JPH0434093B2 - - Google Patents

Info

Publication number
JPH0434093B2
JPH0434093B2 JP58069145A JP6914583A JPH0434093B2 JP H0434093 B2 JPH0434093 B2 JP H0434093B2 JP 58069145 A JP58069145 A JP 58069145A JP 6914583 A JP6914583 A JP 6914583A JP H0434093 B2 JPH0434093 B2 JP H0434093B2
Authority
JP
Japan
Prior art keywords
laser
transparent
measurement
transmittance
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58069145A
Other languages
Japanese (ja)
Other versions
JPS59195142A (en
Inventor
Minoru Kimura
Yasuyuki Morita
Hidemi Takahashi
Reiji Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6914583A priority Critical patent/JPS59195142A/en
Publication of JPS59195142A publication Critical patent/JPS59195142A/en
Publication of JPH0434093B2 publication Critical patent/JPH0434093B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザ用透明部品である透明窓材、レ
ンズ、部分反射鏡の評価に用いるレーザ用の透明
部品評価装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a laser transparent component evaluation apparatus used for evaluating transparent window materials, lenses, and partially reflecting mirrors, which are transparent components for lasers.

従来例の構成とその問題点 従来、レーザ用透明部品の評価法としては、第
1図に示すような透過率の測定方法と、第2図に
示す様な損傷試験法がある。
Conventional Structure and Problems Conventionally, as methods for evaluating transparent parts for lasers, there are a transmittance measurement method as shown in FIG. 1 and a damage test method as shown in FIG. 2.

第1図に示す透過率の測定は、測定用レーザ光
源2から出たレーザ光6を、ビームスプリツタ3
により、2つの光路に分離し、チヨツパー7でチ
ヨツピングを行なう。片方のレーザ光は試料1を
透過し、もう一方のレーザ光とビームスプリツタ
3で混合されて検出器5に入る。ここで、4はミ
ラーである。検出器5の出力を信号処理して、試
料1の透過率が算出される。
To measure the transmittance shown in FIG. 1, the laser beam 6 emitted from the measuring laser light source 2 is
The light is separated into two optical paths, and a chopper 7 performs chopping. One laser beam passes through the sample 1, is mixed with the other laser beam by the beam splitter 3, and enters the detector 5. Here, 4 is a mirror. The transmittance of the sample 1 is calculated by subjecting the output of the detector 5 to signal processing.

第2図に示す損傷試験は、試験用レーザ光源1
2から出たレーザ光15を、レンズ13にて集光
し、試料11に照射し、試料11の損傷閾値を求
めたり、品質保証の根拠とするものである。14
は透過してきたレーザ光15を吸収するための受
光器である。
In the damage test shown in Fig. 2, the test laser light source 1
The laser beam 15 emitted from the sample 11 is focused by a lens 13 and irradiated onto the sample 11 to determine the damage threshold of the sample 11 and to use it as a basis for quality assurance. 14
is a light receiver for absorbing the transmitted laser light 15.

このような従来の透過率測定では、測定用レー
ザ光源2の出力が小さいために実際にレーザ装置
に実装された場合の透過率と差異を生ずる。これ
は、レーザ用透明部品の表面には多層膜が形成さ
れており、レーザ装置に実装された時には、多層
膜の吸収(〜0.15%)により多層膜が温度上昇、
熱膨張を起し、透過率が変化するためである。
In such conventional transmittance measurement, since the output of the measuring laser light source 2 is small, the transmittance differs from the transmittance when actually installed in a laser device. This is because a multilayer film is formed on the surface of a transparent component for a laser, and when it is mounted in a laser device, the temperature of the multilayer film rises due to absorption (~0.15%) of the multilayer film.
This is because thermal expansion occurs and the transmittance changes.

また従来では、透過率測定や損傷試験は個別に
行われており実装時の真の値が得られず、レーザ
用透明部品の総合評価を行うのに不都合であつ
た。
Furthermore, in the past, transmittance measurements and damage tests were performed individually, making it impossible to obtain true values at the time of mounting, which was inconvenient for comprehensive evaluation of transparent parts for lasers.

発明の目的 本発明は、レーザ用透明部品を、実際にレーザ
装置に実装した状態を再現する為の試験容器内に
おいて、透過率測定、形状変化測定、温度上昇測
定、損傷閾値測定を同一の位置にて交互もしくは
同時に行い、レーザ用透明部品の総合評価を行な
うことにある。
Purpose of the Invention The present invention provides transmittance measurement, shape change measurement, temperature rise measurement, and damage threshold measurement at the same position in a test container for reproducing the state in which transparent parts for laser are actually mounted in a laser device. The objective is to carry out a comprehensive evaluation of transparent parts for lasers, either alternately or simultaneously.

発明の構成 本発明はレーザ用透明部品の評価の為の、3種
類のレーザ光源と、光学系と、実際に使用する時
と同様の雰囲気を再現する試験容器とを備え、第
一のレーザとして、レーザ用透明部品の透過率を
測定する為の測定用レーザ光源を、第二のレーザ
として、シミユレーシヨンの為の試験用レーザ光
源を、第三のレーザとして、レーザヨー用透明部
品の形状変化、温度変化を測定する為のHe−Ne
レーザ光源を用い、前記3種のレーザのレーザ光
をレーザ用透明部品の1ケ所に照射するように配
置し、従来、単独に行なわれていた、これらの測
定を、試験容器内の雰囲気中で交互もしくは同時
に測定するようにしたもので、レーザ用透明部品
の実装時の透過率変化、形状変化、温度上昇が推
定可能となり、また試験用レーザ光源による照射
レーザ光のパワー密度を変え、透過率を測定する
ことにより、損傷閾値とそれに至るまでの劣化の
状態を測定できるものである。
Structure of the Invention The present invention is equipped with three types of laser light sources, an optical system, and a test container that reproduces the same atmosphere as when actually used for evaluating transparent parts for lasers. The second laser is used as a measuring laser light source to measure the transmittance of transparent parts for lasers, and the third laser is used as a test laser light source for simulation to measure changes in shape and temperature of transparent parts for laser yaw. He−Ne for measuring changes
Using a laser light source, the laser beams of the three types of lasers mentioned above are arranged so as to irradiate one place on the transparent part for the laser, and these measurements, which were conventionally performed individually, can be performed in the atmosphere inside the test container. This allows measurement to be performed alternately or simultaneously, making it possible to estimate changes in transmittance, shape changes, and temperature rises during the mounting of transparent parts for lasers.Also, by changing the power density of the laser beam irradiated by the test laser light source, the transmittance can be estimated. By measuring this, it is possible to measure the damage threshold and the state of deterioration leading up to it.

実施例の説明 本発明の実施例の光学系を第3図に、信号系を
第4図に示す。
DESCRIPTION OF EMBODIMENTS FIG. 3 shows an optical system of an embodiment of the present invention, and FIG. 4 shows a signal system.

まず、試料21を試験容器22に装着する。試
験容器22には、レーザ光32,35,39を導
入する為の窓材26,27が取付けられ、気密が
保たれる様にしてある。排気ポンプ25により試
験容器22を真空排気し、ボンベ23より、弁2
4を経て雰囲気ガスを試験容器22に充填する様
にしてある。照射試験、透過率測定は、レーザ用
透明部品が実際に使用される雰囲気と同等の雰囲
気中で行なう。
First, the sample 21 is placed in the test container 22. Window members 26 and 27 for introducing laser beams 32, 35, and 39 are attached to the test container 22 to maintain airtightness. The test container 22 is evacuated by the exhaust pump 25, and the valve 2 is evacuated from the cylinder 23.
4, the test container 22 is filled with atmospheric gas. Irradiation tests and transmittance measurements are performed in an atmosphere equivalent to the atmosphere in which the transparent parts for lasers are actually used.

透過率測定は、測定用レーザ光源28を用いて
行ない測定原理は従来例第1図と同様である。測
定用レーザ光源28から出たレーザ光32は、ビ
ームスプリツタ29で、2つに分離され、チヨツ
パー33でチヨツピングされる。一方のレーザ光
32は、試験容器22の窓材26を透過し、試料
21を透過し、ミラー30で折曲げられビームス
プリツタ29′にて、分離されたレーザ光32と
再び混合され、検出器31に導びかれる。透過率
は、試験用レーザ光源38からのレーザ光39を
照射する前、照射中および照射後に行なわれ、レ
ーザ光照射による透過率の変化、およびレーザ用
透明部品の劣化の有無を測定する。
Transmittance measurement is carried out using a measurement laser light source 28, and the measurement principle is the same as that of the conventional example shown in FIG. Laser light 32 emitted from measurement laser light source 28 is separated into two by beam splitter 29 and chopped by chopper 33 . One laser beam 32 passes through the window material 26 of the test container 22, passes through the sample 21, is bent by the mirror 30, is mixed with the separated laser beam 32 again by the beam splitter 29', and is detected. Guided to vessel 31. The transmittance is measured before, during, and after irradiation with the laser light 39 from the test laser light source 38, and the change in transmittance due to laser light irradiation and the presence or absence of deterioration of the transparent parts for the laser are measured.

照射試験は、試験用レーザ光源38を用いて行
なう。
The irradiation test is performed using the test laser light source 38.

試験用レーザ光源38から出たレーザ光39
は、試験容器22の窓材27を透過し、レンズ4
0にて集光し試料21に照射される。レンズ40
は前後にスライドが出来、試料21への照射パワ
ー密度を可変できる。試料21を透過してレーザ
光39は検出器41で受けられ、反射光は受光器
42で受けられる。
Laser light 39 emitted from test laser light source 38
passes through the window material 27 of the test container 22 and passes through the lens 4.
The light is focused at 0 and irradiated onto the sample 21. lens 40
can slide back and forth, and the irradiation power density to the sample 21 can be varied. The laser beam 39 transmitted through the sample 21 is received by a detector 41, and the reflected light is received by a light receiver 42.

照射試験中のレーザ用透明部品の形状変化、温
度上昇の測定は、He−Neレーザ光源34を用い
て非接触にて行なわれる。
Measurement of shape change and temperature rise of the transparent laser component during the irradiation test is performed in a non-contact manner using the He--Ne laser light source 34.

He−Neレーザ光源34から出たレーザ光35
は、試験容器22の窓材26を透過し、試料21
の表面で反射し、再び窓材26を透過し、スクリ
ーン36に投影される。
Laser light 35 emitted from He-Ne laser light source 34
passes through the window material 26 of the test container 22, and the sample 21
The light is reflected on the surface of the window, passes through the window material 26 again, and is projected onto the screen 36.

スクリーン36に投影された像は、試料の表裏
面の干渉により、縞状に写る。試料21に試験用
レーザ光源38から出たレーザ光39が照射され
ると、熱膨張、屈折率変化等で、スクリーン36
に投影されるレーザ光35のパターンが変化す
る。このパターンの変化は、ビデオカメラ37に
て記録される。この時の縞数の変化と試料21の
形状変化と温度変化の比は、試料21が例えば
ZnSeの場合は0.08μ/縞と、0.8℃/縞となり、縞
数の変化により非接触にて測定される。
The image projected onto the screen 36 appears in a striped manner due to interference between the front and back surfaces of the sample. When the sample 21 is irradiated with the laser beam 39 emitted from the test laser light source 38, the screen 36 will change due to thermal expansion, refractive index change, etc.
The pattern of the laser beam 35 projected onto the image changes. This change in pattern is recorded by a video camera 37. At this time, the ratio of the change in the number of fringes, the shape change, and the temperature change of the sample 21 is, for example,
In the case of ZnSe, it is 0.08 μ/fringe and 0.8° C./fringe, and is measured without contact based on the change in the number of fringes.

損傷閾値は、レンズ40の位置を調整し、試料
21に照射されるレーザ光39の照射パワー密度
を最大にして行なう。破壊に至るまでの試料21
の変化はHe−Neレーザ光源34と、ビデオカメ
ラ37を用いて観測、記録する。以上の透過率測
定、照射試験、照射試験中のレーザ用透明部品の
形状変化および温度上昇を測定する3種のレーザ
28,34,38のレーザ光32,35,39
は、試料21の同一の位置に照射される。そのた
め、それぞれの測定値の相関を調べることがで
き、総合的な透明部品の評価が行なわれる。この
時の3種のレーザ光源の配置は、透過率測定は測
定誤差を最小にするために正面から、すなわち入
射角度が概略0度であるように、He−Neレーザ
は前記透明部品の表裏面反射の重なりができるだ
け大きく十分確保できるように浅い入射角度で、
試験用レーザはレンズで集光して照射するために
散乱光が透過率測定系に入り、検出器を破壊しな
いように入射角度をやや大きめに設定してある。
信号系は、第4図に示す様になつており、透過率
測定データと、照射レーザ出力は1台のレコーダ
45に同時に記録され照射レーザ密度と透過率変
化の対応が出来る様にしてある。
The damage threshold is determined by adjusting the position of the lens 40 and maximizing the irradiation power density of the laser beam 39 irradiated onto the sample 21. Sample 21 up to destruction
Changes in are observed and recorded using a He-Ne laser light source 34 and a video camera 37. Laser beams 32, 35, 39 of three types of lasers 28, 34, 38 for measuring the above transmittance measurement, irradiation test, shape change and temperature rise of transparent parts for laser during irradiation test
are irradiated onto the same position on the sample 21. Therefore, the correlation between each measurement value can be investigated, and a comprehensive evaluation of the transparent component can be performed. At this time, the three types of laser light sources were arranged so that the transmittance measurement was performed from the front to minimize measurement errors, that is, the incident angle was approximately 0 degrees, and the He-Ne laser was used on the front and back surfaces of the transparent component. The angle of incidence is shallow to ensure that the overlap of reflections is as large as possible.
Since the test laser focuses the light with a lens and irradiates it, the incident angle is set slightly larger to prevent scattered light from entering the transmittance measurement system and damaging the detector.
The signal system is as shown in FIG. 4, and the transmittance measurement data and the irradiated laser output are simultaneously recorded on one recorder 45, so that it is possible to correspond to the irradiated laser density and the transmittance change.

検出器31の出力は2台のロツクインアンプ4
3で、試料光信号と参照光信号とに分離され、レ
シオメータ44で反射率が算出される。
The output of the detector 31 is output from two lock-in amplifiers 4.
3, the signal is separated into a sample optical signal and a reference optical signal, and the ratiometer 44 calculates the reflectance.

照射レーザ出力は検出器41で受けられ、出力
をアンプ46で増幅し、レコーダ45に記録され
る。
The output of the irradiated laser is received by a detector 41, the output is amplified by an amplifier 46, and is recorded on a recorder 45.

透過率測定はチヨツパー33にて強度変調され
たレーザ光を用いて行うため、照射試験の際の試
料21の表面からの散乱光の影響を受ける事なく
安定した測定を行うことができる。
Since the transmittance measurement is performed using a laser beam whose intensity is modulated by the chopper 33, stable measurement can be performed without being affected by scattered light from the surface of the sample 21 during the irradiation test.

試料21の形状変化と照射レーザとの対応をつ
ける為に、スクリーン36には、発光ダイオード
361が取り付けられ、照射用レーザ光源38の
放電電源381からの信号により発光する。37
はビデオカメラである。
In order to match the shape change of the sample 21 with the irradiation laser, a light emitting diode 361 is attached to the screen 36 and emits light in response to a signal from the discharge power supply 381 of the irradiation laser light source 38. 37
is a video camera.

発明の効果 以上のように本発明はレーザ用透明部品の評価
のための3種類のレーザ光源と、光学系と、実際
に使用する時と同様の雰囲気を再現する試験容器
とを備え、第一のレーザとして、レーザ用透明部
品の透過率を測定する為の測定用レーザ光源を、
第二のレーザとして、シミユレーシヨンの為の試
験用レーザ光源を、第三のレーザとして、レーザ
用透明部品の形状変化、温度変化を測定する為の
He−Neレーザ光源を用い、試料の1ケ所に照射
するように配置し、従来、単独に行なわれていた
これらの測定を試験容器内の雰囲気中で交互もし
くは同時に測定するようにしたもので、以下に示
すような効果を有する。
Effects of the Invention As described above, the present invention includes three types of laser light sources for evaluating transparent parts for lasers, an optical system, and a test container that reproduces the same atmosphere as when actually used. As a laser, we use a measurement laser light source to measure the transmittance of transparent parts for lasers.
The second laser is used as a test laser light source for simulation, and the third laser is used as a test laser light source for measuring changes in shape and temperature of transparent parts for lasers.
A He-Ne laser light source is placed so as to irradiate one spot on the sample, and these measurements, which were conventionally performed individually, are performed alternately or simultaneously in the atmosphere inside the test container. It has the following effects.

(1) レーザ用透明部品試料の1ケ所に照射するよ
う3種のレーザ光源を配置し、透過率測定は測
定誤差を最小にするために正面から、He−Ne
レーザは前記透明部品の表裏面反射の重なりが
できるだけ大きくなるように浅い角度で、試験
用レーザはレンズで集光して照射するため散乱
光が透過率測定系に入り、検出器を破壊しない
ように角度をややおおきめに設定してあるた
め、同時測定による相互干渉をほとんど生じな
い。
(1) Three types of laser light sources were arranged so as to irradiate one place on the sample of transparent laser parts, and the transmittance measurement was performed from the front with He-Ne
The laser beam is set at a shallow angle so that the overlap of reflections from the front and back surfaces of the transparent component is as large as possible, and the test laser beam is focused by a lens to prevent scattered light from entering the transmittance measurement system and destroying the detector. Since the angle is set slightly larger, there is almost no mutual interference caused by simultaneous measurements.

(2) 透過率測定と、シミユレーシヨンを同時に行
なう為にレーザ用透明部品を、レーザ装置に実
装した時の真の透過率が測定できる。
(2) Transmittance measurement and simulation can be performed at the same time, so the true transmittance when a transparent laser component is mounted on a laser device can be measured.

(3) He−Neレーザにより、レーザ用透明部品に
レーザ光が照射された時のレーザ用透明部品の
形状変化、温度変化が、非接触で測定できる。
(3) Using a He-Ne laser, changes in shape and temperature of transparent parts for lasers can be measured without contact when the transparent parts for lasers are irradiated with laser light.

(4) 損傷閾値の測定が、ビデオカメラによる画像
をモニターしながら行なえる為、遠隔操作が出
来る。
(4) Damage threshold measurements can be performed while monitoring images from a video camera, allowing remote control.

(5) 損傷に至るまでの、レーザ部品の形状変化温
度変化が記録出来る。
(5) Shape changes and temperature changes of laser parts up to damage can be recorded.

(6) レーザ用透明部品の使用限界のパワー密度が
測定出来、高信頼性レーザ装置の設計が出来
る。
(6) It is possible to measure the power density at the usage limit of transparent parts for lasers, and to design highly reliable laser equipment.

(7) 試験容器内の雰囲気を自由に変えることが出
来る為に、あらゆる使用条件を設定してレーザ
用透明部品の評価が行なえる。
(7) Since the atmosphere inside the test container can be changed freely, transparent parts for lasers can be evaluated under any usage conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の透過率測定光学系の概念図、第
2図は従来の損傷試験光学系の概念図、第3図は
本発明のレーザ用透明部品評価装置の光学系を示
す概念図、第4図は本発明のレーザ用透明部品評
価装置の信号系を示すブロツク図である。 1……試料、2……測定用レーザ光源、3……
ビームスプリツタ、4……ミラー、5……検出
器、6……レーザ光、7……チヨツパー、11…
…試料、12……試験用レーザ光源、13……レ
ンズ、14……受光器、15……レーザ光、21
……試料、22……試験容器、23……ボンベ、
24……弁、25……排気ポンプ、26,27…
…窓材、28……測定用レーザ光源、29,2
9′……ビームスプリツタ、30,30′……ミラ
ー、31……検出器、32……レーザ光、33…
…チヨツパー、34……He−Neレーザ光源、3
5……レーザ光、36……スクリーン、37……
ビデオカメラ、38……試験用レーザ光源、39
……レーザ光、40……レンズ、41……検出
器、42……受光器、43……ロツクインアン
プ、44……レシオメータ、45……コペンレコ
ーダ、46……アンプ、361……発光ダイオー
ド、381……放電電源。
FIG. 1 is a conceptual diagram of a conventional transmittance measurement optical system, FIG. 2 is a conceptual diagram of a conventional damage test optical system, and FIG. 3 is a conceptual diagram of an optical system of a laser transparent component evaluation apparatus of the present invention. FIG. 4 is a block diagram showing the signal system of the laser transparent component evaluation apparatus of the present invention. 1... Sample, 2... Laser light source for measurement, 3...
Beam splitter, 4... Mirror, 5... Detector, 6... Laser beam, 7... Chopper, 11...
... Sample, 12 ... Test laser light source, 13 ... Lens, 14 ... Light receiver, 15 ... Laser light, 21
... Sample, 22 ... Test container, 23 ... Cylinder,
24... Valve, 25... Exhaust pump, 26, 27...
...Window material, 28... Laser light source for measurement, 29,2
9'... Beam splitter, 30, 30'... Mirror, 31... Detector, 32... Laser light, 33...
...Chopper, 34...He-Ne laser light source, 3
5... Laser light, 36... Screen, 37...
Video camera, 38... Laser light source for testing, 39
... Laser beam, 40 ... Lens, 41 ... Detector, 42 ... Light receiver, 43 ... Lock-in amplifier, 44 ... Ratio meter, 45 ... Copen recorder, 46 ... Amplifier, 361 ... Light emitting diode , 381...Discharge power supply.

Claims (1)

【特許請求の範囲】 1 レーザ用透明部品の透過率を測定するための
測定用レーザ光源と、シミユレーシヨンの為の試
験用レーザ光源と、前記レーザ用透明部品の形状
変化と温度変化とを測定する為のHe−Neレーザ
光源と、前記レーザ用透明部品を保持し、その使
用雰囲気を制御するための試験容器と、測定及び
試験用光学系と、少なくとも透過率測定用検出手
段を含む測定用検出観測手段とを備え、前記測定
用レーザ光源は正面から入射角が略0度で、前記
試験用レーザ光源は散乱光が前記透過率測定用検
出手段に入射しないように大きな入射角度で、前
記He−Neレーザ光源は前記透明部品の表裏面反
射の重なりを確保するように浅い入射角度で各々
レーザ用透明部品に入射され、かつ前記3種のレ
ーザ光源が前記レーザ用透明部品の同一の1ケ所
を照射するように配置し、前記レーザ用透明部品
の透過率、レーザ光照射路のと照射路の透過率変
化、形状変化、温度変化、損傷閾値を実際に使用
される雰囲気と同等の雰囲気の中で、交互もしく
は同時に測定することにより、総合的な評価を行
なうことを特徴とするレーザ用透明部品評価装
置。 2 測定用検出観測手段が、さらにシミユレーシ
ヨン試験用検出手段と、レーザ用透明部品の形状
変化及び温度変化測定用検出観測手段から成るこ
とを特徴とする特許請求の範囲第1項記載のレー
ザ用透明部品評価装置。 3 測定及び試験用光学系の一部の透過率測定用
光学系が、その光学系内を伝播する光の強度を変
調するチヨツパ手段を有することを特徴とする特
許請求の範囲第1項記載のレーザ用透明部品評価
装置。 4 測定及び試験用光学系の一部のシミユレーシ
ヨン試験用光学系が、その焦点位置が可変である
ことを特徴とする特許請求の範囲第1項記載のレ
ーザ用透明部品評価装置。
[Claims] 1. A measurement laser light source for measuring the transmittance of a transparent laser component, a test laser light source for simulation, and measuring changes in shape and temperature of the transparent laser component. a He-Ne laser light source for the measurement, a test container for holding the transparent part for the laser and controlling the atmosphere in which it is used, an optical system for measurement and testing, and a detection device for measurement including at least a detection means for transmittance measurement. observation means, the measurement laser light source has an incident angle of approximately 0 degrees from the front, and the test laser light source has a large incidence angle so that scattered light does not enter the transmittance measurement detection means; -The Ne laser light sources are each incident on the transparent laser component at a shallow angle of incidence so as to ensure overlapping of the front and back surface reflections of the transparent component, and the three types of laser light sources are located at the same location on the transparent laser component. The transmittance of the transparent parts for the laser, the change in transmittance of the laser beam irradiation path, the change in shape, the change in temperature, and the damage threshold were measured in an atmosphere equivalent to the atmosphere in which it is actually used. A laser transparent component evaluation device characterized by performing comprehensive evaluation by performing measurements alternately or simultaneously. 2. The transparent laser device according to claim 1, wherein the measurement detection and observation means further comprises a simulation test detection device and a detection and observation device for measuring shape changes and temperature changes of the laser transparent component. Parts evaluation device. 3. The optical system for measuring transmittance that is part of the optical system for measurement and testing has a chopper means for modulating the intensity of light propagating within the optical system, as set forth in claim 1. Transparent parts evaluation equipment for lasers. 4. The laser transparent component evaluation device according to claim 1, wherein a portion of the simulation test optical system of the measurement and test optical system has a variable focal position.
JP6914583A 1983-04-21 1983-04-21 Evaluating device of transparent part for laser Granted JPS59195142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6914583A JPS59195142A (en) 1983-04-21 1983-04-21 Evaluating device of transparent part for laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6914583A JPS59195142A (en) 1983-04-21 1983-04-21 Evaluating device of transparent part for laser

Publications (2)

Publication Number Publication Date
JPS59195142A JPS59195142A (en) 1984-11-06
JPH0434093B2 true JPH0434093B2 (en) 1992-06-04

Family

ID=13394190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6914583A Granted JPS59195142A (en) 1983-04-21 1983-04-21 Evaluating device of transparent part for laser

Country Status (1)

Country Link
JP (1) JPS59195142A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104034700B (en) * 2014-06-21 2016-09-21 中国科学院合肥物质科学研究院 A kind of measuring method of propagation in atmosphere laser transmittance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151583A (en) * 1974-05-27 1975-12-05

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5058780U (en) * 1973-09-27 1975-05-31

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50151583A (en) * 1974-05-27 1975-12-05

Also Published As

Publication number Publication date
JPS59195142A (en) 1984-11-06

Similar Documents

Publication Publication Date Title
US5159412A (en) Optical measurement device with enhanced sensitivity
CA2426714C (en) Optical amplification in coherent optical frequency modulated continuous wave reflectometry
Roundy et al. Current technology of laser beam profile measurements
JPS5833106A (en) Device for measuring varying quantity of thickness of paint layer
US7357570B2 (en) Method and device for contactless temperature monitoring and temperature adjustment
CN111504612A (en) Testing arrangement of many light sources laser damage threshold value
CN108562547A (en) Laser crystal thermal stress double refractive inde measuring device and its method
Slater et al. Characterization of high-power lasers
US20200408701A1 (en) Carrier lifespan measurement method and carrier lifespan measurement device
US6628402B1 (en) Phase interference detecting method and system in interferometer, and light detector therefor
JPH0434093B2 (en)
US5477328A (en) Optical transmission calibration device and method for optical transmissiometer
CN110411718A (en) High reflection element reflectivity and absorption method for real-time measurement under CW Laser
JP7313460B2 (en) Device, use of device, and method for high-contrast imaging
US4362388A (en) Remote measurement of concentration of a gas specie by resonance absorption
CN105738304B (en) A kind of photo-thermal amplification spectrum detection device and detection method
JPH09196630A (en) Optical constant measuring apparatus and microscope
US4522065A (en) Remote pressure sensor
Gu et al. Design review of a unique laser monostatic bidirectional reflectometer
SU935701A1 (en) Apparatus for testing optical systems
Ershov et al. Setup for measuring the threshold energy of infrared radiation
JP2000249651A (en) Noncontact steam leakage detection method and device
SU730084A1 (en) Method of measuring optic absorption in coatings
KR100257610B1 (en) Apparatus for measuring reflection
JPH01132905A (en) Apparatus for detecting dripping liquid droplet