a solvent such as ethyl acetate, methyl ethyl ketone, or acetone, and thoroughly mix by dropping or spraying the diluted solution of the coupling agent while forcibly stirring the post-treatment agent powder with a blender or the like. Next, the obtained mixture is transferred to a vat or the like and placed in an oven to heat and dry. Then, stir again in a blender to thoroughly crush the mixture. In such a method, each hydrophobizing agent may be used simultaneously. In addition to such a dry method, there is also a wet treatment method in which a post-treatment agent is immersed in a solution of a hydrophobizing agent dissolved in an organic solvent, dried, and crushed.

【0018】疎水化剤の使用量は、後処理剤の種類、加
熱処理による疎水化度により調製する必要があるが、後
処理剤に対して0.1〜5重量%、好ましくは0.1〜
3重量%使用する。0.1重量%より少ないと、疎水化
剤によって疎水化される比率が少なくなってその効果が
期待できなくなり、5重量%より多いと、疎水化剤自体
の結合により粒径の増大等が生じる。
[0018] The amount of the hydrophobizing agent to be used needs to be adjusted depending on the type of post-treatment agent and the degree of hydrophobization by heat treatment, but it is 0.1 to 5% by weight, preferably 0.1% by weight based on the post-treatment agent. ~
Use 3% by weight. If it is less than 0.1% by weight, the ratio of hydrophobization by the hydrophobizing agent will decrease and the effect cannot be expected, and if it is more than 5% by weight, the particle size will increase due to the binding of the hydrophobizing agent itself. .

【0019】本発明の表面処理された後処理剤をトナー
に含有させるには、トナーと後処理剤とを通常の割合で
ブレンダーやミキサーにて混合撹拌してトナー表面に後
処理剤を一様に付着させる等公知の方法を適用すればよ
い。また、トナー混練時に該後処理剤を同時に練り込ん
でトナー内部に均一に分散させてもよい(内添)。重合
法によりトナーを作製する場合は、重合時に後処理剤を
加えてトナーの形成と同時に、後処理剤を取り込ませる
方法を利用できる。さらにトナー表面に後処理剤をハイ
ブリダイゼーションシステム、メカノフュージョンシス
テム等で機械的剪断力で固着させる方法も利用できる。
In order to incorporate the surface-treated post-processing agent of the present invention into the toner, the toner and the post-processing agent are mixed and stirred in a normal ratio in a blender or mixer to uniformly apply the post-processing agent on the toner surface. A known method may be applied, such as attaching it to the surface. Further, the post-processing agent may be mixed in at the same time when the toner is kneaded to uniformly disperse it inside the toner (internal addition). When producing a toner by a polymerization method, a method can be used in which a post-processing agent is added during polymerization and the post-processing agent is incorporated at the same time as the toner is formed. Furthermore, it is also possible to use a method in which a post-treatment agent is fixed to the toner surface by mechanical shearing force using a hybridization system, mechanofusion system, or the like.

【0020】本発明の後処理剤が添加されるトナーは一
般に少なくともアクリル樹脂、ポリスチレン樹脂、ボリ
エステル樹脂、スチレン−アクリル共重合樹脂またはエ
ポキシ樹脂等のバインダー樹脂、着色剤からなる微小粒
子で、磁性キャリア粒子とともに二成分で使用するもの
、トナーを非磁性一成分で使用するもの、トナー内部に
磁性剤を含有させたトナー(磁性トナー)として一成分
で使用するもの等存在するが、本発明はいずれの方式に
採用されるトナーにも適用できる。
The toner to which the post-processing agent of the present invention is added is generally fine particles consisting of at least a binder resin such as acrylic resin, polystyrene resin, polyester resin, styrene-acrylic copolymer resin or epoxy resin, and a colorant, and a magnetic carrier. There are toners that are used as two components together with particles, toners that are used as a non-magnetic single component, and toners that are used as a single component that contains a magnetic agent inside the toner (magnetic toner). It can also be applied to the toner used in the method.

【0021】係るトナーに添加する後処理剤の量は一成
分で使用するか、二成分で使用するか等にあわせて通常
使用される量で適用すればよく、例えば、二成分現像剤
に内添あるいは外添する場合は、トナーに対して0.0
5〜5重量%、好ましくは0.1〜2重量%の量で使用
する。また一種以上のブレンド系でも使用できる。以下
、本発明を実施例を用いて説明する。
The amount of the post-processing agent to be added to the toner may be the amount normally used depending on whether the toner is used as a single component or as a two-component. When adding or externally adding, 0.0 to toner
It is used in an amount of 5 to 5% by weight, preferably 0.1 to 2% by weight. It can also be used as a blend of more than one type. The present invention will be explained below using examples.

【0022】[0022]

【実施例】【Example】

実施例1 シリカ微粒子(AEROSIL130;日本アエロジル
社製)を空気中にて450℃で24時間加熱した。次に
、加熱処理したシリカ微粒子に対してジメチルジクロル
シランを2.0重量%の割合で使用し、乾式法により表
面処理を行なった。
Example 1 Silica fine particles (AEROSIL130; manufactured by Nippon Aerosil Co., Ltd.) were heated in air at 450° C. for 24 hours. Next, surface treatment was performed by a dry method using dimethyldichlorosilane at a ratio of 2.0% by weight to the heat-treated silica particles.

【0023】実施例2 アルミナ微粒子(Aluminium  Oxide 
 C;日本アエロジル社製)を実施例1と同様に加熱処
理した。次に、加熱処理したアルミナ微粒子に対してヘ
キサメチルジシランを1.0重量%の割合で使用し、乾
式法により表面処理を行なった。
Example 2 Alumina fine particles (Aluminum Oxide)
C; manufactured by Nippon Aerosil Co., Ltd.) was heat-treated in the same manner as in Example 1. Next, surface treatment was performed by a dry method using hexamethyldisilane at a ratio of 1.0% by weight to the heat-treated alumina fine particles.

【0024】実施例3 酸化チタン微粒子(チタニア)(Titanium  
Oxide  P−25;日本アエロジル社製)を実施
例1と同様に加熱処理した。次に加熱処理した酸化チタ
ン微粒子に対して、オクチルトリメトキシシランを1.
0重量%の割合で使用し、乾式法により表面処理を行な
った。
Example 3 Titanium oxide fine particles (titania)
Oxide P-25 (manufactured by Nippon Aerosil Co., Ltd.) was heat-treated in the same manner as in Example 1. Next, 1.0% of octyltrimethoxysilane was added to the heat-treated titanium oxide fine particles.
It was used at a ratio of 0% by weight, and surface treatment was performed by a dry method.

【0025】比較例1 実施例1で行った加熱処理を行なわず、ジメチルジクロ
ルシランにて表面処理のみを行なった。
Comparative Example 1 The heat treatment performed in Example 1 was not performed, and only surface treatment was performed with dimethyldichlorosilane.

【0026】比較例2 実施例2で行った加熱処理を行なわずに、ヘキサメチル
ジシランにて表面処理のみを行なった。
Comparative Example 2 The heat treatment performed in Example 2 was not performed, but only surface treatment was performed using hexamethyldisilane.

【0027】比較例3 実施例3で行った加熱処理を行なわずに、オクチルトリ
メトキシシランにて表面処理のみを行なった。
Comparative Example 3 The heat treatment performed in Example 3 was not performed, but only surface treatment was performed with octyltrimethoxysilane.

【0028】実施例1〜3、比較例1〜3で得られた後
処理剤について比表面積、見掛比重、疎水化度を測定し
た。結果を表1に示した。
The specific surface area, apparent specific gravity, and degree of hydrophobicity of the post-treatment agents obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were measured. The results are shown in Table 1.

【0029】なお、表1中、比表面積は、BET法によ
った。疎水化度はメタノールウェッタビリティー法によ
った。
In Table 1, the specific surface area was determined by the BET method. The degree of hydrophobicity was determined by the methanol wettability method.

【0030】[0030]

【表1】[Table 1]

【0031】表1により、シリカ、アルミナ、チタニア
共に、小量の疎水化剤(シランカップリング剤)で疎水
化度を高くできたことがわかる。
Table 1 shows that the degree of hydrophobicity of silica, alumina, and titania can be increased with a small amount of hydrophobizing agent (silane coupling agent).

【0032】以上のようにして得られた後処理剤を、以
下に記載のトナーに添加処理し、さらに以下に記載のキ
ャリアと混合して現像剤を調製し、特性評価に供した。
The post-processing agent obtained as described above was added to the toner described below, and further mixed with the carrier described below to prepare a developer, which was subjected to characteristic evaluation.

【0033】(トナーの調製) (バインダー樹脂:ビニル変性ポリエステル樹脂の製造
)ポリオキシエチレン(2)−2,2−ビス(4−ヒド
ロキシフェニル)プロパン68重量部、イソフタル酸1
6重量部、テレフタル酸16重量部、無水マレイン酸0
.3重量部、ジブチル錫オキシド0.06重量部をフラ
スコに仕込み、窒素雰囲気下で230℃で24時間反応
を続けて取り出した。得られた不飽和ポリエステル樹脂
の重量平均分子量は10,600であった。
(Preparation of toner) (Binder resin: Production of vinyl-modified polyester resin) 68 parts by weight of polyoxyethylene (2)-2,2-bis(4-hydroxyphenyl)propane, 1 part by weight of isophthalic acid.
6 parts by weight, 16 parts by weight of terephthalic acid, 0 maleic anhydride
.. A flask was charged with 3 parts by weight and 0.06 parts by weight of dibutyltin oxide, and the reaction was continued at 230° C. for 24 hours under a nitrogen atmosphere and then taken out. The weight average molecular weight of the obtained unsaturated polyester resin was 10,600.

【0034】この不飽和ポリエステル樹脂50重量部、
キシレン50重量部をフラスコに仕込み溶解した。キシ
レンが還流するまで温度を上げ、キシレン還流下にスチ
レン13重量部、メタクリル酸メチル2重量部にアゾビ
スイソブチロニトリル0.4重量部を溶解したものを窒
素雰囲気下約30分で滴下した。滴下後3時間保温し、
キシレンを減圧蒸留した後樹脂を取り出し、重量平均分
子量が13,100、100℃における溶融粘度が6×
104ポイズ、ガラス転移温度が63℃のバインダー樹
脂を得た。ただし、溶融粘度は島津製作所フローテスタ
ーCFT−500を用い、ノズル径1mm、ノズル長さ
1mm、荷重30kg、昇温速度3℃/分の条件で測定
した値である。
50 parts by weight of this unsaturated polyester resin,
50 parts by weight of xylene was charged into a flask and dissolved. The temperature was raised until the xylene refluxed, and a solution of 13 parts by weight of styrene, 0.4 parts by weight of azobisisobutyronitrile dissolved in 2 parts by weight of methyl methacrylate was added dropwise under nitrogen atmosphere over about 30 minutes while the xylene was refluxing. . Keep warm for 3 hours after dropping.
After distilling xylene under reduced pressure, the resin was taken out, and the weight average molecular weight was 13,100, and the melt viscosity at 100°C was 6x.
A binder resin having 104 poise and a glass transition temperature of 63°C was obtained. However, the melt viscosity is a value measured using a Shimadzu flow tester CFT-500 under the conditions of a nozzle diameter of 1 mm, a nozzle length of 1 mm, a load of 30 kg, and a temperature increase rate of 3° C./min.

【0035】                          
                         
            重量部・上記で得られたエチ
レンアクリル変性ポリエステル樹脂         
 100・有機顔料Lionol Yellow FG
−1310(東洋インキ製造社製)      3・帯
電制御剤  (ボントロンE−84、オリエント化学社
製)            3上記材料をヘンシェル
ミキサーで十分混合し、二軸押出機で混練後、冷却した
。混合物をフェザーミルで粗粉砕し、その後、ジェット
粉砕機と風力分級機を用い、粒径5〜25μm(平均粒
径10.5μm)のトナー粒子を得た。
[0035]

Part by weight: Ethylene acrylic modified polyester resin obtained above
100・Organic pigment Lionol Yellow FG
-1310 (manufactured by Toyo Ink Mfg. Co., Ltd.) 3. Charge control agent (Bontron E-84, manufactured by Orient Chemical Co., Ltd.) 3. The above materials were sufficiently mixed in a Henschel mixer, kneaded in a twin screw extruder, and then cooled. The mixture was coarsely pulverized using a feather mill, and then a jet pulverizer and an air classifier were used to obtain toner particles having a particle size of 5 to 25 μm (average particle size 10.5 μm).

【0036】得られたトナー粒子1kgおよび該トナー
粒子に対して0.4重量%の後処理剤を容量10リット
ルのヘンシェルミキサー(三井三池化工機社製)に装入
し、1000rpm、60秒間処理した。処理後、得ら
れた混合物を目開き105μのふるいにかけ、粗粉を取
り除いた。
1 kg of the obtained toner particles and 0.4% by weight of the after-treatment agent based on the toner particles were charged into a Henschel mixer (manufactured by Mitsui Miike Kakoki Co., Ltd.) with a capacity of 10 liters, and treated at 1000 rpm for 60 seconds. did. After the treatment, the resulting mixture was passed through a sieve with an opening of 105 μm to remove coarse powder.

【0037】(キャリアの調製)キャリア芯粒子として
Cu−Zn−Feのフェライト粉F−300(パウダー
テック社製;平均粒径50μm)に被覆材としてアクリ
ル樹脂ラストラゾールA−405(大日本インキ化学工
業社製)80重量部とブチル化メラミン樹脂20重量部
を混合溶解したキシレン溶液をスピラコーターにて被覆
した。樹脂量は3.0重量%とした。さらに得られた樹
脂被覆キャリアを140℃で3時間硬化させた。
(Preparation of carrier) Cu-Zn-Fe ferrite powder F-300 (manufactured by Powder Tech Co., Ltd.; average particle size 50 μm) was used as a carrier core particle, and acrylic resin Lastrazol A-405 (Dainippon Ink Chemical Co., Ltd.) was used as a coating material. A xylene solution prepared by mixing and dissolving 80 parts by weight of (manufactured by Kogyo Co., Ltd.) and 20 parts by weight of a butylated melamine resin was coated using a spira coater. The amount of resin was 3.0% by weight. Furthermore, the obtained resin-coated carrier was cured at 140° C. for 3 hours.

【0038】(トナー評価)得られたトナーの見掛密度
および帯電特性を評価し結果を表2にまとめた。表2中
、見掛密度は、ホソカワミクロン社製パウダーテスター
により測定した。「帯電量」は、上記で得られた各トナ
ーと、キャリアをトナー濃度8重量%にてボールミル中
に装入し、120rpmで5分間、60分間撹拌後、ブ
ローオフ法で測定した値を示した。「環境変化巾」は、
LL(10℃、15%)およびHH(30℃、85%)
の環境下でそれぞれ60分間撹拌した後帯電量を測定し
、その両者の差を示した。
(Evaluation of Toner) The apparent density and charging characteristics of the obtained toner were evaluated and the results are summarized in Table 2. In Table 2, the apparent density was measured using a powder tester manufactured by Hosokawa Micron. "Charge amount" is the value measured by the blow-off method after charging each toner obtained above and the carrier at a toner concentration of 8% by weight into a ball mill and stirring at 120 rpm for 5 minutes and 60 minutes. . “Environmental change range” is
LL (10°C, 15%) and HH (30°C, 85%)
After stirring for 60 minutes in each environment, the amount of charge was measured, and the difference between the two was shown.

【0039】[0039]

【表2】[Table 2]

【0040】実施例1〜3では、初期帯電量および長期
撹拌後ともに良好な帯電量を示し、帯電の環境変化巾も
小さかった。比較例1〜3では、トナーの初期帯電量は
良好であったが、撹拌時間が長くなると帯電量の上昇が
みられ、環境変化巾も大きかった。
[0040] Examples 1 to 3 exhibited good charge amounts both at the initial stage and after long-term stirring, and the range of environmental changes in charge was small. In Comparative Examples 1 to 3, the initial charge amount of the toner was good, but as the stirring time became longer, the charge amount increased and the range of environmental changes was also large.

【0041】[0041]

【発明の効果】本発明の後処理剤を含有するトナーは、
帯電特性、帯電安定性、環境安定性に優れている。
[Effect of the invention] The toner containing the post-processing agent of the present invention is
Excellent charging characteristics, charging stability, and environmental stability.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  後処理剤の表面状態を模式的に表わした図
である。
FIG. 1 is a diagram schematically showing the surface state of a post-treatment agent.

【図2】  加熱処理後の後処理剤の表面状態を模式的
に表わした図である。
FIG. 2 is a diagram schematically showing the surface state of the post-treatment agent after heat treatment.

【図3】  加熱処理および疎水化剤で処理後の後処理
剤の表面状態を模式的に表わした図である。
FIG. 3 is a diagram schematically showing the surface state of the post-treatment agent after heat treatment and treatment with a hydrophobizing agent.

【図4】  加熱処理を施さず、疎水化剤処理後の後処
理剤の表面状態を模式的に表わした図である。
FIG. 4 is a diagram schematically showing the surface state of the post-treatment agent after treatment with a hydrophobizing agent without heat treatment.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  温度200℃〜600℃で加熱処理し
、表面の水酸基を加熱縮合させて疎水化し、さらに疎水
化剤で疎水化処理した後処理剤を含有する静電荷像現像
用トナー。
1. A toner for developing an electrostatic image, which contains a post-processing agent that is heat-treated at a temperature of 200° C. to 600° C. to thermally condense the hydroxyl groups on the surface to make it hydrophobic, and then subjected to a hydrophobic treatment with a hydrophobizing agent.
JP3113024A 1991-05-17 1991-05-17 Electrostatic charge image developing toner Pending JPH04340972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3113024A JPH04340972A (en) 1991-05-17 1991-05-17 Electrostatic charge image developing toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3113024A JPH04340972A (en) 1991-05-17 1991-05-17 Electrostatic charge image developing toner

Publications (1)

Publication Number Publication Date
JPH04340972A true JPH04340972A (en) 1992-11-27

Family

ID=14601533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3113024A Pending JPH04340972A (en) 1991-05-17 1991-05-17 Electrostatic charge image developing toner

Country Status (1)

Country Link
JP (1) JPH04340972A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397667A (en) * 1994-04-28 1995-03-14 Xerox Corporation Toner with metallized silica particles
JP2009224341A (en) * 2006-09-07 2009-10-01 Hitachi Maxell Ltd Separator for battery, its manufacturing method, and lithium secondary battery
JP2012118511A (en) * 2010-11-10 2012-06-21 Canon Inc Toner
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
JP2014092605A (en) * 2012-11-01 2014-05-19 Ricoh Co Ltd Electrophotographic toner, two-component developer, and image forming apparatus
JP2017124965A (en) * 2015-12-09 2017-07-20 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Hydrophobic silica for electrophotographic toner composition
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397667A (en) * 1994-04-28 1995-03-14 Xerox Corporation Toner with metallized silica particles
US11050095B2 (en) 2004-12-08 2021-06-29 Maxell Holdings, Ltd. Separator for electrochemical device, and electrochemical device
US8405957B2 (en) 2005-12-08 2013-03-26 Hitachi Maxell, Ltd. Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
JP2009224341A (en) * 2006-09-07 2009-10-01 Hitachi Maxell Ltd Separator for battery, its manufacturing method, and lithium secondary battery
JP2010157521A (en) * 2006-09-07 2010-07-15 Hitachi Maxell Ltd Battery separator, and lithium secondary battery using the same
JP2013030497A (en) * 2006-09-07 2013-02-07 Hitachi Maxell Ltd Lithium secondary battery
US9166250B2 (en) 2006-09-07 2015-10-20 Hitachi Maxell, Ltd. Separator for battery, method for manufacturing the same, and lithium secondary battery
JP2012118511A (en) * 2010-11-10 2012-06-21 Canon Inc Toner
JP2014092605A (en) * 2012-11-01 2014-05-19 Ricoh Co Ltd Electrophotographic toner, two-component developer, and image forming apparatus
JP2017124965A (en) * 2015-12-09 2017-07-20 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Hydrophobic silica for electrophotographic toner composition

Similar Documents

Publication Publication Date Title
JP2015502567A (en) Toner additive containing composite particles
JPH0810341B2 (en) Magnetic toner
WO2001042372A1 (en) Fine metal oxide powder having high dispersibility and toner composition comprising the same
JP3327125B2 (en) Electrostatic latent image developer and image forming method
JPH04340972A (en) Electrostatic charge image developing toner
JP3426941B2 (en) Positively charged developer
JP3525662B2 (en) Electrophotographic toner composition and image forming method
JP3123076B2 (en) Toner for developing electrostatic images
JPS63101854A (en) Electrostatic charge image developer
JP3633428B2 (en) Electrostatic charge image developer and image forming method
JP2712356B2 (en) Electrostatic toner
JPH04335359A (en) Electrophotographic developer
JPH04340971A (en) Electrostatic charge image developing toner
JP3667967B2 (en) Positively charged developer
JP4076662B2 (en) Non-magnetic color toner for electrophotography, developer and image forming method using the same
JP3943750B2 (en) toner
JP2712358B2 (en) Toner for developing electrostatic images
JP3216628B2 (en) Electrostatic image developing toner and method for hydrophobizing inorganic fine particles externally added to the toner
JP2754619B2 (en) Electrostatic toner
JPH04345168A (en) Toner for developing electrostatic charge image
JP2001060014A (en) Electrostatic latent image developer and image forming method using the same
JP6817916B2 (en) Manufacturing method of toner external preparation for static charge image development
JP2956247B2 (en) Full-color toner for developing electrostatic images
JP3344211B2 (en) Electrostatic latent image developer and image forming method
JP2010522357A (en) Toner for electrostatic image development