JPH04340270A - Semiconductor memory and manufacture thereof - Google Patents

Semiconductor memory and manufacture thereof

Info

Publication number
JPH04340270A
JPH04340270A JP3016172A JP1617291A JPH04340270A JP H04340270 A JPH04340270 A JP H04340270A JP 3016172 A JP3016172 A JP 3016172A JP 1617291 A JP1617291 A JP 1617291A JP H04340270 A JPH04340270 A JP H04340270A
Authority
JP
Japan
Prior art keywords
insulating film
silicon oxide
layer electrode
electrode
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3016172A
Other languages
Japanese (ja)
Other versions
JP3134319B2 (en
Inventor
Toshiyuki Ishijima
石嶋 俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP03016172A priority Critical patent/JP3134319B2/en
Publication of JPH04340270A publication Critical patent/JPH04340270A/en
Application granted granted Critical
Publication of JP3134319B2 publication Critical patent/JP3134319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To make the title memory suitable for a high integration by providing a stacked capacity including the following: a lower-layer electrode on which a definite undulation has been formed on its side face; a capacity insulating film which is formed on the lower-layer electrode and whose thickness is nearly definite; and an upper-layer electrode formed on the capacity insulating film. CONSTITUTION:A definite undulation is formed on the side face of a lower-layer electrode 6 for a stacked capacity in a 1T1C memory cell. Thereby, the surface area of the lower-layer electrode is increased and a storage capacity is increased. A capacity insulating film 7 is formed in such a way that its thickness is nearly uniform it is formed along the surface of the lowerlayer electrode. A silicon oxide film 2 is formed in an element isolation region on p-type single- crystal silicon 1; an n-type source-drain region 3 is formed. After that, a silicon oxide film is deposited as a first insulating film 4 and a silicon oxide film is deposited as a second insulating film 5 on the whole surface. After that, phosphorus-doped silicon oxide films as third insulating films and undoped oxide films as fourth insulating films are deposited alternately. The lowerlayer electrode 6 is formed in a self-aligned manner with a contact hole and is favorable for the high integration of the title memory.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体メモリおよびその
製造方法に関し、特に積層容量の下層電極形状およびそ
の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory and a method of manufacturing the same, and more particularly to a shape of a lower electrode of a stacked capacitor and a method of forming the same.

【0002】0002

【従来の技術】電荷の形で二進情報を貯蔵する半導体メ
モリはセル面積が小さいため、高集積、大容量、メモリ
セルとして優れている。特にメモリセルとして一つのト
ランジスタと一つの容量とからなるメモリセル(以下1
T1Cセルと略す)は、構成要素も少なく、セル面積も
小さいため高集積用メモリセルとして重要である。とこ
ろでメモリの高集積化によるメモリセルサイズの縮小に
伴い、1T1Cセル構造における容量部面積が減少して
きている。そして容量部面積の減少による記憶電荷量の
減少は、耐α粒子問題、センス増幅器の感度の劣化を引
起こす。
2. Description of the Related Art Semiconductor memories that store binary information in the form of charges have a small cell area, so they are highly integrated, have a large capacity, and are excellent as memory cells. In particular, a memory cell (hereinafter referred to as ``1'') consisting of one transistor and one capacitor is used as a memory cell.
The T1C cell (abbreviated as T1C cell) is important as a highly integrated memory cell because it has a small number of components and a small cell area. By the way, as the memory cell size is reduced due to higher integration of memories, the area of the capacitor part in the 1T1C cell structure is reduced. A decrease in the amount of storage charge due to a decrease in the area of the capacitor section causes problems with respect to alpha particles and deterioration of the sensitivity of the sense amplifier.

【0003】従来、このような問題を解決するため、メ
モリセル面積の縮小にも拘らず大きな記憶容量部を形成
する方法が知られている。たとえば1988年の国際固
体素子会議(インタナショナル・エレクトロン・デバイ
シス・ミーティング(International  
Electron  Devices  Meetin
g))の論文集,第596頁から第599頁に「ア・ニ
ュー・スタックト・キャパシタ・DRAMセル・キャラ
クタライズド・バイ・ア・ストレージ・キャパシタ・オ
ン・ア・ビット・ライン・ストラクチャ(A  New
  Stacked  Capacitor  DRA
M  Cell  Charactarisedby 
 aStorage  Capacitor  On 
 a  Bit−line  Structure)」
と題して発表された論文においては、図6に示したごと
く、1T1Cセルの容量部をビット線上に形成して容量
部平面積を最大限に活用したものが示されている。図6
では6が下層電極(電荷蓄積電極)、7が容量絶縁膜、
8が上層電極(対向電極)、14がビット線、15がワ
ード線をそれぞれ示している。
Conventionally, in order to solve this problem, a method has been known in which a large storage capacity section is formed despite the reduction in memory cell area. For example, the 1988 International Solid State Devices Meeting (International Electron Devices Meeting)
Electron Devices Meetin
g)), pp. 596-599, ``A New Stacked Capacitor DRAM Cell Characterized by a Storage Capacitor on a Bit Line Structure (A New
Stacked Capacitor DRA
M Cell Characterized by
aStorage Capacitor On
a Bit-line Structure)
In the paper published under the title, as shown in FIG. 6, a 1T1C cell capacitor section is formed on a bit line to maximize the planar area of the capacitor section. Figure 6
6 is the lower layer electrode (charge storage electrode), 7 is the capacitive insulating film,
Reference numeral 8 indicates an upper layer electrode (counter electrode), 14 indicates a bit line, and 15 indicates a word line.

【0004】0004

【発明が解決しようとする課題】しかしながら、メモリ
セル面積の縮小に伴いこの様な従来構造では下層電極の
表面積増加にも限界があり、表面積の増加を達成するた
めには下層電極の膜厚を厚くしなければならない。下層
電極膜厚の増加は表面段差の増加をもたらす。そしてこ
の表面段差の増加はリソグラフィ技術をもちいたパター
ン形状転写時に大きな問題となっている。
[Problems to be Solved by the Invention] However, as the memory cell area decreases, there is a limit to increasing the surface area of the lower electrode in such a conventional structure, and in order to increase the surface area, it is necessary to increase the film thickness of the lower electrode. It has to be thick. An increase in the thickness of the lower electrode results in an increase in surface steps. This increase in surface level difference is a major problem when transferring pattern shapes using lithography technology.

【0005】本発明の目的は、この様な問題点を除去し
て、高集積化に適した半導体メモリの積層容量構造にお
ける下層電極構造およびその製造方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate such problems and provide a lower electrode structure in a stacked capacitor structure of a semiconductor memory suitable for high integration, and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明の半導体メモリは
、側面に一定のうねりを設けた下層電極と、前記下層電
極上に設けられた厚さがほぼ一定の容量絶縁膜と、前記
容量絶縁膜上に設けられた上層電極とを含む積層容量を
備えているというものである。
[Means for Solving the Problems] A semiconductor memory of the present invention includes a lower layer electrode having a certain undulation on its side surface, a capacitive insulating film having a substantially constant thickness provided on the lower layer electrode, and a capacitive insulating film provided on the lower layer electrode with a substantially constant thickness. It is equipped with a laminated capacitor including an upper layer electrode provided on the film.

【0007】又、本発明の半導体メモリの製造方法は、
半導体チップ上に第1の絶縁膜ないし第4の絶縁膜を堆
積する工程と、非選択性のエッチング方法により前記第
1の絶縁膜ないし第4の絶縁膜を貫通して下層の導電領
域に達するコンタクト孔を形成する工程と、前記第3の
絶縁膜に対して選択性のあるエッチングを行なって前記
コンタクト孔側面にうねりを設ける工程と、前記コンタ
クト孔を導体で埋める工程と、前記第3の絶縁膜および
第4の絶縁膜を除去して側面に一定のうねりのある積層
容量の下層電極を形成する工程とを含むというものであ
る。
[0007] Furthermore, the method for manufacturing a semiconductor memory of the present invention includes:
Depositing a first insulating film to a fourth insulating film on a semiconductor chip, and penetrating the first to fourth insulating film to reach an underlying conductive region using a non-selective etching method. a step of forming a contact hole; a step of selectively etching the third insulating film to provide undulations on the side surface of the contact hole; a step of filling the contact hole with a conductor; The method includes a step of removing the insulating film and the fourth insulating film to form a lower layer electrode of a laminated capacitor having a certain undulation on the side surface.

【0008】[0008]

【実施例】以下本発明の実施例について図面を参照して
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の一実施例を示す模式的断面
図である。
FIG. 1 is a schematic cross-sectional view showing one embodiment of the present invention.

【0010】この実施例では、1T1Cメモリセルの積
層容量の下層電極6の側面に一定のうねりを設けること
により、下層電極の表面積を増加させ蓄積容量を増加さ
せることができる。1はシリコン基板、2は素子分離酸
化膜、3は高濃度n型拡散層、4は第1の絶縁膜(酸化
シリコン膜)、5は第2の絶縁膜(窒化シリコン膜)、
6は一定のうねりを有した下層電極、7は容量絶縁膜、
8は対向電極(上層電極)を各々示している。
In this embodiment, by providing a certain undulation on the side surface of the lower electrode 6 of the laminated capacitor of the 1T1C memory cell, the surface area of the lower electrode can be increased and the storage capacitance can be increased. 1 is a silicon substrate, 2 is an element isolation oxide film, 3 is a high concentration n-type diffusion layer, 4 is a first insulating film (silicon oxide film), 5 is a second insulating film (silicon nitride film),
6 is a lower layer electrode having a certain undulation; 7 is a capacitive insulating film;
8 indicates a counter electrode (upper layer electrode).

【0011】又、容量絶縁膜7は厚さがほぼ均一で下層
電極の表面のうねりに沿って設けられている。
The capacitor insulating film 7 has a substantially uniform thickness and is provided along the undulations of the surface of the lower electrode.

【0012】図2〜図5は本発明の半導体メモリ製造方
法を説明するため工程順に示した断面図である。
FIGS. 2 to 5 are cross-sectional views shown in order of steps for explaining the semiconductor memory manufacturing method of the present invention.

【0013】まず、図2に示すように、p型単結晶のシ
リコン1上の素子分離領域に酸化シリコン膜2を設け、
n型ソース・ドレイン領域3を設けた後、全面に第1の
絶縁膜4として酸化シリコン膜、第2の絶縁膜5として
窒化シリコン膜を堆積し、その後第3の絶縁膜としてリ
ンドープ酸化シリコン膜9−1,9−2,9−3と第4
の絶縁膜としてノンドープ酸化膜10−1,10−2,
10−3をそれぞれ厚さ10〜100nmずつ交互に堆
積する。
First, as shown in FIG. 2, a silicon oxide film 2 is provided in an element isolation region on p-type single crystal silicon 1.
After providing the n-type source/drain regions 3, a silicon oxide film is deposited as the first insulating film 4, a silicon nitride film is deposited as the second insulating film 5, and then a phosphorus-doped silicon oxide film is deposited as the third insulating film. 9-1, 9-2, 9-3 and 4th
Non-doped oxide films 10-1, 10-2,
10-3 are alternately deposited to a thickness of 10 to 100 nm.

【0014】次に、図3に示すように、n型ソース・ド
レイン領域3上の一部を除いて全面を覆うレジスト膜1
1を形成した後、このレジスト膜11をエッチングマス
クとし反応性スパッタエッチング技術を用いて第4の絶
縁膜ないし第1の絶縁膜および酸化シリコン膜2をエッ
チング除去しコンタクト孔12を開孔する。
Next, as shown in FIG. 3, a resist film 1 is formed that covers the entire surface except for a portion above the n-type source/drain region 3.
1 is formed, the fourth insulating film or the first insulating film and the silicon oxide film 2 are etched away using the resist film 11 as an etching mask using a reactive sputter etching technique to open a contact hole 12.

【0015】次に、図4に示すように、レジスト膜11
を除去した後希フッ酸を用いてコンタクト内をエッチン
グし、さらにリンドープポリシリコンなどの導体13を
コンタクト内に埋める。希フッ酸を用いてコンタクト孔
内をエッチングすると、リンドープ酸化シリコン膜9−
1,9−2,9−3とノンドープ酸化シリコン膜10−
1,10−2,10−3のエッチングレートが異なるた
め、コンタクト孔内の側壁に凹凸ができる。リンドープ
酸化シリコン膜厚とノンドープ酸化シリコン膜厚との比
および希フッ酸によるエッチング時間によりコンタクト
内の側壁のうねりの大きさを制御することができる。例
えば4〜5モル%のリンを含有するリンドープ酸化シリ
コン膜の場合0.5%の希フッ酸を用いることにより1
0〜100nm程度の凹凸をつけることができる。
Next, as shown in FIG. 4, the resist film 11 is
After removing the contact, the inside of the contact is etched using dilute hydrofluoric acid, and a conductor 13 such as phosphorus-doped polysilicon is buried inside the contact. When the inside of the contact hole is etched using dilute hydrofluoric acid, the phosphorus-doped silicon oxide film 9-
1, 9-2, 9-3 and non-doped silicon oxide film 10-
Since the etching rates of 1, 10-2, and 10-3 are different, unevenness is formed on the side wall inside the contact hole. The size of the waviness of the sidewall in the contact can be controlled by the ratio of the phosphorus-doped silicon oxide film thickness to the non-doped silicon oxide film thickness and the etching time with dilute hydrofluoric acid. For example, in the case of a phosphorus-doped silicon oxide film containing 4 to 5 mol% of phosphorus, by using 0.5% of dilute hydrofluoric acid,
It is possible to form irregularities of about 0 to 100 nm.

【0016】次に、図4に示すように、導体13を反応
性スパッタエッチング技術を用いてエッチバックしコン
タクト孔内にのみ導体13aとして残した後、窒化シリ
コン膜(5)をエッチングマスクとしてリンドープ酸化
シリコン膜9−1〜9−3およびノンドープ酸化シリコ
ン膜10−1〜10−3をエッチング除去する。
Next, as shown in FIG. 4, the conductor 13 is etched back using a reactive sputter etching technique, leaving only the conductor 13a in the contact hole, and then phosphorus doped with the silicon nitride film (5) as an etching mask. The silicon oxide films 9-1 to 9-3 and the non-doped silicon oxide films 10-1 to 10-3 are removed by etching.

【0017】次に、図1に示すように、熱酸化又はCV
D法により酸化シリコンなどの容量絶縁膜7および上層
配線8(対向電極)を形成して積層容量部を形成する。 容量絶縁膜7の厚さは酸化シリコン膜換算で4〜6nm
にする。
Next, as shown in FIG. 1, thermal oxidation or CV
A capacitor insulating film 7 made of silicon oxide or the like and an upper layer wiring 8 (counter electrode) are formed by method D to form a laminated capacitor section. The thickness of the capacitor insulating film 7 is 4 to 6 nm in terms of silicon oxide film.
Make it.

【0018】以上の説明から明らかなように、下層電極
はコンタクト孔と自己整合的に形成されるので、高集積
化に有利である。
As is clear from the above description, the lower electrode is formed in self-alignment with the contact hole, which is advantageous for high integration.

【0019】[0019]

【発明の効果】本発明によれば、下層電極の側面に一定
のうねりを設けることにより下層電極の表面積を大きく
確保することが可能となり、微細な下層電極においても
大きな蓄積容量を容易に得ることができる。従って半導
体メモリの高集積化に寄与する効果がある。
[Effects of the Invention] According to the present invention, by providing a certain undulation on the side surface of the lower electrode, it is possible to secure a large surface area of the lower electrode, and it is possible to easily obtain a large storage capacity even in a fine lower electrode. Can be done. Therefore, it has the effect of contributing to higher integration of semiconductor memories.

【0020】[0020]

【図面な簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の半導体メモリセルの積層容
量を示す断面図である。
FIG. 1 is a cross-sectional view showing a stacked capacitance of a semiconductor memory cell according to an embodiment of the present invention.

【0021】[0021]

【図2】本発明の一実施例の製造方法を説明するための
断面図である。
FIG. 2 is a cross-sectional view for explaining a manufacturing method according to an embodiment of the present invention.

【0022】[0022]

【図3】本発明の一実施例の製造方法を説明するための
断面図である。
FIG. 3 is a cross-sectional view for explaining a manufacturing method according to an embodiment of the present invention.

【0023】[0023]

【図4】本発明の一実施例の製造方法を説明するための
断面図である。
FIG. 4 is a cross-sectional view for explaining a manufacturing method according to an embodiment of the present invention.

【0024】[0024]

【図5】本発明の一実施例の製造方法を説明するための
断面図である。
FIG. 5 is a cross-sectional view for explaining a manufacturing method according to an embodiment of the present invention.

【0025】[0025]

【図6】従来の半導体メモリセルの積層容量を示す断面
図である。
FIG. 6 is a cross-sectional view showing a stacked capacitance of a conventional semiconductor memory cell.

【0026】[0026]

【符号の説明】[Explanation of symbols]

1    p型のシリコン基板 2    酸化シリコン膜 3    n型ソース・ドレイン領域 4    酸化シリコン膜(第1の絶縁膜)5    
窒化シリコン膜(第2の絶縁膜)6    下層電極 7    容量絶縁膜 8    上層電極 9−1,9−2,9−3    リンドープ酸化シリコ
ン膜(第3の絶縁膜) 10−1,10−2,10−3    ノンドープ酸化
シリコン膜(第4の絶縁膜) 11    レジスト膜 12    コンタクト孔 13,13a    導体 14    ビット線 15    ワード線 16,17    酸化シリコン膜
1 P-type silicon substrate 2 Silicon oxide film 3 N-type source/drain region 4 Silicon oxide film (first insulating film) 5
Silicon nitride film (second insulating film) 6 Lower electrode 7 Capacitive insulating film 8 Upper electrode 9-1, 9-2, 9-3 Phosphorus-doped silicon oxide film (third insulating film) 10-1, 10-2, 10-3 Non-doped silicon oxide film (fourth insulating film) 11 Resist film 12 Contact holes 13, 13a Conductor 14 Bit line 15 Word line 16, 17 Silicon oxide film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  側面に一定のうねりを設けた下層電極
と、前記下層電極上に設けられた厚さがほぼ一定の容量
絶縁膜と、前記容量絶縁膜上に設けられた上層電極とを
含む積層容量を備えていることを特徴とする半導体メモ
リ。
1. A lower layer electrode having a certain undulation on a side surface, a capacitive insulating film with a substantially constant thickness provided on the lower layer electrode, and an upper layer electrode provided on the capacitive insulating film. A semiconductor memory characterized by having a stacked capacitor.
【請求項2】  半導体チップ上に第1の絶縁膜ないし
第4の絶縁膜を堆積する工程と、非選択性のエッチング
方法により前記第1の絶縁膜ないし第4の絶縁膜を貫通
して下層の導電領域に達するコンタクト孔を形成する工
程と、前記第3の絶縁膜に対して選択性のあるエッチン
グを行なって前記コンタクト孔側面にうねりを設ける工
程と、前記コンタクト孔を導体で埋める工程と、前記第
3の絶縁膜および第4の絶縁膜を除去して側面に一定の
うねりのある積層容量の下層電極を形成する工程とを含
むことを特徴とする半導体メモリの製造方法。
2. A step of depositing a first insulating film to a fourth insulating film on a semiconductor chip, and a non-selective etching method to penetrate the first insulating film to the fourth insulating film to remove the lower layer. a step of forming a contact hole reaching a conductive region of the third insulating film, a step of selectively etching the third insulating film to form undulations on a side surface of the contact hole, and a step of filling the contact hole with a conductor. . A method of manufacturing a semiconductor memory, comprising the steps of: removing the third insulating film and the fourth insulating film to form a lower electrode of a laminated capacitor having a certain undulation on the side surface.
JP03016172A 1991-02-07 1991-02-07 Method for manufacturing semiconductor memory Expired - Fee Related JP3134319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03016172A JP3134319B2 (en) 1991-02-07 1991-02-07 Method for manufacturing semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03016172A JP3134319B2 (en) 1991-02-07 1991-02-07 Method for manufacturing semiconductor memory

Publications (2)

Publication Number Publication Date
JPH04340270A true JPH04340270A (en) 1992-11-26
JP3134319B2 JP3134319B2 (en) 2001-02-13

Family

ID=11909093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03016172A Expired - Fee Related JP3134319B2 (en) 1991-02-07 1991-02-07 Method for manufacturing semiconductor memory

Country Status (1)

Country Link
JP (1) JP3134319B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196649A (en) * 1992-12-08 1994-07-15 Nec Corp Manufacture of semiconductor device
JPH06326267A (en) * 1993-04-14 1994-11-25 Hyundai Electron Ind Co Ltd Stack capacitor and preparation thereof
JPH09326476A (en) * 1996-05-29 1997-12-16 Taiwan Moshii Denshi Kofun Yugenkoshi Method for forming memory using spacer of corrugated oxide layer
JPH10112529A (en) * 1996-10-03 1998-04-28 Taiwan Moshii Denshi Kofun Yugenkoshi Manufacture of high density stack dram
JPH10125870A (en) * 1996-10-11 1998-05-15 Taiwan Moshii Denshi Kofun Yugenkoshi Manufacture of stacked dram
KR100507865B1 (en) * 2000-08-31 2005-08-18 주식회사 하이닉스반도체 Method for manufacturing capacitor in semiconductor device
US8076198B2 (en) 2009-01-14 2011-12-13 Samsung Electronics Co., Ltd. Method of fabricating nonvolatile memory device
CN111512442A (en) * 2018-09-26 2020-08-07 桑迪士克科技有限责任公司 Three-dimensional flat NAND memory device including wavy word lines and method of fabricating the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196649A (en) * 1992-12-08 1994-07-15 Nec Corp Manufacture of semiconductor device
JPH06326267A (en) * 1993-04-14 1994-11-25 Hyundai Electron Ind Co Ltd Stack capacitor and preparation thereof
JPH09326476A (en) * 1996-05-29 1997-12-16 Taiwan Moshii Denshi Kofun Yugenkoshi Method for forming memory using spacer of corrugated oxide layer
JPH10112529A (en) * 1996-10-03 1998-04-28 Taiwan Moshii Denshi Kofun Yugenkoshi Manufacture of high density stack dram
JPH10125870A (en) * 1996-10-11 1998-05-15 Taiwan Moshii Denshi Kofun Yugenkoshi Manufacture of stacked dram
KR100507865B1 (en) * 2000-08-31 2005-08-18 주식회사 하이닉스반도체 Method for manufacturing capacitor in semiconductor device
US8076198B2 (en) 2009-01-14 2011-12-13 Samsung Electronics Co., Ltd. Method of fabricating nonvolatile memory device
CN111512442A (en) * 2018-09-26 2020-08-07 桑迪士克科技有限责任公司 Three-dimensional flat NAND memory device including wavy word lines and method of fabricating the same
CN111512442B (en) * 2018-09-26 2023-09-01 桑迪士克科技有限责任公司 Three-dimensional flat NAND memory device including wavy word lines and method of fabricating the same

Also Published As

Publication number Publication date
JP3134319B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
US5302540A (en) Method of making capacitor
US6373091B2 (en) Vertical DRAM cell with TFT over trench capacitor
US6756266B2 (en) Capacitor array structure for semiconductor devices
US5523542A (en) Method for making dynamic random access memory cell capacitor
JPH08330545A (en) Dram cell device and manufacture of the dram cell device
JP3222944B2 (en) Method for manufacturing capacitor of DRAM cell
EP0821412B1 (en) Hemispherical-grained silicon top-gate electrode for improved soft-error immunity in SRAMs
JP2930110B2 (en) Semiconductor memory device and method of manufacturing the same
KR960003773B1 (en) Manufacture of dram cell
JP2741672B2 (en) Method of manufacturing capacitor for stacked DRAM cell
JP3134319B2 (en) Method for manufacturing semiconductor memory
JPH0642534B2 (en) Method of forming a contact on a wall extending to a substrate
US5484744A (en) Method for fabricating a stacked capacitor for dynamic random access memory cell
US6566227B2 (en) Strap resistance using selective oxidation to cap DT poly before STI etch
US6822301B2 (en) Maskless middle-of-line liner deposition
US5879988A (en) Capacitor of a DRAM cell and method of making same
US6232240B1 (en) Method for fabricating a capacitor
JP3177038B2 (en) Semiconductor memory device and method of manufacturing the same
JP3489090B2 (en) Semiconductor device and manufacturing method thereof
JP3048417B2 (en) Method for manufacturing semiconductor device
JP2841057B2 (en) Method for manufacturing capacitor of DRAM cell
JP3082691B2 (en) Semiconductor device and manufacturing method thereof
JP2950550B2 (en) Method for manufacturing semiconductor memory device
JPH08288472A (en) Semiconductor memory cell and its manufacture
JPS6156449A (en) Semiconductor memory device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees