JPH04339841A - Filler for resin, and resin composition - Google Patents

Filler for resin, and resin composition

Info

Publication number
JPH04339841A
JPH04339841A JP9960291A JP9960291A JPH04339841A JP H04339841 A JPH04339841 A JP H04339841A JP 9960291 A JP9960291 A JP 9960291A JP 9960291 A JP9960291 A JP 9960291A JP H04339841 A JPH04339841 A JP H04339841A
Authority
JP
Japan
Prior art keywords
resin
filler
combustion ash
combustion
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9960291A
Other languages
Japanese (ja)
Other versions
JP2678831B2 (en
Inventor
Motohiro Kondo
元博 近藤
Kazuo Ikeda
池田 和郎
Takamune Suzuki
隆領 鈴木
Kanji Oyama
大山 寛治
Masanori Irie
入江 正典
Masanori Kato
正徳 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Kojima Industries Corp
Howa Co Ltd
Original Assignee
Kojima Press Industry Co Ltd
Howa Textile Industry Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojima Press Industry Co Ltd, Howa Textile Industry Co Ltd, Toyota Motor Corp filed Critical Kojima Press Industry Co Ltd
Priority to JP3099602A priority Critical patent/JP2678831B2/en
Publication of JPH04339841A publication Critical patent/JPH04339841A/en
Application granted granted Critical
Publication of JP2678831B2 publication Critical patent/JP2678831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a filler which, when compounded into a resin, gives a compsn. moldable into an article excellent in impact strength, heat resistance, etc., by selecting a specific combustion ash as the filler. CONSTITUTION:A combustion ash which is discharged, e.g. during combustion of a combustible material contg. lime (e.g. a combustible waste) in a fluidized- bed boiler at a relatively low temp., mainly comprises SiO2 and Al2O3, and has a wt. average particle size of 1-20mum and a specific surface area of 9X10<3>cm<2>/g or higher is selected.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は樹脂の増量材として有用
な樹脂用充填剤およびその充填剤を含む樹脂組成物に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fillers for resins useful as extenders for resins and resin compositions containing the fillers.

【0002】0002

【従来の技術】従来、樹脂に弾性率の大きい各種の無機
微粒子を充填することにより、弾性率、耐クリ−プ性、
圧縮強さ、熱変形温度などの力学的性質を顕著に向上さ
せることができることが知られている。たとえば、炭酸
カルシウム、硫酸カルシウム、タルク、クレ−などの低
価格の充填剤は、剛性および耐熱性を向上できるので樹
脂類に添加されて使用されている。しかしこれらの充填
剤の添加により樹脂は熱変形温度や硬度および経済性を
高めることができるが、破断伸びおよび衝撃強さなどが
低下する傾向がある。
[Prior Art] Conventionally, by filling resin with various inorganic fine particles having a high elastic modulus, the elastic modulus, creep resistance,
It is known that mechanical properties such as compressive strength and heat distortion temperature can be significantly improved. For example, low-cost fillers such as calcium carbonate, calcium sulfate, talc, and clay are added to resins because they can improve rigidity and heat resistance. However, although the addition of these fillers can increase the heat deformation temperature, hardness, and economic efficiency of the resin, it tends to reduce elongation at break, impact strength, and the like.

【0003】また廃棄物の有効利用として、微粉炭焼結
法による石炭の高温燃焼灰であるフライアッシユを充填
剤として熱可塑性樹脂に配合するという提案がある(特
開昭61一72059号公報、特開昭47−34635
号公報、特開昭48−29848号公報)。このフライ
アッシユは、酸化珪素、アルミナを主成分とし1600
℃付近の高温燃焼により排出されるため、未燃焼分が少
なく高温焼成中に融解、分散、凝固されて表面平滑なガ
ラス質の小粒径の球状態になり、各物質相互間の滑りが
極めてよくなる。そのためこのフライアッシユは樹脂中
への混練配合が極めて容易におこなわれる。またこれが
充填された樹脂は流動性が損なわれないので加工性が低
下しない。さらにこのフライアッシユは球状であるので
樹脂中への稠密充填が可能であり、配合量を多くしても
樹脂の加工性は低下しないとされている。
[0003] Furthermore, as an effective use of waste, there is a proposal to mix fly ash, which is the high-temperature combustion ash of coal produced by pulverized coal sintering, into thermoplastic resin as a filler (Japanese Patent Laid-Open No. 61-72059; Showa 47-34635
(Japanese Patent Application Laid-Open No. 48-29848). This fly ash is mainly composed of silicon oxide and alumina and has a 1600%
Because it is emitted through high-temperature combustion at temperatures around ℃, there is very little unburned material, which is melted, dispersed, and solidified during high-temperature firing to form small-sized spheres with smooth glassy surfaces, and the slippage between each substance is extremely high. get well. Therefore, this fly ash can be kneaded and blended into a resin very easily. Furthermore, the resin filled with this resin does not lose its fluidity, so its processability does not deteriorate. Furthermore, since this fly ash is spherical, it can be packed densely into the resin, and it is said that the processability of the resin will not deteriorate even if the amount blended is increased.

【0004】0004

【発明が解決しようとする課題】ところで、安価な無機
充填剤を用いて樹脂類の経済性や耐熱性を高めるには、
充填剤の添加量を多くする必要がある。しかしながら、
充填剤の量が多くなると樹脂のポリマ−同士の結合が疎
外されるため一般に物性が低下するようになる。また充
填剤の粒径の大小により物性が低下の度合が異なり、粒
径の大きなものは小さいものに比べて物性の低下が大き
くなるし、充填剤の種類によっても物性は変化する。特
に引裂強度、硬度、伸びが著しく低下すると、樹脂組成
物の成形時に欠肉や成形品の寸法精度が低下するという
不具合が発生する。
[Problems to be Solved by the Invention] By the way, in order to improve the economic efficiency and heat resistance of resins using inexpensive inorganic fillers,
It is necessary to increase the amount of filler added. however,
When the amount of filler increases, the bond between the polymers of the resin is weakened, and the physical properties generally deteriorate. In addition, the degree of deterioration in physical properties varies depending on the particle size of the filler, with larger particles having a greater reduction in physical properties than smaller particles, and the physical properties also changing depending on the type of filler. In particular, if the tear strength, hardness, and elongation are significantly reduced, problems such as underfilling and reduced dimensional accuracy of the molded product occur during molding of the resin composition.

【0005】従来の無機充填剤を含む樹脂組成物では、
機械的強度を高める方法として分散剤を添加して樹脂中
での凝集を防いだり、充填剤の表面をコ−テイングして
樹脂との親和性を高めている。また充填剤を分級して小
粒径のものを使用して分散剤を高めて物性の低下を抑制
することが可能であることも知られている。しかし、こ
れらはいずれも充填剤のコストが上昇する割りには成形
品の物性の向上が充分でない。
[0005] In conventional resin compositions containing inorganic fillers,
To increase mechanical strength, a dispersant is added to prevent agglomeration in the resin, and the surface of the filler is coated to increase its affinity with the resin. It is also known that it is possible to classify the filler and use one with a small particle size to increase the amount of dispersant and suppress the deterioration of physical properties. However, none of these methods sufficiently improves the physical properties of the molded product considering the increase in the cost of the filler.

【0006】さらに樹脂の耐衝撃性を高める方法として
、樹脂にゴム成分を混合したり共重合した場合は、樹脂
層が軟質化して硬度が高まらず耐熱性が向上しないとい
う問題がある。本発明は、樹脂中に多く配合しても上記
成形時の不具合および成形体の物性の低下の度合が少な
い充填剤およびその樹脂組成物を提供することを目的と
する。
Furthermore, when a rubber component is mixed or copolymerized with the resin as a method of increasing the impact resistance of the resin, there is a problem in that the resin layer becomes soft, hardness does not increase, and heat resistance does not improve. An object of the present invention is to provide a filler and a resin composition thereof that cause less problems during molding and less deterioration of the physical properties of the molded product even if a large amount is blended into the resin.

【0007】[0007]

【課題を解決するための手段】本発明者らは、流動床ボ
イラ−などで石炭を含む可燃物を燃焼した場合に発生す
る燃焼灰が、公知のフライアッシユと異なり、未燃焼分
が多く、燃焼灰粒子は異形形状で表面がポ−ラス構造を
有し粒径が比較的大きいという特徴を有することを発見
した。そしてこの特徴を利用した用途を検討した結果、
この燃焼灰は成形用樹脂の充填剤として優れた利点を有
することを見出して得られたものである。
[Means for Solving the Problems] The present inventors have discovered that the combustion ash generated when combustible materials including coal are burned in a fluidized bed boiler, etc., differs from known fly ash and contains a large amount of unburned matter. It was discovered that ash particles have irregular shapes, porous surfaces, and relatively large particle sizes. As a result of considering applications that take advantage of this feature,
This combustion ash was obtained after discovering that it has excellent advantages as a filler for molding resins.

【0008】本発明の樹脂用充填剤は、樹脂中に混合さ
れて成形に用いられる充填剤であって、重量平均粒径が
1〜20μmで比表面積が9×103 cm2 /g以
上の燃焼灰であることを特徴とする。本発明の樹脂組成
物は、充填剤として、重量平均粒径が1〜20μmで比
表面積が9×103 cm2 /g以上の燃焼灰と、塩
化ビニル系樹脂やポリプロピレン系樹脂等の熱可塑性樹
脂又は熱硬化性樹脂よりなる。
[0008] The resin filler of the present invention is a filler that is mixed into a resin and used for molding, and is composed of combustion ash having a weight average particle size of 1 to 20 μm and a specific surface area of 9 x 10 cm2 /g or more. It is characterized by The resin composition of the present invention contains, as a filler, combustion ash having a weight average particle diameter of 1 to 20 μm and a specific surface area of 9×10 cm2 /g or more, and a thermoplastic resin such as a vinyl chloride resin or a polypropylene resin or Made of thermosetting resin.

【0009】この燃焼灰は、重量平均粒径で1〜20μ
mの範囲の形状のものが適用できる。粒径が20μmを
超えると樹脂中での分散性が悪くなるので好ましくない
。したがって、粒径がこの範囲にあると樹脂中に均一に
分散して物性の低下を抑制することができる。またこの
燃焼灰の比表面積が9×103 cm2 /g以上であ
ることが必要である。この燃焼灰の比表面積が9×10
3 cm2 /g未満であると樹脂との接着性が低下し
成形体の物性を向上できないので好ましくない。
[0009] This combustion ash has a weight average particle size of 1 to 20 μm.
Shapes in the range of m can be applied. If the particle size exceeds 20 μm, the dispersibility in the resin will deteriorate, which is not preferable. Therefore, when the particle size is within this range, it is possible to uniformly disperse in the resin and suppress deterioration of physical properties. Further, it is necessary that the specific surface area of this combustion ash is 9×10 3 cm 2 /g or more. The specific surface area of this combustion ash is 9×10
If it is less than 3 cm2/g, the adhesion with the resin will decrease and the physical properties of the molded article cannot be improved, which is not preferable.

【0010】この燃焼灰は、充填剤として樹脂に対して
5重量%以上配合することが上記の充填効果を得るため
に好ましい。またこの充填剤は樹脂の物性低下が抑制で
きるので従来のものより多く配合して経済性を高めるこ
とができる。この燃焼灰は樹脂中で増量作用をするとと
もに、従来の充填剤の場合と異なり樹脂の機械的性質の
低下を抑制できる。すなわち、この燃焼灰はポ−ラス構
造を有するので樹脂との界面で互いに絡まって密着した
接触面が形成できる。そのため樹脂に応力が加わった場
合に界面で分離がおこるのが防止された成形体にクラッ
クの発生することを防ぎ機械的性質の低下を抑制するも
のと考えられる。そのため従来の充填剤と異なり、機械
的強度の低下を少なくすることができる。
In order to obtain the above-mentioned filling effect, it is preferable that the combustion ash is blended as a filler in an amount of 5% by weight or more based on the resin. Furthermore, since this filler can suppress deterioration of the physical properties of the resin, it can be added in a larger amount than conventional fillers to improve economic efficiency. This combustion ash acts to increase the volume in the resin, and unlike conventional fillers, it can suppress the deterioration of the mechanical properties of the resin. That is, since this combustion ash has a porous structure, it can be entangled with each other at the interface with the resin to form a close contact surface. Therefore, it is thought that when stress is applied to the resin, separation at the interface is prevented, and cracks are prevented from occurring in the molded product, thereby suppressing deterioration of mechanical properties. Therefore, unlike conventional fillers, reduction in mechanical strength can be reduced.

【0011】この燃焼灰を樹脂に配合するには、V形混
合機、W形混合機、円筒形混合機やヘンシェルミキサ−
などの混合機で所定時間混合し、さらに押出機などで混
練して押出すか、樹脂を押出機などで混練しながらベン
トより充填剤などを供給して混練する方法などが適用で
きる。このとき可塑剤、安定剤、滑剤、着色剤などの添
加剤も同時に添加配合することができる。
[0011] In order to blend this combustion ash into the resin, a V-type mixer, a W-type mixer, a cylindrical mixer or a Henschel mixer is used.
It is possible to apply a method in which the resin is mixed for a predetermined period of time using a mixer such as the above, and then kneaded and extruded using an extruder or the like, or a filler or the like is supplied from a vent while the resin is kneaded using an extruder or the like. At this time, additives such as plasticizers, stabilizers, lubricants, and colorants can also be added and blended at the same time.

【0012】この燃焼灰は800℃付近で燃焼されて排
出されたもので、従来の微粉炭燃焼ボイラ−より排出す
るフライアッシユのように1600℃付近の温度で燃焼
焼成されたものとは異なる形状を有する。すなわち、第
1表に示すように主成分はどちらも酸化珪素とアルミナ
であるが、高温燃焼の場合は灰分が融解焼成されて球状
粒子となり、粒径が比較的小さい(第1図に粒子構造の
写真図を示す)一方流動床燃焼ボイラ−で燃焼した場合
では、未焼結分が多く存在し、灰分が融解焼成すること
が少ないため形状は一定とならず異形形状で第11図(
粒子構造の写真図)に示すようにポ−ラスで粒径は比較
的大きい。なお、この燃焼灰は高温にさらされないので
溶融、凝集などにより粒径分布が広くならない。その結
果分級などの操作をしなくても所定の粒径範囲のものが
得られる。
[0012] This combustion ash is combusted and discharged at around 800°C, and has a different shape from fly ash that is combusted and calcined at around 1600°C, like the fly ash discharged from conventional pulverized coal combustion boilers. have In other words, as shown in Table 1, the main components of both are silicon oxide and alumina, but in the case of high-temperature combustion, the ash content is melted and calcined to form spherical particles, and the particle size is relatively small (Figure 1 shows the particle structure). On the other hand, in the case of combustion in a fluidized bed combustion boiler, there is a large amount of unsintered content, and the ash content is rarely melted and burned, so the shape is not constant and irregularly shaped, as shown in Figure 11 (
As shown in the photograph of the particle structure, it is porous and has a relatively large particle size. Note that since this combustion ash is not exposed to high temperatures, the particle size distribution will not become wide due to melting, agglomeration, etc. As a result, particles within a predetermined size range can be obtained without performing operations such as classification.

【0013】なお、平均粒径は重量分布により算出され
たものである。この燃焼灰は、たとえば、流動床ボイラ
−で石炭を含む可燃物(たとえば廃棄物など)を比較的
低温で焼却する際に排出される。なお、この可燃物は石
炭単体であってもよい。またこの燃焼灰は酸化珪素、ア
ルミナなどの硬度の高いセラミックス質を主成分として
含むので樹脂に配合されると、樹脂の硬度および耐熱性
を高めることができる。
[0013] The average particle size is calculated based on weight distribution. This combustion ash is emitted, for example, when combustible materials (such as waste) containing coal are incinerated at a relatively low temperature in a fluidized bed boiler. Note that this combustible material may be coal alone. Moreover, since this combustion ash mainly contains hard ceramic materials such as silicon oxide and alumina, when it is blended into a resin, it can increase the hardness and heat resistance of the resin.

【0014】この燃焼灰は充填剤として、樹脂に5重量
%〜60重量%の範囲で配合することが、充分な充填効
果を得るため好ましい。この充填剤が配合可能な樹脂は
、たとえば、熱可塑性樹脂のポリエチレン、ポリプロピ
レン、酢酸ビニル樹脂、ポリスチレン、アクリル樹脂、
ABS樹脂、塩化ビニル樹脂、ナイロン、ポリエステル
など、熱硬化性樹脂のポリエステル樹脂、ポリウレタン
樹脂、フェノ−ル樹脂、メラミン樹脂などが適用でき、
とくにポリプロピレン系樹脂および塩化ビニル系樹脂が
好ましい。
[0014] This combustion ash is preferably blended with the resin as a filler in a range of 5% to 60% by weight in order to obtain a sufficient filling effect. Examples of resins that can be blended with this filler include thermoplastic resins such as polyethylene, polypropylene, vinyl acetate resin, polystyrene, acrylic resin,
ABS resin, vinyl chloride resin, nylon, polyester, thermosetting resin such as polyester resin, polyurethane resin, phenol resin, melamine resin, etc. can be applied.
Particularly preferred are polypropylene resins and vinyl chloride resins.

【0015】ポリプロピレン系樹脂としては通常用いら
れているホモポリマ−、コポリマ−、ブロックポリマ−
などのポリプロピレン系樹脂が利用できる。またエチレ
ン成分含量が30%以下のエチレンプロピレン共重合体
も利用できる。塩化ビニル系樹脂としては、通常使用さ
れる硬質、軟質、共重合塩化ビニル樹脂が利用でき特に
限定されない。
Homopolymers, copolymers, and block polymers commonly used as polypropylene resins
Polypropylene resins such as can be used. Ethylene propylene copolymers having an ethylene component content of 30% or less can also be used. As the vinyl chloride resin, commonly used hard, soft, and copolymerized vinyl chloride resins can be used, and there is no particular limitation.

【0016】この燃焼灰が樹脂に配合された成形体中で
は、燃焼灰の表面のポ−ラス構造部分が樹脂と絡みあい
密着した接触面を形成する。そのため成形品に応力が加
わった場合、界面で樹脂と充填剤との分離が抑制でき樹
脂にクラックが発生するのを防ぐことができる。その結
果、成形品の耐衝撃性引張り強度や引裂き強度などの低
下が抑制できる。したがって、樹脂成分にゴムなどを加
えて改質する必要がない。さらにこの充填剤は、物性を
低下させる度合が少ないので多量に樹脂に配合すること
ができる。この充填剤の配合により成形体は、硬度およ
び熱変形温度を高め耐熱性を向上させることができる。
In a molded article in which the combustion ash is blended with a resin, the porous structure on the surface of the combustion ash is entangled with the resin to form a close contact surface. Therefore, when stress is applied to the molded product, separation of the resin and filler at the interface can be suppressed, and cracks can be prevented from occurring in the resin. As a result, reductions in impact resistance, tensile strength, tear strength, etc. of the molded product can be suppressed. Therefore, there is no need to modify the resin component by adding rubber or the like. Furthermore, this filler can be blended into the resin in large amounts because it has a low degree of deterioration of physical properties. By adding this filler, the molded article can increase its hardness and heat distortion temperature and improve its heat resistance.

【0017】また塩化ビニル樹脂の場合には、燃焼廃棄
すると燃焼時に塩素ガスを発生するが、この燃焼灰が樹
脂中に含まれているとこの塩素ガスを吸収して発生量を
減少させることもできる。すなわち、この燃焼灰は多孔
質の孔の中に未燃焼の炭素分が極性をもって存在してい
る。このため塩素ガスなどの気体は、物理的な吸引力と
ファンデルワールス力により多孔質の孔内に閉じ込めら
れる。その結果燃焼時に有害な塩素ガスを気体として周
囲に発散するのを抑制することができる。
[0017] In addition, in the case of vinyl chloride resin, chlorine gas is generated when it is burned and disposed of, but if this combustion ash is contained in the resin, it can absorb this chlorine gas and reduce the amount generated. can. That is, this combustion ash contains unburned carbon with polarity in its porous pores. Therefore, gases such as chlorine gas are trapped within the porous pores due to physical suction and van der Waals forces. As a result, it is possible to suppress harmful chlorine gas from being released into the surroundings as a gas during combustion.

【0018】従来、塩化ビニル樹脂に対して耐熱性の向
上やコストダウンなどの理由で炭酸カルシウムが使用さ
れている。この炭酸カルシウムは熱により酸化カルシウ
ムとなり、これが塩素と反応して塩化カルシウムを生成
する可能性が考えられるがその効率が悪い。またゼオラ
イト、シリカゲル、活性炭などによるガスの吸着が考え
られるが、充填剤として使用するには高価なため適用し
かねる。しかし、この燃焼灰は安価なので充填剤として
有効に使用することができる。
Calcium carbonate has conventionally been used in vinyl chloride resins for reasons such as improving heat resistance and reducing costs. This calcium carbonate turns into calcium oxide due to heat, and it is possible that this reacts with chlorine to generate calcium chloride, but this is inefficient. Gas adsorption using zeolite, silica gel, activated carbon, etc. is also considered, but it is too expensive to use as a filler, so it cannot be applied. However, this combustion ash is cheap and can be effectively used as a filler.

【0019】[0019]

【作用】本発明の樹脂用充填剤は、重量平均粒径が1〜
20μmで比表面積が9×103 cm2 /g以上の
低温燃焼灰である。この燃焼灰はポ−ラス構造をしてい
るため樹脂との接触界面で樹脂と絡みあい密着した状態
で樹脂中に均一に分散されている。
[Function] The resin filler of the present invention has a weight average particle diameter of 1 to 1.
It is low-temperature combustion ash with a specific surface area of 20 μm and 9×10 3 cm 2 /g or more. Since this combustion ash has a porous structure, it is entangled with the resin at the contact interface with the resin, and is uniformly dispersed in the resin in a close contact state.

【0020】この充填剤は、粒径が特定の範囲のもので
あるので、樹脂への分散性がよく、多量に添加しても成
形加工性が低下しない。またこの充填剤は、ポ−ラス構
造を有しているので樹脂との密着性が良く樹脂組成物の
機械的物性の低下を従来の充填剤に比べて抑制できる。 さらに、この充填剤はポ−ラス構造で樹脂との界面での
親和性が高くなるので、表面にコ−テイングなどの処理
を施して親和性を高める必要がない。したがって、安価
な充填剤として提供することができる。
Since this filler has a particle size within a specific range, it has good dispersibility in the resin, and even when added in a large amount, moldability does not deteriorate. Furthermore, since this filler has a porous structure, it has good adhesion to the resin and can suppress deterioration of the mechanical properties of the resin composition compared to conventional fillers. Furthermore, since this filler has a porous structure and has a high affinity with the resin at the interface, there is no need to perform a treatment such as coating on the surface to increase the affinity. Therefore, it can be provided as an inexpensive filler.

【0021】またこの充填剤は硬度の高いセラミックス
質を含んでいるので樹脂の硬度を高め耐熱性を向上させ
ることができる。
[0021] Furthermore, since this filler contains a ceramic substance having high hardness, it is possible to increase the hardness of the resin and improve the heat resistance.

【0022】[0022]

【実施例】以下、実施例により具体的に説明する。 (実施例1)この樹脂用充填剤としては、石炭を700
〜800℃の流動床ボイラ−で燃焼した灰を用いた。こ
の燃焼灰の組成は第1表に示す様にSiO2、Al2 
O3 、を主成分とし、重量平均粒径が3〜20μmで
比表面積が7×103 cm2 /g以上のポ−ラス構
造をした微粉体である。図1にこの燃焼灰の粒子構造を
示す。表1に分析例を示すように微粉炭燃焼法で得られ
たフライアッシユに比べ本発明の燃焼灰は未燃焼分が多
く、燃焼灰粒子は異形形状で表面がポ−ラス構造をもち
粒径か比較的大きい。この燃焼灰を分級して平均粒径と
比表面積の関係をJISR5201に基づいて測定した
。結果を図2に示す。平均粒径が20μm以下の場合は
比表面積は9×103 cm2 /g以上である。
[Examples] Hereinafter, the present invention will be explained in detail using examples. (Example 1) As the filler for this resin, 700% of coal was used.
Ash combusted in a fluidized bed boiler at ~800°C was used. The composition of this combustion ash is as shown in Table 1, SiO2, Al2
It is a fine powder with a porous structure containing O3 as a main component, a weight average particle size of 3 to 20 μm, and a specific surface area of 7×10 3 cm 2 /g or more. Figure 1 shows the particle structure of this combustion ash. As an analysis example is shown in Table 1, the combustion ash of the present invention has a large amount of unburned matter compared to the fly ash obtained by the pulverized coal combustion method, and the combustion ash particles have an irregular shape, a porous structure on the surface, and a small particle size. Relatively large. The combustion ash was classified and the relationship between average particle size and specific surface area was measured based on JISR5201. The results are shown in Figure 2. When the average particle size is 20 μm or less, the specific surface area is 9×10 3 cm 2 /g or more.

【0023】比較として高温で微粉炭焼結法で形成した
フライアッシユを同様に調べた結果を第2図に並示する
。フライアッシユの場合は、いずれの粒径においても比
表面積が7×103 cm2 /g以下でありほとんど
ポ−ラス構造を示さない。実施例の燃焼灰は重量平均粒
径が3〜20μmで比表面積が7×103 cm2 /
g以上でポ−ラス構造をもつ充填剤である。
For comparison, a fly ash formed by pulverized coal sintering method at high temperature was similarly investigated and the results are shown in FIG. In the case of fly ash, the specific surface area is 7×10 3 cm 2 /g or less regardless of the particle size, and it hardly shows a porous structure. The combustion ash of the example had a weight average particle size of 3 to 20 μm and a specific surface area of 7×10 cm2 /
It is a filler with a porous structure when it is more than 100 g.

【0024】以下この充填剤を樹脂に配合した例により
、優れた効果をもつことを示す。 (実施例2)軟質塩化ビニル樹脂に、この燃焼灰の充填
剤、軟質炭酸カルシウムおよび重質炭酸カルシウム(両
者とも白石カルシウム社製)を配合量を変えた試験片を
作製した。この試験片について引張強度、伸び、硬度、
引裂強度を測定して比較した。
[0024] The following examples show that this filler is blended with resin and has excellent effects. (Example 2) Test pieces were prepared in which the blended amounts of the combustion ash filler, soft calcium carbonate, and heavy calcium carbonate (both manufactured by Shiraishi Calcium Co., Ltd.) were mixed into soft vinyl chloride resin. Regarding this test piece, tensile strength, elongation, hardness,
Tear strength was measured and compared.

【0025】配合組成は、塩化ビニル樹脂(ρ=1.0
5)100重量部、可塑剤(D.O.P)50重量部、
鉛白3重量部、ステアリン酸1重量部、充填剤0〜20
0重量部である。
The blending composition is vinyl chloride resin (ρ=1.0
5) 100 parts by weight, 50 parts by weight of plasticizer (D.O.P),
3 parts by weight of white lead, 1 part by weight of stearic acid, 0 to 20 parts by weight of filler
It is 0 parts by weight.

【0026】[0026]

【表1】 結果を図3〜6に示す。図中、白丸が燃焼灰の充填剤、
黒丸は軟質炭酸カルシウム、×印は重質炭酸カルシウム
を表す。
[Table 1] The results are shown in Figures 3-6. In the figure, the white circle is the filler of combustion ash.
The black circles represent soft calcium carbonate, and the x marks represent heavy calcium carbonate.

【0027】この測定範囲において燃焼灰の充填剤は、
炭酸カルシウムに比べていずれの配合量においても高い
値を示し物性の低下は少ない。特に多量に添加時の低下
が少ない。したがって、常用されている炭酸カルシウム
より多量に添加することができる優れた充填剤である。 (実施例3)次に塩化ビニル樹脂ペ−ストを適用樹脂と
した。ペ−ストに添加される充填剤としては溶融粘度が
低く、耐衝撃性の向上が最も望まれる。
In this measurement range, the combustion ash filler is
Compared to calcium carbonate, it exhibits higher values at all blending amounts, with little deterioration in physical properties. Particularly when adding a large amount, there is little decrease. Therefore, it is an excellent filler that can be added in larger amounts than the commonly used calcium carbonate. (Example 3) Next, vinyl chloride resin paste was used as the applied resin. The filler added to the paste has a low melt viscosity and is most desired to have improved impact resistance.

【0028】使用した塩化ビニル樹脂ペ−スト(Geo
n  121Geon(株)製)100重量部、可塑剤
(D.O.P)60重量部、ステアリン酸鉛1重量部、
充填剤0〜40重量部である。この樹脂組成物の溶融粘
度の測定と、シ−ト状の試験片を作製して衝撃試験をお
こなった。結果を図7〜8に示す。
The vinyl chloride resin paste (Geo
n 121 Geon Co., Ltd.) 100 parts by weight, plasticizer (D.O.P) 60 parts by weight, lead stearate 1 part by weight,
The filler is 0 to 40 parts by weight. The melt viscosity of this resin composition was measured, and a sheet-like test piece was prepared and subjected to an impact test. The results are shown in Figures 7-8.

【0029】この測定範囲内では燃焼灰の充填剤は溶融
粘度が炭酸カルシウムを同量添加した場合よりも低く、
耐衝撃性は炭酸カルシウムを同量添加した場合に比べ高
いと共に充填剤を添加しない場合よりも向上している。 (実施例4)ここではポリプロピレン樹脂に実施例2と
同じ充填剤を用いて充填剤の比較検討をおこなった。
Within this measurement range, the combustion ash filler has a lower melt viscosity than when the same amount of calcium carbonate is added;
The impact resistance is higher than when the same amount of calcium carbonate is added and is also improved compared to when no filler is added. (Example 4) Here, the same filler as in Example 2 was used in polypropylene resin to conduct a comparative study of the filler.

【0030】充填剤の配合量はポリプロピレン樹脂10
0重量部に対し各充填剤を0〜60重量%の範囲で添加
し試験片を作製した。そして引張強度と伸びを測定した
。結果を図9〜10に示す。この測定範囲内ではこの燃
焼灰の充填剤は、引張強度はいずれも炭酸カルシウムよ
り高いレベルを有し特に多量添加しても高い値を示す。 また伸びも炭酸カルシウムより高いレベルの値を示して
いる。したがって、この燃焼灰は充填剤として優れた性
質をもっていることを示している。 (実施例5)ポリプロピレン樹脂は住友化学工業(株)
製AW−564を用い実施例1で得た燃焼灰を20重量
%(No.6−1)、40重量%(No.6−2)添加
し、円筒型混合機にてブレンドし、30φの2軸押出し
機にて混練して成形材料とした。この成形材料を射出成
形により衝撃試験および熱変形温度測定用の試験片を作
製した。 (参考例)参考例として充填剤を添加しないポリプロピ
レン樹脂(AW−564)を成形して試験片とした。 (比較例)比較例は実施例6の充填剤を下記に示すもの
に変えた他は実施例と同様に試験片を作製した。表2に
示すように、No.1、No2は重量平均粒径5μmの
炭酸カルシウム(KS−500同和カルファイン製)を
20重量%、40重量%添加したものである。No.3
、No4は微粉炭ボイラ−より排出されたJIS規格の
フライアッシユ(粒子の構造を図11に示す)の重量平
均粒径5μmのものを20重量%、40重量%添加した
ものである。No.5はタルク(林化成(株)製:JR
−2)を、No.6はワラストナイト(林化成(株)製
:VM−4N)を、No.7はクレ−(白石カルシウム
(株)製:バ−ゲスKE50)を、No.8はマイカ(
クラレ(株)製:200HK)をそれぞれ40重量%配
合した。
[0030] The blending amount of the filler is 10% of the polypropylene resin.
A test piece was prepared by adding each filler in a range of 0 to 60% by weight relative to 0 part by weight. Then, the tensile strength and elongation were measured. The results are shown in Figures 9-10. Within this measurement range, the tensile strength of this combustion ash filler is higher than that of calcium carbonate, and even when added in a large amount, it exhibits a high tensile strength. Furthermore, the elongation value is also higher than that of calcium carbonate. This indicates that this combustion ash has excellent properties as a filler. (Example 5) Polypropylene resin is manufactured by Sumitomo Chemical Co., Ltd.
20% by weight (No. 6-1) and 40% by weight (No. 6-2) of the combustion ash obtained in Example 1 were added using AW-564 produced by the company, and blended in a cylindrical mixer. The mixture was kneaded using a twin-screw extruder to obtain a molding material. This molding material was injection molded to produce test pieces for impact tests and heat distortion temperature measurements. (Reference Example) As a reference example, a test piece was molded from polypropylene resin (AW-564) to which no filler was added. (Comparative Example) In a comparative example, a test piece was prepared in the same manner as in the example except that the filler in Example 6 was changed to one shown below. As shown in Table 2, No. No. 1 and No. 2 contain 20% by weight and 40% by weight of calcium carbonate (KS-500 manufactured by Dowa Calfine) with a weight average particle diameter of 5 μm. No. 3
, No. 4 was prepared by adding 20% by weight and 40% by weight of JIS standard fly ash discharged from a pulverized coal boiler (the particle structure is shown in FIG. 11) with a weight average particle diameter of 5 μm. No. 5 is talc (manufactured by Hayashi Kasei Co., Ltd.: JR
-2), No. No. 6 was wollastonite (manufactured by Hayashi Kasei Co., Ltd.: VM-4N). No. 7 contains clay (manufactured by Shiraishi Calcium Co., Ltd.: Burgess KE50). 8 is mica (
200HK (manufactured by Kuraray Co., Ltd.) was blended in an amount of 40% by weight.

【0031】得られた各試験片についてアイゾット衝撃
値および熱変形温度を測定した。結果を表2に示す。な
おアイゾット衝撃値は厚み1/8インチ、ノッチ無しの
試験片でASTMD256に基づいてアイゾット衝撃試
験機で測定した。熱変形温度はASTMD648に基づ
き荷重18.5kg/cm2 でおこなった。
The Izod impact value and heat distortion temperature were measured for each test piece obtained. The results are shown in Table 2. The Izod impact value was measured using an Izod impact tester based on ASTM D256 using a test piece with a thickness of 1/8 inch and no notch. The heat distortion temperature was determined based on ASTM D648 under a load of 18.5 kg/cm2.

【0032】第2表に示すように充填剤を同量添加した
場合を比較すると、実施例のNo.6−1、6−2では
熱変形温度が比較例の公知の充填剤よりも高くなり、ま
た衝撃強度も著しく向上している。したがって成形品の
衝撃強度を高めるために樹脂にゴム成分を添加して改良
せずとも十分工業材料として使用できる物性を有してい
る。
As shown in Table 2, when comparing cases where the same amount of filler is added, Example No. In No. 6-1 and No. 6-2, the heat distortion temperature is higher than that of the known filler of Comparative Example, and the impact strength is also significantly improved. Therefore, it has sufficient physical properties to be used as an industrial material without adding a rubber component to the resin to improve the impact strength of the molded product.

【0033】[0033]

【表2】 また微粉炭燃焼ボイラ−より排出されたフライアッシユ
の比較例No.3、4と実施例No.6−1、6−2の
充填剤のアイゾット衝撃値と熱変形温度とを線グラフで
比較したのが第12〜13図である。実施例の充填量が
20重量%の時の衝撃強度が比較例に比べて著しく高く
、充填量が40重量%の場合でもフライアッシユよりも
高い値を示している。また熱変形温度も40重量%では
80℃を超えておりフライアッシユを配合した場合より
も優れている。 (実施例6)実施例1の燃焼灰を分級装置(ホソカワミ
クロン(株)製  MS−1H)を用いて分級して5種
(第16図中1、2、3、4、5)の粒度に分けて使用
した。その粒度分布を第14図のグラフに示す。この粒
度に分級した充填剤をそれぞれ塩化ビニル樹脂(三菱化
成製)に50重量%添加し常法により試験用シ−トを作
製して引張強度と引裂強度についてJIS−6301の
9に基づき評価した。結果を第15〜16図に示す。
[Table 2] Comparative example No. 1 of fly ash discharged from a pulverized coal combustion boiler. 3, 4 and Example No. Figures 12 and 13 are line graphs comparing the Izod impact values and heat distortion temperatures of fillers No. 6-1 and No. 6-2. The impact strength of the example when the filling amount is 20% by weight is significantly higher than that of the comparative example, and even when the filling amount is 40% by weight, it shows a higher value than that of fly ash. Furthermore, the heat distortion temperature exceeds 80° C. at 40% by weight, which is superior to the case where fly ash is blended. (Example 6) The combustion ash of Example 1 was classified using a classifier (MS-1H manufactured by Hosokawa Micron Co., Ltd.) into five types of particle sizes (1, 2, 3, 4, and 5 in Figure 16). Used separately. The particle size distribution is shown in the graph of FIG. 50% by weight of each filler classified to this particle size was added to vinyl chloride resin (manufactured by Mitsubishi Kasei), a test sheet was prepared by a conventional method, and the tensile strength and tear strength were evaluated based on JIS-6301 9. . The results are shown in Figures 15-16.

【0034】また比較として燃焼灰の代りに特定の粒径
の炭酸カルシウム(日東粉化(株)製:A;NS300
0、B;NS800、C;CSS80、D;SS30、
E;NN200)を用いた。この炭酸カルシウムの粒度
分布を第16図に示す。この5種の炭酸カルシウムを燃
焼灰の場合と同量配合した試験用シ−トを作製して評価
した。
For comparison, calcium carbonate of a specific particle size (manufactured by Nitto Funka Co., Ltd.: A; NS300) was used instead of combustion ash.
0, B; NS800, C; CSS80, D; SS30,
E; NN200) was used. The particle size distribution of this calcium carbonate is shown in FIG. A test sheet containing the same amounts of these five types of calcium carbonate as in the case of combustion ash was prepared and evaluated.

【0035】結果を15〜16図に示す。図中●印が燃
焼灰の実施例で、○印が炭酸カルシウムの充填剤を示す
。実施例の充填剤は、炭酸カルシウムの場合と同じ様に
粒径が小さくなると強度が高くなるが、比較的大きな粒
径の領域でも物性は炭酸カルシウムより高い。すなわち
、平均粒径が15μmより大きくても粒径が1.5μm
の炭酸カルシウムと同じ程度の強度を保持している。 そして同じ大きさの平均粒径となると本実施例の充填剤
の方が高い強度を保持している。したがって分級をしな
い粗粒子の充填剤であっても小粒径の分散性のよい炭酸
カルシウムを用いた場合と同等の効果が得られる。その
ためこの充填剤は分級の必要がなくコストダウンが図れ
る。
The results are shown in Figures 15 and 16. In the figure, the ● mark indicates an example of combustion ash, and the ○ mark indicates a calcium carbonate filler. The strength of the filler in the example increases as the particle size decreases, as in the case of calcium carbonate, but the physical properties are higher than that of calcium carbonate even in the region of relatively large particle sizes. In other words, even if the average particle size is larger than 15 μm, the particle size is 1.5 μm.
It maintains the same strength as calcium carbonate. When the average particle diameter is the same, the filler of this example maintains higher strength. Therefore, even with a coarse particle filler that is not classified, the same effect as when using calcium carbonate with small particle size and good dispersibility can be obtained. Therefore, this filler does not require classification, and costs can be reduced.

【0036】また第11図に粒子構造を示す微粉炭燃焼
法で得られるフライアッシユを分級して実施例と同様に
平均粒径と強度との関係を調べた結果を第15〜16図
の△印に示す。このフライアッシユは炭酸カルシウムの
場合とほぼ同一傾向を示し粒径が大きい場合は強度が低
下している。すなわち、この場合は分級して小粒径のも
ののみとしないと物性の低下は抑制できない。
In addition, the fly ash obtained by the pulverized coal combustion method, whose particle structure is shown in FIG. 11, was classified and the relationship between the average particle size and strength was investigated in the same manner as in the example. The results are shown by △ marks in FIGS. Shown below. This fly ash shows almost the same tendency as the case of calcium carbonate, and the strength decreases when the particle size is large. That is, in this case, the deterioration of physical properties cannot be suppressed unless the particles are classified to only have small particle sizes.

【0037】この燃焼灰はポ−ラス構造を有するため樹
脂との界面で相互作用により密着しているのでポ−ラス
構造をもたない炭酸カルシウムの場合よりも樹脂の強度
が高くなっている。 (実施例7)塩化ビニル樹脂100重量部に対して、炭
酸カルシウム(白石カルシウム(株)製  ホワイトン
)、燃焼灰、可塑剤のDOPを表3に示す割合で混合し
てその物性を調べた。充填剤としてはNo.10は燃焼
灰を14重量部と炭酸カルシウム129重量部、No.
11は燃焼灰を36重量部と炭酸カルシウム107重量
部、No.12は燃焼灰を71重量部と炭酸カルシウム
71重量部、No.13は燃焼灰のみを143重量部、
No.14は比較として炭酸カルシウムを143重量部
配合したものである。
Since this combustion ash has a porous structure, it is in close contact with the resin through interaction at the interface, so that the strength of the resin is higher than in the case of calcium carbonate, which does not have a porous structure. (Example 7) 100 parts by weight of vinyl chloride resin was mixed with calcium carbonate (Whiten, manufactured by Shiraishi Calcium Co., Ltd.), combustion ash, and DOP of a plasticizer in the proportions shown in Table 3, and its physical properties were investigated. . No. 1 as a filler. No. 10 contains 14 parts by weight of combustion ash and 129 parts by weight of calcium carbonate.
No. 11 contains 36 parts by weight of combustion ash and 107 parts by weight of calcium carbonate. No. 12 contains 71 parts by weight of combustion ash and 71 parts by weight of calcium carbonate. 13 contains 143 parts by weight of combustion ash only,
No. For comparison, No. 14 contains 143 parts by weight of calcium carbonate.

【0038】[0038]

【表3】 燃焼灰の量が多くなると物性のうち伸びが小さくなる他
は、炭酸カルシウムのみのものと比較して同等またはそ
れ以上の値を示している。
[Table 3] When the amount of combustion ash increases, physical properties other than elongation decrease, which are equivalent to or higher than those using only calcium carbonate.

【0039】また上記の各配合樹脂について燃焼による
塩素ガス発生量を調べた。ここで燃焼は1000℃の電
気炉内で上記の配合樹脂を燃焼させて、発生したガスに
就いてガスクロマトグラフにより塩素ガス存在の有無、
およびその量の定量をおこなった。定量結果を図17に
示す。燃焼灰の配合量が増加するにしたがって、塩素ガ
スの発生が抑制されて燃焼ガス中の塩素量が減少してい
る。
Furthermore, the amount of chlorine gas generated by combustion was investigated for each of the above blended resins. Here, the combustion involves burning the above-mentioned blended resin in an electric furnace at 1000°C, and checking the generated gas for the presence or absence of chlorine gas using a gas chromatograph.
and its amount was quantified. The quantitative results are shown in FIG. 17. As the amount of combustion ash increases, the generation of chlorine gas is suppressed and the amount of chlorine in the combustion gas decreases.

【0040】したがって、焼却時に有害な塩素ガスの発
生の少ない塩化ビニル樹脂組成物とすることができる。
[0040] Therefore, a vinyl chloride resin composition that generates less harmful chlorine gas when incinerated can be obtained.

【0041】[0041]

【効果】本発明の樹脂用充填剤は、比表面積が9×10
3 cm2 /g以上で特定の粒径範囲の微粉末であり
、球状でなく異形形状を有している。そのため樹脂に配
合されて混練されると充填剤と樹脂と絡まり界面で強固
に密着した状態で分散されて存在させることができる。
[Effect] The resin filler of the present invention has a specific surface area of 9×10
It is a fine powder with a specific particle size range of 3 cm2/g or more, and has an irregular shape rather than a spherical shape. Therefore, when the filler is blended with the resin and kneaded, the filler and the resin intertwine and can be dispersed and present in a tightly adhered state at the interface.

【0042】したがってこの充填剤を配合しした樹脂組
成物の成形体は従来の充填剤を添加した場合のような衝
撃強度などの物性の低下が抑制できる。また樹脂の機械
的強度の不足により、樹脂組成物の成形時の欠肉や寸法
精度が低下することがない。そのため充填剤の表面を処
理したり、分級したりする必要がない。さらに樹脂に充
填剤を多量に添加しても成形体の物性低下が少ないので
、多量添加によりコスト低下を行うことができる。この
充填剤は硬度の高いセラミックス質を主成分に含むため
樹脂の硬度や耐熱性を高めて優れた物性を付与すること
ができる。さらに燃焼灰であるので、安価で経済的な充
填剤として多量に配合することもできる。さらに廃棄し
ていたものの有効利用であるので環境問題にも対応でき
る。
[0042] Therefore, a molded article made of a resin composition containing this filler can be prevented from deteriorating physical properties such as impact strength, which is the case when conventional fillers are added. In addition, there is no lack of thickness or reduction in dimensional accuracy during molding of the resin composition due to insufficient mechanical strength of the resin. Therefore, there is no need to treat or classify the surface of the filler. Furthermore, even if a large amount of filler is added to the resin, there is little deterioration in the physical properties of the molded product, so adding a large amount can reduce costs. Since this filler contains a highly hard ceramic material as a main component, it can increase the hardness and heat resistance of the resin and provide excellent physical properties. Furthermore, since it is combustion ash, it can be blended in large quantities as a cheap and economical filler. Furthermore, since it is an effective use of what would otherwise have been discarded, it can also address environmental issues.

【0043】また、塩化ビニル樹脂に配合した場合は焼
却燃焼時に、多孔質の燃焼灰が塩素ガスを吸収して保持
するので燃焼ガス中の塩素量を低減することができる。 このため塩素ガスによる腐食が防止され、特殊な処理施
設を不要とすることもできる。
Furthermore, when blended with vinyl chloride resin, the porous combustion ash absorbs and retains chlorine gas during incineration, so the amount of chlorine in the combustion gas can be reduced. Therefore, corrosion due to chlorine gas is prevented, and special treatment facilities can be made unnecessary.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  燃焼灰の充填剤の粒子構造の拡大写真図。[Figure 1] Enlarged photographic diagram of the particle structure of the filler in combustion ash.

【図2】  燃焼灰およびフライアッシユの平均粒径と
比表面積との関係を示す線グラフ。
FIG. 2 is a line graph showing the relationship between the average particle diameter and specific surface area of combustion ash and fly ash.

【図3】軟質塩化ビニル樹脂に配合した充填剤量と物性
との関係を示す引張強度線グラフ。
FIG. 3 is a tensile strength line graph showing the relationship between the amount of filler added to a soft vinyl chloride resin and physical properties.

【図4】  軟質塩化ビニル樹脂に配合した充填剤量と
物性との関係を示す伸度の線グラフ。
FIG. 4 is a line graph of elongation showing the relationship between the amount of filler added to a soft vinyl chloride resin and physical properties.

【図5】  軟質塩化ビニル樹脂に配合した充填剤量と
物性との関係を示す硬度の線グラフ。
FIG. 5 is a hardness line graph showing the relationship between the amount of filler added to a soft vinyl chloride resin and physical properties.

【図6】  軟質塩化ビニル樹脂に配合した充填剤量と
物性との関係を示す引裂強度の線グラフ。
FIG. 6 is a line graph of tear strength showing the relationship between the amount of filler added to soft vinyl chloride resin and physical properties.

【図7】塩化ビニル樹脂ペ−ストの充填剤の配合量と溶
融粘度と衝撃強度の関係を示す溶融粘度線グラフ。
FIG. 7 is a melt viscosity line graph showing the relationship between filler content, melt viscosity, and impact strength of vinyl chloride resin paste.

【図8】  塩化ビニル樹脂ペ−ストの充填剤の配合量
と溶融粘度と衝撃強度の線グラフ。
FIG. 8 is a line graph of filler content, melt viscosity, and impact strength of vinyl chloride resin paste.

【図9】  ポリプロピレン樹脂の充填剤の添加量と引
張強度と伸びとの関係を示す引張強度線グラフ。
FIG. 9 is a tensile strength line graph showing the relationship between the amount of filler added, tensile strength, and elongation of polypropylene resin.

【図10】  ポリプロピレン樹脂の充填剤の添加量と
引張強度と伸びとの関係を示す伸びの線グラフ。
FIG. 10 is an elongation line graph showing the relationship between the amount of filler added, tensile strength, and elongation of polypropylene resin.

【図11】  フライアッシユの粒子構造の拡大写真図
である。
FIG. 11 is an enlarged photograph of the particle structure of fly ash.

【図12】  本発明の燃焼灰とフライアッシユを添加
した場合の衝撃強度と充填量の関係を示す線グラフ。
FIG. 12 is a line graph showing the relationship between impact strength and filling amount when the combustion ash and fly ash of the present invention are added.

【図13】  熱変形温度と充填量との関係を示す線グ
ラフであり。
FIG. 13 is a line graph showing the relationship between heat distortion temperature and filling amount.

【図14】  粒度分布を示すグラフ。FIG. 14 is a graph showing particle size distribution.

【図15】  分級粒子を配合した樹脂の引張強度と粒
径の関係を示すグラフ。
FIG. 15 is a graph showing the relationship between the tensile strength and particle size of a resin blended with classified particles.

【図16】  図15のサンプルの引裂強度試験の結果
を示すグラフ。
FIG. 16 is a graph showing the results of a tear strength test of the sample of FIG. 15.

【図17】  燃焼試験による塩素ガス発生量の測定結
果のグラフ。
FIG. 17 is a graph showing the measurement results of the amount of chlorine gas generated in the combustion test.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】樹脂中に混合されて成形に用いられる充填
剤であって、重量平均粒径が1〜20μmで比表面積が
9×103 cm2 /g以上の燃焼灰であることを特
徴とする樹脂用充填剤。
Claim 1: A filler mixed into a resin and used for molding, characterized by being combustion ash having a weight average particle size of 1 to 20 μm and a specific surface area of 9×10 cm2 /g or more. Filler for resin.
【請求項2】マトリックスとしての成形用樹脂と、充填
剤として重量平均粒径が1〜20μmで比表面積が9×
103 cm2 /gの燃焼灰と、からなる樹脂組成物
[Claim 2] A molding resin as a matrix and a filler having a weight average particle diameter of 1 to 20 μm and a specific surface area of 9×
A resin composition consisting of 103 cm2/g of combustion ash.
JP3099602A 1990-06-26 1991-04-04 Resin filler and resin composition Expired - Fee Related JP2678831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3099602A JP2678831B2 (en) 1990-06-26 1991-04-04 Resin filler and resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-167501 1990-06-26
JP16750190 1990-06-26
JP3099602A JP2678831B2 (en) 1990-06-26 1991-04-04 Resin filler and resin composition

Publications (2)

Publication Number Publication Date
JPH04339841A true JPH04339841A (en) 1992-11-26
JP2678831B2 JP2678831B2 (en) 1997-11-19

Family

ID=26440720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3099602A Expired - Fee Related JP2678831B2 (en) 1990-06-26 1991-04-04 Resin filler and resin composition

Country Status (1)

Country Link
JP (1) JP2678831B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767654A (en) * 1980-10-16 1982-04-24 Toray Ind Inc Polyester composition
JPS59189144A (en) * 1983-04-12 1984-10-26 Hokuriku Electric Power Co Inc:The Filler for rubber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767654A (en) * 1980-10-16 1982-04-24 Toray Ind Inc Polyester composition
JPS59189144A (en) * 1983-04-12 1984-10-26 Hokuriku Electric Power Co Inc:The Filler for rubber

Also Published As

Publication number Publication date
JP2678831B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
JP5601792B2 (en) Polyacetal resin composition and sliding member
JP2008024923A (en) Thermoplastic resin composition for long object-fixing jigs and method for producing the same
JPH04339841A (en) Filler for resin, and resin composition
JP3645845B2 (en) Low hazardous chlorine-containing resin compound for gaskets
JP2558541B2 (en) Polypropylene resin composition
JP2008208250A (en) Vinyl chloride-based resin molded form
JP2510611B2 (en) Thermoplastic resin composition
JPWO2005005538A1 (en) Vinyl chloride thermoplastic elastomer composition
JP2000034366A (en) Rubber composition for inner liner
JP2717323B2 (en) Polypropylene resin composition
JP2004269839A (en) High damping rubber composition for support
JPH0586246A (en) Thermoplastic resin composition
JP2011032319A (en) Method for enhancing elongation of polyarylene sulfide resin and polyarylene sulfide molding
JP5788064B2 (en) Polyacetal resin composition
JPH02225549A (en) Rubber composition for wire core
JP2668169B2 (en) Filler for resin reinforcement and black coloring
JPH01193344A (en) Ultrahigh molecular weight polyethylene composition
JP3162273B2 (en) Polyarylene sulfide resin composition
JP2002167486A (en) Vinylchloride based resin composition, extruded product and injection molded product
JPH066671B2 (en) Thermoplastic resin composition
JP2006274065A (en) Resin composition and molded product of the same
JP3952654B2 (en) Chlorinated polyolefin powder
JP3464126B2 (en) Organic polymer composition containing inorganic filler and inorganic filler for organic polymer composition
JPH0588937U (en) Laminated sheet
JPH0455449A (en) Polypropylene resin composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371