JPH04340921A - Photosemiconductor device - Google Patents

Photosemiconductor device

Info

Publication number
JPH04340921A
JPH04340921A JP11302791A JP11302791A JPH04340921A JP H04340921 A JPH04340921 A JP H04340921A JP 11302791 A JP11302791 A JP 11302791A JP 11302791 A JP11302791 A JP 11302791A JP H04340921 A JPH04340921 A JP H04340921A
Authority
JP
Japan
Prior art keywords
waveguides
optical
signal
clock signal
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11302791A
Other languages
Japanese (ja)
Other versions
JP3020645B2 (en
Inventor
Keiji Sato
恵二 佐藤
Haruhisa Soda
晴久 雙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11302791A priority Critical patent/JP3020645B2/en
Publication of JPH04340921A publication Critical patent/JPH04340921A/en
Application granted granted Critical
Publication of JP3020645B2 publication Critical patent/JP3020645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide the photosemiconductor device by realizing high-frequency modulation higher than the modulation frequency of an electric driving system and increasing the transmission capacity. CONSTITUTION:A DFB laser part 4 which oscillates in single longitudinal mode, a Y-shaped branch waveguide 8 which divides the light from the DFB laser part 4 to two waveguides 6a and 6b, and a Y-shaped multiplexing waveguide 10 where the two waveguides 6a and 6b come together are provided on the same semiconductor substrate 2. The two waveguides 6a and 6b are provided with clock signal modulation parts 12a and 12b having electrodes applied with clock signals as electric signals and data signal modulation parts 14a and 14b having electrodes applied with data signals as electric signals.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光半導体装置に係り、特
に長距離大容量光伝送システムの光源に用いる光変調器
及び光変調器/半導体レーザ集積化光源に関する。現在
、長距離大容量光伝送システムの光源としては、単一縦
モード半導体レーザの直接変調方式が採用されている。 しかし直接変調方式においては、緩和振動時におけるチ
ャーピング(時間的波長変動)現象により大きな波長拡
がりが生じるため、伝送容量を飛躍的に増大させること
は困難である。これに対し、半導体レーザを光源とし光
変調器を用いて変調を行う外部変調方式は、超高速変調
が可能でかつ変調時に生ずる波長チャーピングが少ない
ため、近未来の長距離大容量光伝送システムの光源とし
て期待されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device, and more particularly to an optical modulator and an integrated optical modulator/semiconductor laser light source used as a light source in a long-distance, large-capacity optical transmission system. Currently, a direct modulation method using a single longitudinal mode semiconductor laser is used as a light source for long-distance, high-capacity optical transmission systems. However, in the direct modulation method, a large wavelength spread occurs due to the chirping (temporal wavelength fluctuation) phenomenon during relaxation oscillation, so it is difficult to dramatically increase the transmission capacity. On the other hand, the external modulation method, which uses a semiconductor laser as a light source and performs modulation using an optical modulator, is capable of ultra-high-speed modulation and has little wavelength chirping that occurs during modulation. It is expected to be used as a light source.

【0002】0002

【従来の技術】従来の光変調器/半導体レーザ集積化光
源としては、電界吸収型光変調器と非対称端面反射率型
のDFB(分布帰還型)レーザを同一基板上に形成した
光源や、電界吸収型光変調器と非対称λ/4シフトDF
Bレーザを同一基板上に形成した光源等がある。
[Prior Art] Conventional optical modulator/semiconductor laser integrated light sources include light sources in which an electro-absorption optical modulator and an asymmetric edge reflectance type DFB (distributed feedback) laser are formed on the same substrate, and electric field Absorption optical modulator and asymmetric λ/4 shift DF
There is a light source in which a B laser is formed on the same substrate.

【0003】0003

【発明が解決しようとする課題】上記従来の光変調器/
半導体レーザ集積化光源において、光変調器の変調周波
数は変調器の寄生容量に起因している。即ち、変調周波
数fは、 f=1/πRC である。ここで、πは円周率、Rはマッチング抵抗、C
は寄生容量をそれぞれ示す。従って、この容量を低減す
ることにより、変調周波数を10Gb/sまで向上させ
ることが可能である。そして更に変調周波数を向上させ
るには、容量を低減することが有効である。
[Problem to be solved by the invention] The above conventional optical modulator/
In a semiconductor laser integrated light source, the modulation frequency of an optical modulator is caused by the parasitic capacitance of the modulator. That is, the modulation frequency f is f=1/πRC. Here, π is pi, R is matching resistance, and C
indicate the parasitic capacitance, respectively. Therefore, by reducing this capacity, it is possible to increase the modulation frequency to 10 Gb/s. In order to further improve the modulation frequency, it is effective to reduce the capacitance.

【0004】しかしながら、現在、10Gb/s以上の
変調周波数を実現するためのパルスパターン発生器、マ
イクロストリップライン等の電気の駆動系がないため、
10Gb/s以上の高周波変調をかけることができない
。このため、変調周波数の向上によって伝送容量を増大
させることには、一定の限界がある。そこで本発明は、
電気の駆動系の変調周波数以上の高周波変調を実現し、
伝送容量を増大させることができる光半導体装置を提供
することを目的とする。
[0004] However, at present, there is no electrical drive system such as a pulse pattern generator or microstrip line to achieve a modulation frequency of 10 Gb/s or more.
High frequency modulation of 10 Gb/s or higher cannot be applied. Therefore, there is a certain limit to increasing the transmission capacity by improving the modulation frequency. Therefore, the present invention
Achieves high frequency modulation that exceeds the modulation frequency of electric drive systems,
An object of the present invention is to provide an optical semiconductor device that can increase transmission capacity.

【0005】[0005]

【課題を解決するための手段】上記課題は、光源からの
光信号をN本の導波路に分岐する分岐導波路と、前記N
本の導波路にそれぞれ設けられ、位相が2π/Nずつず
れたクロック信号で駆動されるクロック信号用変調部と
、前記N本の導波路にそれぞれ設けられ、所定のデータ
信号で駆動されるデータ信号用変調部と、前記N本の導
波路の光信号を結合する合波導波路とを有することを特
徴とする光半導体装置によって達成される。
[Means for Solving the Problems] The above object is to provide a branching waveguide that branches an optical signal from a light source into N waveguides, and a branching waveguide for branching an optical signal from a light source into N waveguides.
A clock signal modulation section provided in each of the N waveguides and driven by a clock signal whose phase is shifted by 2π/N; and a clock signal modulation section provided in each of the N waveguides and driven by a predetermined data signal. This is achieved by an optical semiconductor device characterized by having a signal modulation section and a multiplexing waveguide that couples the optical signals of the N waveguides.

【0006】また、基板と、前記基板上に設けられたレ
ーザ部と、前記基板上に設けられ、前記レーザ部で発振
された光信号をN本の導波路に分岐する分岐導波路と、
前記N本の導波路にそれぞれ設けられ、位相が2π/N
ずつずれたクロック信号で駆動されるクロック信号用変
調部と、前記N本の導波路にそれぞれ設けられ、所定の
データ信号で駆動されるデータ信号用変調部と、前記N
本の導波路の光信号を結合する合波導波路とを有するこ
とを特徴とする光半導体装置によって達成される。
[0006] The invention also includes a substrate, a laser section provided on the substrate, and a branching waveguide provided on the substrate for branching an optical signal oscillated by the laser section into N waveguides;
Each of the N waveguides is provided with a phase of 2π/N.
a clock signal modulation section that is driven by clock signals that are shifted from each other; a data signal modulation section that is provided on each of the N waveguides and driven by a predetermined data signal;
This is achieved by an optical semiconductor device characterized by having a multiplexing waveguide that combines optical signals of two waveguides.

【0007】[0007]

【作用】即ち本発明は、光源からの光信号が分岐導波路
によってN本の導波路に分岐され、これらの光信号がそ
れぞれクロック信号用変調部において位相が2π/Nだ
けずれた所定の周波数のクロック信号で変調されると共
に、データ信号用変調部においてそれぞれ所定のデータ
信号で変調され、その後再び合波導波路によって一つに
合流されることにより、N個のデータ信号が位相をずら
して含有される所定の周波数のN倍の周波数の光信号を
得ることができる。
[Operation] That is, in the present invention, an optical signal from a light source is branched into N waveguides by a branching waveguide, and each of these optical signals is set to a predetermined frequency whose phase is shifted by 2π/N in a clock signal modulation section. N data signals are contained with a phase shift by being modulated by a clock signal, each modulated by a predetermined data signal in a data signal modulation section, and then merged into one by a multiplexing waveguide again. It is possible to obtain an optical signal with a frequency N times higher than the predetermined frequency.

【0008】[0008]

【実施例】以下、本発明を図示する実施例に基づいて具
体的に説明する。図1は本発明の一実施例による光半導
体装置を示す平面図である。同一の半導体基板2上に、
単一縦モード発振するDFBレーザ部4と、このDFB
レーザ部4からの光を2本の導波路6a、6bに分割す
るY字形分岐導波路8と、またこれら2本の導波路6a
、6bが合流するY字形合波導波路10とが設けられて
いる。そして2本の導波路6a、6bには、それぞれ電
気信号であるクロック信号が印加される電極を有するク
ロック信号用変調部12a、12bと、電気信号である
データ信号が印加される電極を有するデータ信号用変調
部14a、14bとが設けられている。更に、Y字形合
波導波路10の端面には、AR(無反射)コート16が
設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on illustrative embodiments. FIG. 1 is a plan view showing an optical semiconductor device according to an embodiment of the present invention. On the same semiconductor substrate 2,
A DFB laser section 4 that oscillates in a single longitudinal mode, and this DFB
A Y-shaped branching waveguide 8 that divides the light from the laser section 4 into two waveguides 6a and 6b, and these two waveguides 6a.
, 6b are provided. The two waveguides 6a and 6b each have a clock signal modulating section 12a, 12b having an electrode to which a clock signal, which is an electric signal, is applied, and a data signal modulating section 12b, which has an electrode to which a data signal, which is an electric signal, is applied. Signal modulation sections 14a and 14b are provided. Further, an AR (anti-reflection) coat 16 is provided on the end face of the Y-shaped multiplexing waveguide 10.

【0009】次に、図2を用いて、図1に示す光半導体
装置の動作を説明する。図2は光半導体装置に用いられ
る各種の信号を示す図である。DFBレーザ部4におい
て、図2(a)に示される単一縦モード光が連続的に発
振される。そしてこの光信号は、Y字形分岐導波路8に
よって2分され、それぞれクロック信号用変調部12a
、12bに入射する。
Next, the operation of the optical semiconductor device shown in FIG. 1 will be explained using FIG. 2. FIG. 2 is a diagram showing various signals used in the optical semiconductor device. In the DFB laser section 4, a single longitudinal mode light shown in FIG. 2(a) is continuously oscillated. This optical signal is divided into two by the Y-shaped branch waveguide 8, and each clock signal modulator 12a
, 12b.

【0010】一方のクロック信号用変調部12aは、図
2(b)に示される周波数10Gb/s、即ち周期10
0psのクロック信号で駆動されている。従って、この
クロック信号用変調部12aを通過した光信号は、図2
(c)に示されるように、図2(b)のクロック信号に
対応して周波数10Gb/sとなっている。続いて、こ
の図2(c)の光信号は、導波路6aを通ってデータ信
号用変調部14aに入射する。このデータ信号用変調部
14aは、図2(d)に示されるように、所定のデータ
信号で駆動される。本実施例においては、(00101
101…)のNRZ信号である。従って、このデータ信
号用変調部14aを通過した光信号は、図2(e)に示
されるように、図2(d)のデータ信号によって変調さ
れた(00101101…)のRZ信号となっている。
One of the clock signal modulators 12a has a frequency of 10 Gb/s, that is, a period of 10 as shown in FIG. 2(b).
It is driven by a 0 ps clock signal. Therefore, the optical signal passing through this clock signal modulation section 12a is as shown in FIG.
As shown in FIG. 2(c), the frequency is 10 Gb/s corresponding to the clock signal in FIG. 2(b). Subsequently, the optical signal shown in FIG. 2(c) passes through the waveguide 6a and enters the data signal modulation section 14a. This data signal modulation section 14a is driven by a predetermined data signal, as shown in FIG. 2(d). In this example, (00101
101...) is the NRZ signal. Therefore, the optical signal that has passed through this data signal modulation section 14a becomes an RZ signal (00101101...) modulated by the data signal of FIG. 2(d), as shown in FIG. 2(e). .

【0011】また、他方のクロック信号用変調部12b
は、図2(f)に示される周波数10Gb/sのクロッ
ク信号で駆動されている。この図2(f)のクロック信
号は、図2(b)に示されるクロック信号に対して位相
がπだけ、即ち50psだけずれている。このため、図
2(b)のクロック信号の反転したクロック信号となっ
ている。従って、このクロック信号用変調部12bを通
過した光信号は、図2(g)に示されるように、図2(
f)のクロック信号に対応する周波数10Gb/sとな
ると共に、図2(c)の光信号の反転した光信号となっ
ている。
[0011] Also, the other clock signal modulation section 12b
is driven by a clock signal with a frequency of 10 Gb/s shown in FIG. 2(f). The clock signal shown in FIG. 2(f) has a phase shift of π, that is, 50 ps, from the clock signal shown in FIG. 2(b). Therefore, the clock signal is an inversion of the clock signal in FIG. 2(b). Therefore, the optical signal passing through this clock signal modulation section 12b is as shown in FIG. 2(g).
The optical signal has a frequency of 10 Gb/s corresponding to the clock signal of f), and is an inverted optical signal of the optical signal of FIG. 2(c).

【0012】続いて、この図2(g)の光信号は、導波
路6bを通ってデータ信号用変調部14bに入射する。 このデータ信号用変調部14bは、図2(h)に示され
るように、所定のデータ信号で駆動される。本実施例に
おいては、(10101110…)のNRZ信号である
。従って、このデータ信号用変調部14bを通過した光
信号は、図2(i)に示されるように、図2(h)のデ
ータ信号によって変調された(10101110…)の
RZ信号となっている。
Next, the optical signal shown in FIG. 2(g) passes through the waveguide 6b and enters the data signal modulation section 14b. This data signal modulation section 14b is driven by a predetermined data signal, as shown in FIG. 2(h). In this embodiment, it is an NRZ signal of (10101110...). Therefore, the optical signal passing through this data signal modulation section 14b becomes an RZ signal (10101110...) modulated by the data signal of FIG. 2(h), as shown in FIG. 2(i). .

【0013】次いで、図2(e)、(i)に示される2
つの光信号は、Y字形合波導波路10によって合流され
、図2(j)に示されるような光信号となる。即ち、パ
ルス幅50psの(0100110011110110
…)のRZ信号となる。従って、この光信号は、周波数
が20Gb/sであって、10Gb/sの電気の駆動系
の周波数によって変調された2つの信号を含有している
。そしてこの2つの信号を含有する周波数20Gb/s
の光信号が、Y字形合波導波路10端面に設けられたA
Rコート16を通って出射される。
Next, 2 shown in FIGS. 2(e) and 2(i)
The two optical signals are combined by the Y-shaped combining waveguide 10 to form an optical signal as shown in FIG. 2(j). That is, (0100110011110110
) becomes the RZ signal. This optical signal therefore contains two signals with a frequency of 20 Gb/s modulated by the frequency of the electrical drive train of 10 Gb/s. And the frequency containing these two signals is 20Gb/s
The optical signal of A
The light is emitted through the R coat 16.

【0014】このように本実施例によれば、光源として
のDFBレーザ部4から連続的発振された単一縦モード
の光信号がY字形分岐導波路8によって2分され、この
2つに光信号がそれぞれクロック信号用変調部12a、
12bにおいて位相がπだけだけずれた周波数10Gb
/sのクロック信号で変調され、続いてデータ信号用変
調部14a、14bにおいてそれぞれ所定のデータ信号
で変調された後、Y字形合波導波路10によって合流さ
れることにより、2つの所定のデータ信号が位相をずら
して含有される周波数20Gb/sの光信号を得ること
ができる。
According to this embodiment, the single longitudinal mode optical signal continuously oscillated from the DFB laser section 4 as a light source is divided into two by the Y-shaped branching waveguide 8, and the light is transmitted to these two. The signals are respectively clock signal modulators 12a,
Frequency 10Gb with phase shifted by π in 12b
/s clock signal, and then modulated with predetermined data signals in the data signal modulation sections 14a and 14b, and then merged by the Y-shaped combining waveguide 10, thereby producing two predetermined data signals. It is possible to obtain an optical signal with a frequency of 20 Gb/s in which the signals are phase-shifted.

【0015】このため、電気の駆動系の変調周波数10
Gb/sの2倍の20Gb/sで高周波変調を実現し、
伝送容量を2倍に増大させることができる。従って例え
ば光変調器/DFBレーザ集積化光源の小型化等を実現
に寄与することができる。なお、上記実施例においては
、光源としてDFBレーザ部4を用いたが、このタイプ
のレーザに限らず、例えばDBRレーザ、DRレーザ、
利得結合型レーザ等の動的単一波長レーザやファブリ・
ペロー型レーザであってもよい。
For this reason, the modulation frequency of the electric drive system is 10
Achieves high frequency modulation at 20Gb/s, twice the Gb/s,
Transmission capacity can be doubled. Therefore, it is possible to contribute to realizing, for example, the miniaturization of an optical modulator/DFB laser integrated light source. In the above embodiment, the DFB laser unit 4 was used as the light source, but the laser is not limited to this type, and for example, DBR laser, DR laser,
Dynamic single wavelength lasers such as gain-coupled lasers and Fabry lasers
A Perot type laser may also be used.

【0016】また、Y字形分岐導波路8を用いてDFB
レーザ部4からの光を2本の導波路6a、6bに分割す
る場合について説明したが、N(N≧3)本の導波路に
分岐する分岐導波路を用いてN本の導波路に分割するこ
ともできる。この場合には、クロック信号用変調部にお
けるクロック信号の位相は2π/Nずつずらす必要があ
る。これにより、伝送容量をN倍にまで向上させること
ができる。
[0016] Furthermore, using the Y-shaped branch waveguide 8, the DFB
The case where the light from the laser section 4 is divided into two waveguides 6a and 6b has been described, but it can also be divided into N waveguides using a branching waveguide that branches into N (N≧3) waveguides. You can also. In this case, the phase of the clock signal in the clock signal modulation section needs to be shifted by 2π/N. Thereby, the transmission capacity can be improved by up to N times.

【0017】また、クロック信号用変調部12a、12
bとデータ信号用変調部14a、14bとの配置を逆に
してもよい。即ち、DFBレーザ部4からの光信号をま
ずデータ信号用変調部においてそれぞれ所定のデータ信
号で変調した後、それぞれクロック信号用変調部におい
て位相がずれたクロック信号で変調してもよい。更に、
上記実施例においては、光源としてDFBレーザ部4と
それ以外の変調器部とを同一半導体基板2上に集積化し
た場合について述べたが、本発明は変調器部のみでも成
立することはいうまでもない。
[0017] Also, the clock signal modulation units 12a, 12
The arrangement of the data signal modulating sections 14a and 14b may be reversed. That is, the optical signals from the DFB laser unit 4 may first be modulated with predetermined data signals in the data signal modulation units, and then modulated with phase-shifted clock signals in the clock signal modulation units. Furthermore,
In the above embodiment, a case has been described in which the DFB laser section 4 as a light source and the other modulator sections are integrated on the same semiconductor substrate 2, but it goes without saying that the present invention can also be applied to only the modulator section. Nor.

【0018】[0018]

【発明の効果】以上のように本発明によれば、光源から
の光信号をN本の導波路に分岐する分岐導波路と、N本
の導波路にそれぞれ設けられ、位相が2π/Nずれたク
ロック信号で駆動されるクロック信号用変調部と、N本
の導波路にそれぞれ設けられ、所定のデータ信号で駆動
されるデータ信号用変調部と、N本の導波路の光信号を
結合する合波導波路とを有することにより、光源からの
光信号が分岐されてそれぞれクロック信号用変調部によ
って位相が2π/Nだけずれたクロック信号で変調され
ると共に、データ信号用変調部によってそれぞれ所定の
データ信号で変調され、その後再び合波導波路によって
一つに合流されるため、N個のデータ信号が位相をずら
して含有される所定の周波数のN倍の周波数の光信号を
得ることができる。
As described above, according to the present invention, a branching waveguide is provided for branching an optical signal from a light source into N waveguides, and each of the N waveguides is provided with a phase shift of 2π/N. A clock signal modulation section driven by a predetermined clock signal, a data signal modulation section provided in each of the N waveguides and driven by a predetermined data signal, and optical signals of the N waveguides are coupled. By having a multiplexing waveguide, the optical signal from the light source is split and modulated by the clock signal modulation section with a clock signal whose phase is shifted by 2π/N, and the data signal modulation section modulates the optical signal into a predetermined signal. Since it is modulated with a data signal and then merged into one again by the multiplexing waveguide, it is possible to obtain an optical signal having a frequency N times the predetermined frequency and containing N data signals with shifted phases.

【0019】これにより、電気の駆動系の変調周波数以
上の高周波変調を実現し、伝送容量を増大させることが
できるため、光変調器や光変調器/半導体レーザ集積化
光源の小型化等を実現することができる。
[0019] This makes it possible to realize high-frequency modulation higher than the modulation frequency of the electric drive system and increase the transmission capacity, thereby realizing miniaturization of optical modulators and optical modulator/semiconductor laser integrated light sources. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例による光半導体装置を示す平
面図である。
FIG. 1 is a plan view showing an optical semiconductor device according to an embodiment of the present invention.

【図2】図1に示す光半導体装置の動作を説明するため
の図である。
FIG. 2 is a diagram for explaining the operation of the optical semiconductor device shown in FIG. 1;

【符号の説明】[Explanation of symbols]

2…半導体基板 4…DFBレーザ部 6a、6b…導波路 8…Y字形分岐導波路 10…Y字形合波導波路 12a、12b…クロック信号用変調部14a、14b
…データ信号用変調部 16…ARコート
2...Semiconductor substrate 4...DFB laser section 6a, 6b...Waveguide 8...Y-shaped branch waveguide 10...Y-shaped multiplexing waveguide 12a, 12b...Clock signal modulation section 14a, 14b
...Data signal modulation section 16...AR coat

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光源からの光信号をN本の導波路に分
岐する分岐導波路と、前記N本の導波路にそれぞれ設け
られ、位相が2π/Nずつずれたクロック信号で駆動さ
れるクロック信号用変調部と、前記N本の導波路にそれ
ぞれ設けられ、所定のデータ信号で駆動されるデータ信
号用変調部と、前記N本の導波路の光信号を結合する合
波導波路とを有することを特徴とする光半導体装置。
1. A branching waveguide that branches an optical signal from a light source into N waveguides, and a clock provided in each of the N waveguides and driven by a clock signal whose phase is shifted by 2π/N. It has a signal modulation section, a data signal modulation section that is provided in each of the N waveguides and is driven by a predetermined data signal, and a multiplexing waveguide that couples the optical signals of the N waveguides. An optical semiconductor device characterized by:
【請求項2】  基板と、前記基板上に設けられたレー
ザ部と、前記基板上に設けられ、前記レーザ部で発振さ
れた光信号をN本の導波路に分岐する分岐導波路と、前
記N本の導波路にそれぞれ設けられ、位相が2π/Nず
つずれたクロック信号で駆動されるクロック信号用変調
部と、前記N本の導波路にそれぞれ設けられ、所定のデ
ータ信号で駆動されるデータ信号用変調部と、前記N本
の導波路の光信号を結合する合波導波路とを有すること
を特徴とする光半導体装置。
2. A substrate, a laser section provided on the substrate, a branching waveguide provided on the substrate for branching an optical signal oscillated by the laser section into N waveguides, and the a clock signal modulation section provided in each of the N waveguides and driven by a clock signal whose phase is shifted by 2π/N; and a clock signal modulation section provided in each of the N waveguides and driven by a predetermined data signal. An optical semiconductor device comprising: a data signal modulation section; and a multiplexing waveguide that couples optical signals from the N waveguides.
JP11302791A 1991-05-17 1991-05-17 Optical semiconductor device Expired - Fee Related JP3020645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11302791A JP3020645B2 (en) 1991-05-17 1991-05-17 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11302791A JP3020645B2 (en) 1991-05-17 1991-05-17 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JPH04340921A true JPH04340921A (en) 1992-11-27
JP3020645B2 JP3020645B2 (en) 2000-03-15

Family

ID=14601613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11302791A Expired - Fee Related JP3020645B2 (en) 1991-05-17 1991-05-17 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JP3020645B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116915B2 (en) 1999-09-09 2006-10-03 Oki Electric Industry Co., Ltd. Optical signal generating circuit and optical transmission line
JP2009060461A (en) * 2007-08-31 2009-03-19 Fujitsu Ltd Polarization multiplex transmitter
WO2013115308A1 (en) * 2012-01-31 2013-08-08 国立大学法人東北大学 Semiconductor laser device and apparatus using non-linear optical effect

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116915B2 (en) 1999-09-09 2006-10-03 Oki Electric Industry Co., Ltd. Optical signal generating circuit and optical transmission line
JP2009060461A (en) * 2007-08-31 2009-03-19 Fujitsu Ltd Polarization multiplex transmitter
US8380084B2 (en) 2007-08-31 2013-02-19 Fujitsu Limited Polarization multiplexing and transmitting apparatus
WO2013115308A1 (en) * 2012-01-31 2013-08-08 国立大学法人東北大学 Semiconductor laser device and apparatus using non-linear optical effect
JP2013157551A (en) * 2012-01-31 2013-08-15 Tohoku Univ Semiconductor laser device and nonlinear optical effect utilization equipment
US9287678B2 (en) 2012-01-31 2016-03-15 Tohoku University Semiconductor laser device and apparatus using non-linear optical effect

Also Published As

Publication number Publication date
JP3020645B2 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
JP5233090B2 (en) Carrier-suppressed optical pulse train generation method and mode-locked semiconductor laser realizing the method
US7068948B2 (en) Generation of optical signals with return-to-zero format
US8260149B2 (en) Carrier-suppressed optical pulse train generating device
EP0674210B1 (en) Optical modulator
US7957653B2 (en) Phase control optical FSK modulator
US6728019B2 (en) Optical gate and optical phase modulator
US6341031B1 (en) Optical pulse generation using a high order function waveguide interferometer
JP3244976B2 (en) Semiconductor laser driving method, semiconductor laser device, optical communication method, node, and optical communication system
US5621560A (en) Method and system for reducing chirp in external modulation
JPH11101961A (en) Optical modulator and method of light modulation
JP2001320124A (en) Modulator integrated light source and module for optical communication
JPH06103778B2 (en) Optical device including semiconductor distributed feedback laser and method of driving the same
JPH0990301A (en) Mach-zehunder modulator and its driving method
US8805126B2 (en) Photonic modulator with forward-and reverse-biased diodes for separate tuning and modulating elements
JP3570735B2 (en) Optical waveguide device
US20020141027A1 (en) Variable pulse width optical pulse generation with superposed multiple frequency drive
JP3763803B2 (en) Optical transmitter
US6535316B1 (en) Generation of high-speed digital optical signals
JP2003348022A (en) Optical transmitter
JP3020645B2 (en) Optical semiconductor device
JP2000187191A (en) Mach-zehnder type modulating device having extremely high extinction ratio
JPH02167524A (en) Optical modulation device
JP2675033B2 (en) Distributed interferometric optical modulator
JPH03200923A (en) Optical modulator
JPH02170142A (en) Waveguide type optical control device and driving method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991221

LAPS Cancellation because of no payment of annual fees