JPH0434083Y2 - - Google Patents

Info

Publication number
JPH0434083Y2
JPH0434083Y2 JP16415285U JP16415285U JPH0434083Y2 JP H0434083 Y2 JPH0434083 Y2 JP H0434083Y2 JP 16415285 U JP16415285 U JP 16415285U JP 16415285 U JP16415285 U JP 16415285U JP H0434083 Y2 JPH0434083 Y2 JP H0434083Y2
Authority
JP
Japan
Prior art keywords
axle
spring
load
suspension system
spring constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16415285U
Other languages
Japanese (ja)
Other versions
JPS6272807U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16415285U priority Critical patent/JPH0434083Y2/ja
Publication of JPS6272807U publication Critical patent/JPS6272807U/ja
Application granted granted Critical
Publication of JPH0434083Y2 publication Critical patent/JPH0434083Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は前輪2軸および後輪1軸を有する前輪
2軸車の懸架装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a suspension system for a two-wheel front wheel vehicle having two front wheel axles and one rear wheel axle.

[従来技術] かかる懸架装置を有する車両はトラツク等にお
いて広く実施されており、例えば第4図に示すよ
うに車体1の前方にはキヤツプ2が設けられ、そ
の車体1の上部でキヤツプ2の後方には架装物3
が載置されている。そして車体1には操舵軸を有
する前前軸4および前後軸5と駆動輪を有する後
軸6とがそれぞれ懸架装置7,8,9を介して取
付けられている。通常前前軸4および前後軸5の
懸架装置7,8は同じばねが用いられており、そ
して後軸6は架装物3の重心位置Wに対して寸法
Lだけ後方に偏寄した位置に設けてある。また各
車軸4,5,6のタイヤの負荷率は例えば1:
1:2程度に設計されているので、積車時は前述
した重心Wの位置が適正であるけれども、空車時
は重心位置Wが図面より前方すなわちキヤブ2側
に移動するので、空車時には後軸6の荷重が非常
に軽くなり、雪道等では発進しにくく、またスリ
ツプが生じやすいという欠点があつた。
[Prior Art] Vehicles having such a suspension system are widely used in trucks and the like. For example, as shown in FIG. There is a mounting structure 3
is placed. A front axle 4 and a front axle 5 having steering shafts and a rear axle 6 having drive wheels are attached to the vehicle body 1 via suspension devices 7, 8, and 9, respectively. Normally, the same springs are used for the suspension devices 7 and 8 of the front and rear axles 4 and 5, and the rear axle 6 is located at a position offset rearward by a dimension L with respect to the center of gravity W of the bodywork 3. It is provided. Also, the load factor of the tires on each axle 4, 5, and 6 is, for example, 1:
Since it is designed to have a ratio of about 1:2, the position of the center of gravity W mentioned above is appropriate when the vehicle is loaded, but when the vehicle is empty, the center of gravity W moves forward in the drawing, that is, toward the cab 2 side, so when the vehicle is empty, the rear axle is The disadvantage was that the load on the 6 was very light, making it difficult to start on snowy roads, etc., and easily causing slips.

かかる欠点を克服するために、本出願人は実願
昭59−172384号において、前2軸4,5の懸架装
置であるばね7,8のばね常数を変え、前後軸の
ばね常数が前前軸はばね常数より軽負荷時に小さ
くした技術を提案した。
In order to overcome this drawback, the present applicant changed the spring constants of the springs 7 and 8, which are the suspension devices for the front two axles 4 and 5, in Utility Application No. 59-172384, so that the spring constants of the front and rear axles were changed from the front to the front. We proposed a technology in which the shaft is made smaller under light loads than the spring constant.

本考案者はさらに研究の結果、前記技術をさら
に改善できることを見出した。
As a result of further research, the present inventors have discovered that the technique can be further improved.

[考案の目的] したがつて本考案の目的は、空車時に前後軸の
荷重を軽くし、軽くなつた分を前前軸と後軸とに
分担できる前輪2軸車の懸架装置を提供するにあ
る。
[Purpose of the invention] Therefore, the purpose of the invention is to provide a suspension system for a two-wheel front axle vehicle that can reduce the load on the front and rear axles when the vehicle is empty and share the reduced load between the front and rear axles. be.

[考案の構成] 本考案による前輪2軸車の懸架装置によれば、
前前軸の懸架装置のばね常数が前後軸の懸架装置
のばね常数より小とし、かつ積載時に前前軸分担
荷重と前後軸分担荷重が実質的に同じになるよう
に前前軸のばねの撓み量を前後軸のそれよりも大
きくしてある。
[Configuration of the invention] According to the suspension system for a front two-axle vehicle according to the invention,
The spring constant of the suspension system for the front axle is smaller than the spring constant of the suspension system for the front and rear axles, and the spring constant for the front axle is set so that the shared load on the front axle and the shared load on the front axle are substantially the same during loading. The amount of deflection is made larger than that of the front and rear axes.

前前軸の懸架装置を構成するばねは、非線形と
し、空車時にそのばね常数が前後軸の懸架装置の
ばね常数より小さくすることもできる。
The spring constituting the suspension system for the front axle may be nonlinear, and its spring constant may be smaller than the spring constant of the suspension system for the front and rear axles when the vehicle is empty.

[考案の作用効果] 積車時には各車軸共に適正な荷重配分になつて
いるが、空車時になると、重心位置がキヤブ側
(前方)に移動し、前前軸および前後軸の荷重が
後軸に対して大きくなるが、前前軸、前後車両の
ばね撓み量の変化(減少)はほぼ同じである。前
前軸はばね定数が小さいため、軸荷重の減少量が
少なく、前後軸はばね定数が大きいため、軸荷重
の減少量が多い。その結果、空車時に前後軸の軸
荷重が少なくなる分だけ、前前軸および後軸が荷
重負担することになり、後軸の荷重が比較的に増
加する。それ故に空車時にスリツプ等が生じにく
くなる。
[Effects of the invention] When the vehicle is loaded, the load is distributed appropriately to each axle, but when the vehicle is empty, the center of gravity moves toward the cab (forward), and the loads from the front and rear axles are transferred to the rear axle. However, the change (decrease) in the amount of spring deflection of the front axle and the front and rear vehicles is almost the same. The front and rear axles have a small spring constant, so the amount of reduction in axial load is small, and the front and rear axles have a large spring constant, so the amount of reduction in axial load is large. As a result, the front axle and the rear axle bear the load to the extent that the axle load on the front and rear axles decreases when the vehicle is empty, and the load on the rear axle increases relatively. Therefore, slips and the like are less likely to occur when the vehicle is empty.

[実施例] 本考案の実施に際して、懸架装置としては、任
意の形式のものが実施でき、そのばね常数を前述
の如く特定すればその目的を達成できるものであ
るが、以下の説明では第4図に示した板ばね式の
懸架装置を例にとつて説明する。
[Example] When implementing the present invention, any type of suspension device can be used, and the purpose can be achieved by specifying the spring constant as described above. The explanation will be given by taking the leaf spring type suspension device shown in the figure as an example.

第1図は本考案を実施した前前軸および前後軸
の懸架装置を示し、第4図と同様に、車体1の前
方に設けられ、そして操舵できる前前軸4は、前
前車輪W1が回転自在に支承されている。この前
前軸は、懸架装置すなわち図示の例では板ばね7
を介して車体1に取付けられており、その板ばね
7の両端は公知の態様で支点S1,S2で車体1に支
持されている。また前前軸4の後方に設けられ、
そして操舵できる前後車輪W2を回転自在に支承
している前後軸5は、懸架装置すなわち図示の例
では板ばね8を介して車体1に取付けられてお
り、その板ばね8の両端はやはり公知の態様で支
点S3およびS4で車体1に支持されている。図中A
はシヨツクアブソーバである。
FIG. 1 shows a suspension system for a front front axle and a front and rear axle in which the present invention is implemented, and similarly to FIG . is rotatably supported. This front axle is connected to a suspension device, that is, a leaf spring 7 in the illustrated example.
The leaf spring 7 is attached to the vehicle body 1 via the following, and both ends of the leaf spring 7 are supported by the vehicle body 1 at fulcrums S 1 and S 2 in a known manner. Also provided at the rear of the front front shaft 4,
The front and rear axle 5, which rotatably supports the steerable front and rear wheels W2 , is attached to the vehicle body 1 via a suspension device, that is, in the illustrated example, a leaf spring 8, and both ends of the leaf spring 8 are known in the art. It is supported by the vehicle body 1 at fulcrums S 3 and S 4 in this manner. A in the diagram
is a shock absorber.

本考案に従つて、板ばね7のばね常数が板ばね
8のばね常数よりも小とし、かつ板ばね7の撓み
量を板ばね8の撓み量よりも大きくするために、
図示の実施例では、板ばね7を支持している支点
S1,S2間の長さL1が板ばね8を支持している支
点S3,S4間の長さL2よりも大きくしてある。
According to the present invention, in order to make the spring constant of the leaf spring 7 smaller than the spring constant of the leaf spring 8, and to make the amount of deflection of the leaf spring 7 larger than the amount of deflection of the leaf spring 8,
In the illustrated embodiment, the fulcrum supporting the leaf spring 7
The length L 1 between S 1 and S 2 is made larger than the length L 2 between the fulcrums S 3 and S 4 supporting the leaf spring 8.

第2図は前前軸に非線形の特性を有する板ばね
7aを用いた例である。図示の例では、板ばね7
aは4枚のリーフ要素a,b,c,dで構成さ
れ、上側の2枚リーフ要素a,bは一体的に構成
されているが、3枚目のリーフ要素cはその中心
部分のみがリーフ要素a,bと一体化され、した
がつて両端部分には間隙δが形成されている。4
枚目の一番下側のリーフ要素dはリーフ要素cと
一体化されているが、その長さはリーフ要素cよ
りも短い。したがつて空車時は実線で示すように
間隙eが形成されるが積載時には鎖線7bで示す
ようにリーフ要素a,bが撓み、リーフ要素bは
リーフ要素cと係合するようになり間隙eがなく
なる。以後はリーフ要素c,dが撓むので、この
ように間隙eがなくなつてからのばね常数は間隙
eがあるときのばね常数と異なり、非線形のばね
常数を得ることができる。
FIG. 2 shows an example in which a leaf spring 7a having nonlinear characteristics is used for the front shaft. In the illustrated example, the leaf spring 7
a is composed of four leaf elements a, b, c, and d, and the upper two leaf elements a and b are integrally constructed, but the third leaf element c only has its central part. It is integrated with the leaf elements a and b, and therefore a gap δ is formed at both end portions. 4
The leaf element d at the bottom of the second sheet is integrated with the leaf element c, but its length is shorter than the leaf element c. Therefore, when the car is empty, a gap e is formed as shown by the solid line, but when the car is loaded, the leaf elements a and b are bent as shown by the chain line 7b, and the leaf element b comes to engage with the leaf element c, resulting in a gap e. disappears. After that, the leaf elements c and d bend, so the spring constant after the gap e disappears is different from the spring constant when the gap e exists, and a nonlinear spring constant can be obtained.

第3図は本考案を実施した懸架装置の前前軸お
よび前後軸のばね常数を示す図であり、横軸にば
ねの撓み量δ(mm)、縦軸にばね荷重ρ(Kg)をと
つて示してある。図中直線Kaは前前軸のばね常
数を示す線であり、直線Kbは前後軸のばね常数
を示す線である。両直線Ka,Kbの交点Aは積車
時(定格)の場合であり、両ばねの荷重はP1
あり、前前軸の撓み量はδ1、前後軸の撓み量は
(δ1−δd)である。
Figure 3 is a diagram showing the spring constants of the front and rear axles of the suspension system in which the present invention has been implemented, with the horizontal axis representing the amount of spring deflection δ (mm) and the vertical axis representing the spring load ρ (Kg). It is shown. In the figure, straight line Ka is a line indicating the spring constant of the front-front axis, and straight line Kb is a line indicating the spring constant of the front-rear axis. The intersection point A of both straight lines Ka and Kb is when the vehicle is loaded (rated), the load on both springs is P 1 , the amount of deflection of the front axle is δ 1 , and the amount of deflection of the front and rear axle is (δ 1 − δd).

今、仮に従来技術の如く、前前軸および前後軸
のばね常数が等しく、第1図の直線Kaで示すも
のと仮定すると、空車時の前前軸の荷重はPb,
撓み量はδbであり、重心Wの移動によつて後軸
側が浮き加減となるので、前前軸が沈み加減、前
後軸が浮き加減となり、前後軸の撓み量は小さく
なる。したがつて前後軸の荷重はP2、撓み量は
δcとなる。
Now, assuming that, as in the prior art, the spring constants of the front axle and the front and rear axles are equal and are shown by the straight line Ka in Fig. 1, the load on the front axle when the vehicle is empty is Pb,
The amount of deflection is δb, and the movement of the center of gravity W causes the rear axle to float more or less, so the front and rear axles sink more and more and the front and rear axes float more or less, and the amount of deflection of the front and rear axes becomes smaller. Therefore, the load on the front and rear axes is P 2 and the amount of deflection is δc.

しかるに本考案によれば、前前軸の懸架装置の
ばね常数が前後軸の懸架装置のばね常数より小さ
いので、すなわち直線Kaのタンジエントが直線
Kbのタンジエントより小さい(Kaの方がKbよ
り寝ている)ので、空車時における前前軸のばね
荷重Paは従来例Pbに比して若干大きく、また前
後軸のばね荷重Pcは従来例P2に比してかなり低
い所にくる。すなわち直線Kbが直線Kaの下側に
くるので、前後軸のばね荷重Pcはかなり低い。
However, according to the present invention, the spring constant of the front axle suspension is smaller than the spring constant of the front and rear axle suspensions, that is, the tangent of the straight line Ka is
Since the tangent of Kb is smaller (Ka is smaller than Kb), the spring load Pa on the front axle when the car is empty is slightly larger than the conventional example Pb, and the spring load Pc on the front and rear axles is slightly larger than the conventional example P. It comes at a much lower place than 2 . In other words, since the straight line Kb is below the straight line Ka, the spring load Pc on the front and rear axes is quite low.

したがつてこの前後軸の荷重の低下分すなわち
(P2−Pc)の値は前前軸の増加分(Pa−Pb)の
値より大きいので、後軸には(P2−Pc)−(Pa−
Pb)が印加されるのである。別の表現を用いる
と、前後軸のばね荷重の減少分の一部が前前軸お
よび後軸で受け持たれるので、後軸のばね荷重が
比較的に増加し、スリツプ等を防止できる。
Therefore, since the value of the decrease in the load on the front-rear axis (P 2 - Pc) is greater than the increase in the load on the front-rear axis (Pa - Pb), the value of (P 2 - Pc) - ( Pa-
Pb) is applied. In other words, a portion of the decrease in the spring load on the front and rear axles is borne by the front and rear axles, so the spring load on the rear axle is relatively increased, and slips and the like can be prevented.

第3図において、折線Kcは前前軸の懸架装置
のばね常数を非線形とした例である。この例では
折線Kcは点xの所で直線Kbと一致し、それによ
りばね荷重の小さい所ではばね常数が小さく(タ
ンジエントが小)なつている。この場合空車時に
前前軸のばね荷重がPfであり、前後軸のばね荷
重がPdであり、前述した所と同様に後軸の荷重
を増加させることができる。
In FIG. 3, the broken line Kc is an example in which the spring constant of the front axle suspension is non-linear. In this example, the broken line Kc coincides with the straight line Kb at the point x, so that the spring constant is small (the tangent is small) where the spring load is small. In this case, when the vehicle is empty, the spring load on the front axle is Pf, the spring load on the front and rear axles is Pd, and the load on the rear axle can be increased in the same way as described above.

[まとめ] 以上の如く、本考案によれば、積車時におい
て、前前軸と前後軸の軸荷重を同じとし、空車時
において前前軸のばね常数が前後軸のばね常数よ
りも小としたので、空車時において重心がキヤブ
側に移動しても前後軸の荷重を前前軸と後軸とに
分担させることができ、後軸はその分担した荷重
分だけ従来例に比して荷重が増すので、スリツプ
等を防止できる。
[Summary] As described above, according to the present invention, when the vehicle is loaded, the axle loads on the front axle and the front and rear axles are the same, and when the vehicle is empty, the spring constant of the front axle is smaller than the spring constant of the front and rear axles. Therefore, even if the center of gravity moves toward the cab when the vehicle is empty, the load on the front and rear axles can be shared between the front axle and the rear axle, and the rear axle has a reduced load compared to the conventional model by the amount of the shared load. Since this increases, slips and the like can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案を実施した前前軸および前後軸
の一例を示す側面図、第2図は非線形のばね常数
を有する板ばねの一例を示す側面図、第3図は本
考案を実施した懸架装置のばね常数の2例を示す
図、第4図は本考案を適用する前輪2軸車の側面
図である。 1……車体、4……前前軸、5……前後軸、6
……後軸、7.8,9……懸架装置、Ka,Kc…
…前前軸のばね特性、Kb……前後軸のばね特性。
Fig. 1 is a side view showing an example of a front-front axis and anteroposterior axis in which the present invention is implemented, Fig. 2 is a side view showing an example of a leaf spring having a nonlinear spring constant, and Fig. 3 is a side view showing an example of a leaf spring with a nonlinear spring constant. FIG. 4 is a side view of a front wheel two-axle vehicle to which the present invention is applied. 1...Vehicle body, 4...Front front axle, 5...Front and rear axle, 6
... Rear axle, 7.8, 9 ... Suspension system, Ka, Kc...
...Spring characteristics of the front and rear axles, Kb...Spring characteristics of the front and rear axles.

Claims (1)

【実用新案登録請求の範囲】 (1) 前輪2軸および後輪1軸を有する前輪2軸車
の懸架装置において、前前軸の懸架装置のばね
常数を前後軸の懸架装置のばね常数より小と
し、かつ積載時に前前軸分担荷重と前後軸分担
荷重が実質的に同じになるように前前軸のばね
の撓み量を前後軸より大きくしたことを特徴と
する前輪2軸車の懸架装置。 (2) 前前軸の懸架装置が非線形特性を有し、空車
時に前前軸の懸架装置のばね常数が前後軸の懸
架装置のばね常数より小である実用新案登録請
求の範囲第1項記載の前輪2軸車の懸架装置。
[Scope of Claim for Utility Model Registration] (1) In a suspension system for a two-axle front vehicle having two axles for the front wheels and one axle for the rear wheels, the spring constant of the suspension system for the front axle is smaller than the spring constant for the suspension system for the front and rear axles. A suspension system for a two-axle front wheel vehicle, characterized in that the amount of deflection of the spring on the front axle is greater than that on the front and rear axles so that the load shared by the front axle and the load shared by the front and rear axles are substantially the same when loaded. . (2) Claim 1 of the Utility Model Registration Claim in which the suspension system for the front axle has non-linear characteristics and the spring constant of the suspension system for the front axle is smaller than the spring constant for the suspension system for the front axle when the vehicle is empty. Suspension system for front two-axle vehicles.
JP16415285U 1985-10-28 1985-10-28 Expired JPH0434083Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16415285U JPH0434083Y2 (en) 1985-10-28 1985-10-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16415285U JPH0434083Y2 (en) 1985-10-28 1985-10-28

Publications (2)

Publication Number Publication Date
JPS6272807U JPS6272807U (en) 1987-05-09
JPH0434083Y2 true JPH0434083Y2 (en) 1992-08-14

Family

ID=31093005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16415285U Expired JPH0434083Y2 (en) 1985-10-28 1985-10-28

Country Status (1)

Country Link
JP (1) JPH0434083Y2 (en)

Also Published As

Publication number Publication date
JPS6272807U (en) 1987-05-09

Similar Documents

Publication Publication Date Title
US4029335A (en) Fifth wheels for truck tractors
US3630303A (en) Front suspension for a front drive vehicle
JPS6226921B2 (en)
US4282945A (en) Suspension modifying device for leaf spring suspensions
US4817986A (en) Vehicle body assembly used in common for two-wheel-and four-wheel-steering vehicles
US4421332A (en) Individual wheel suspension for non-steered wheels of motor vehicles, especially automobiles
US3177965A (en) Link type independent wheel suspension for vehicles
US2242030A (en) Vehicle suspension
JPH0434083Y2 (en)
JPS5876315A (en) Strut type suspension for car
US4585088A (en) Articulated road vehicle with engine spaced rearwardly of driven wheels
JPH11151922A (en) Suspension device for axle
KR100316892B1 (en) Lower control arm of suspension system for vehicle
WO2023039927A1 (en) Rear independent suspension system having two-stage stiffness
KR890007804Y1 (en) Front wheel arrangement device for a vehicle
JPS5831685Y2 (en) Tandem suspension system using asymmetric leaf springs
US3920261A (en) Torsion bar steerable bogie suspension
JPS6243842Y2 (en)
JP3064825B2 (en) Suspension of twin axle
JPS5913130Y2 (en) Tandem axle suspension using asymmetric equalizer and leaf spring
JPH058165Y2 (en)
JPH0224209A (en) Rear suspension device
KR100410749B1 (en) a leaf spring mounting structure of large truck
US1684041A (en) Vehicle-spring construction
JPS6154605B2 (en)