JP2000034366A - Rubber composition for inner liner - Google Patents
Rubber composition for inner linerInfo
- Publication number
- JP2000034366A JP2000034366A JP10203816A JP20381698A JP2000034366A JP 2000034366 A JP2000034366 A JP 2000034366A JP 10203816 A JP10203816 A JP 10203816A JP 20381698 A JP20381698 A JP 20381698A JP 2000034366 A JP2000034366 A JP 2000034366A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- coal ash
- inner liner
- rubber composition
- pts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、安価で、空気非透
過性に優れたインナーライナー用ゴム組成物に関する。The present invention relates to a rubber composition for an inner liner which is inexpensive and has excellent air impermeability.
【0002】[0002]
【従来の技術】タイヤのインナーライナーは、空気非透
過性に優れることが要求されている。そのため、インナ
ーライナー用ゴム組成物には、通常、カーボンブラック
等の充填剤が配合されており、この充填剤はインナーラ
イナーに適当な力学物性(硬度、引張物性等)を付与す
るものでもある。しかし、空気非透過性を高める目的で
充填剤を多く配合すると、ゴムの硬度は高まるものの引
張物性が低下し、走行中にインナーライナーに亀裂が生
じるという問題があった。しかし、カーボンブラックは
高価であり、その代替品が求められていた。2. Description of the Related Art Tire inner liners are required to have excellent air impermeability. Therefore, a filler such as carbon black is usually blended in the rubber composition for the inner liner, and this filler also imparts appropriate mechanical properties (hardness, tensile properties, etc.) to the inner liner. However, if a large amount of filler is added for the purpose of increasing air impermeability, the hardness of the rubber is increased, but the tensile properties are reduced, and there is a problem that the inner liner is cracked during running. However, carbon black is expensive and a substitute for it has been sought.
【0003】ところで、火力発電所等で石炭を燃焼させ
るとその約20%が、燃かす、すなわち石炭灰として残
る。現在、石炭灰は、その一部がセメント分野で有効利
用されているが、そのほとんどは、廃棄物として埋め立
て投棄されている。このため、今後、石炭灰による環境
悪化問題等の発生が危惧されおり、その有効利用方法の
検討が課題となっている。[0003] When coal is burned in a thermal power plant or the like, about 20% of it is burned, that is, coal ash remains. At present, part of coal ash is effectively used in the cement field, but most of it is landfilled and dumped as waste. For this reason, it is feared that the coal ash will cause environmental degradation problems in the future, and it is an issue to consider how to effectively utilize it.
【0004】[0004]
【発明が解決しようとする課題】本発明の課題は、石炭
灰を有効利用することにより、安価で、しかも、釣り合
いのとれた力学物性を有し、空気非透過性に優れたイン
ナーライナーが得られる、インナーライナー用ゴム組成
物を提供することにある。An object of the present invention is to provide an inner liner which is inexpensive, has balanced mechanical properties, and is excellent in air impermeability by effectively utilizing coal ash. To provide a rubber composition for an inner liner.
【0005】[0005]
【課題を解決するための手段】本発明者は、前記戦記石
炭灰の有効利用のために、この石炭灰を充填剤として配
合することを考えた。石炭灰の充填剤としての利用は、
石炭灰の活用にとどまらず、インナーライナー用ゴム組
成物のコスト低減をも可能にさせる。しかし、カーボン
ブラック、シリカ、炭酸カルシウム等のの通常使用され
る充填剤ではその平均粒子径が0.01〜3μmと細粒
であるため、硬度や引張物性等の力学物性の釣り合いが
とれるのに対して、通常得られる石炭灰は平均粒子径3
〜10μmの大粒子であり、これをそのまま利用すれば
引張物性の低下が予想され、実験でも予想された結果が
得られた。そこで、石炭灰の粒子径を最適化するために
さらに実験を重ねた結果、粒子径が大きなもの、すなわ
ち7μmを超える大粒子を除けば、力学物性の釣り合い
がとれ、空気非透過性に優れることを確認して、本発明
に到達した。Means for Solving the Problems The present inventor considered that the coal ash was blended as a filler in order to make effective use of the above-mentioned coal ash. Use of coal ash as a filler
Not only utilization of coal ash, but also cost reduction of the rubber composition for the inner liner is enabled. However, since the average particle diameter of a commonly used filler such as carbon black, silica, and calcium carbonate is as fine as 0.01 to 3 μm, the mechanical properties such as hardness and tensile properties can be balanced. In contrast, normally obtained coal ash has an average particle size of 3
Large particles of about 10 to 10 μm. If this was used as it was, a decrease in tensile properties was expected, and the expected results were obtained in experiments. Therefore, as a result of further experiments in order to optimize the particle size of coal ash, it was found that mechanical properties were balanced and air non-permeability was excellent except for large particles, that is, large particles exceeding 7 μm. Was confirmed, and the present invention has been achieved.
【0006】すなわち、本発明のインナーライナー用ゴ
ム組成物は、天然ゴム、ブタジエンゴム、スチレン・ブ
タジエンゴム、イソプレンゴムおよびブチルゴムから選
ばれた少なくとも1種のジエン系ゴム100重量部に対
し、平均粒子径3〜7μmの石炭灰5〜30重量部を配
合してなる組成物である。That is, the rubber composition for an inner liner of the present invention has an average particle size of 100 parts by weight of at least one diene rubber selected from natural rubber, butadiene rubber, styrene / butadiene rubber, isoprene rubber and butyl rubber. It is a composition comprising 5 to 30 parts by weight of coal ash having a diameter of 3 to 7 μm.
【0007】[0007]
【発明の実施の形態】以下にまず、本発明のインナーラ
イナー用ゴム組成物を構成する各成分について詳しく説
明し、その後に、このゴム組成物を説明する。 〔ジエンゴム系〕本発明で用いられるジエン系ゴムは、
インナーライナーの基材となり、インナーライナー用ゴ
ム組成物を構成する主要な成分である。BEST MODE FOR CARRYING OUT THE INVENTION First, each component constituting the rubber composition for an inner liner of the present invention will be described in detail, and then this rubber composition will be described. (Diene rubber) Diene rubber used in the present invention,
It is a base component of the inner liner and is a main component constituting the rubber composition for the inner liner.
【0008】ジエン系ゴムとしては、特に限定はなく、
たとえば、天然ゴム(NR)、ブタジエンゴム(B
R)、スチレン・ブタジエンゴム(SBR)、イソプレ
ンゴム(IR)およびブチルゴム(IIR)から選ばれ
た少なくとも1種である。これらのうちでも、天然ゴム
と空気非透過性に優れるブチルゴムとが好ましく、その
配合割合としては、ジエン系ゴム100重量部に対し、
天然ゴム40重量部以下、ブチルゴム60重量部以上を
挙げることができる。 〔石炭灰〕本発明で用いられる石炭灰は、安価で、イン
ナーライナーの空気非透過性を高め、釣り合いのとれた
力学物性を付与する成分である。[0008] The diene rubber is not particularly limited.
For example, natural rubber (NR), butadiene rubber (B
R), styrene-butadiene rubber (SBR), isoprene rubber (IR) and butyl rubber (IIR). Among these, natural rubber and butyl rubber having excellent air impermeability are preferable, and the compounding ratio thereof is based on 100 parts by weight of the diene rubber.
Natural rubber may be 40 parts by weight or less, and butyl rubber may be 60 parts by weight or more. [Coal ash] Coal ash used in the present invention is a component that is inexpensive, enhances the air impermeability of the inner liner, and imparts balanced mechanical properties.
【0009】石炭灰は、石炭を燃焼させた後に残る燃か
すであり、シリカ(SiO2)、アルミナ(Al
2O3)、酸化第二鉄(Fe2O3)および酸化カルシウム
(CaO)を主成分とし、これらの合計が全体の90重
量%以上であるものが好ましく、シリカが全体の50重
量%以上であるものがさらに好ましい。石炭灰は、上記
主成分以外に、酸化マグネシウム(MgO)、酸化カリ
ウム(K2O)、酸化ナトリウム(Na2O)、三酸化硫
黄や、未燃炭素等をさらに含む組成からなる。 石炭灰
の組成や性状については、石炭の種類、産炭地や燃焼方
式によって異なるが、一般には、ガラス質の球状形をし
ており、その比重は砂よりも小さく、強アルカリ性を示
す。表1には、国内炭、外国炭を燃焼させて得られる石
炭灰の化学的組成の具体例を示した。Coal ash is burnt coal remaining after burning coal, and is made of silica (SiO 2 ), alumina (Al
2 O 3 ), ferric oxide (Fe 2 O 3 ), and calcium oxide (CaO) as main components, and the total of these is preferably 90% by weight or more, and silica is 50% by weight or more of the whole. Is more preferable. The coal ash has a composition further containing magnesium oxide (MgO), potassium oxide (K 2 O), sodium oxide (Na 2 O), sulfur trioxide, unburned carbon, and the like, in addition to the above main components. The composition and properties of the coal ash vary depending on the type of coal, the coal-producing area and the combustion method, but are generally glassy, spherical, and have a specific gravity smaller than that of sand and exhibit strong alkalinity. Table 1 shows specific examples of the chemical composition of coal ash obtained by burning domestic coal and foreign coal.
【0010】[0010]
【表1】 [Table 1]
【0011】石炭灰の平均粒子径は、3〜7μmであ
り、好ましくは4〜6μmである。石炭灰の平均粒子径
が3μm未満であると、作業しにくく生産性が低下し、
配合コストが高くなる。他方、平均粒子径が7μmを超
えると、引張物性が低下し、力学物性の釣り合いが崩れ
る。石炭灰の最大粒径は、好ましくは10μm未満であ
り、さらに好ましくは8μm未満である。石炭灰の最大
粒径が10μm以上であると、引張物性が低下し、力学
物性の釣り合いが崩れるおそれがある。The average particle size of the coal ash is 3 to 7 μm, preferably 4 to 6 μm. If the average particle size of the coal ash is less than 3 μm, it is difficult to work and productivity is reduced,
The compounding cost increases. On the other hand, if the average particle diameter exceeds 7 μm, the tensile properties are reduced, and the balance of the mechanical properties is lost. The maximum particle size of the coal ash is preferably less than 10 μm, more preferably less than 8 μm. If the maximum particle size of the coal ash is 10 μm or more, the tensile properties may be reduced, and the balance of the mechanical properties may be lost.
【0012】石炭灰の比重については、特に限定はな
く、好ましくは2.3〜2.5、さらに好ましくは2.
3〜2.4である。石炭灰の比重は、ハードクレー、重
質炭酸カルシウム等の他の充填剤よりも小さく、容積単
価も安い。本発明で用いられる石炭灰は、火力発電所等
で石炭を燃焼させた後に残る燃かすを粉砕および分級し
て、安価に得ることができ、産業廃棄物である燃かすが
有効利用されるようになる。 〔インナーライナー用ゴム組成物〕本発明のインナーラ
イナー用ゴム組成物を構成する各成分の配合量について
述べる。The specific gravity of the coal ash is not particularly limited, and is preferably 2.3 to 2.5, more preferably 2.
3 to 2.4. The specific gravity of coal ash is smaller than that of other fillers such as hard clay and heavy calcium carbonate, and the unit price per unit volume is low. The coal ash used in the present invention can be obtained at low cost by crushing and classifying the combustible remaining after burning coal in a thermal power plant or the like, so that the combustible industrial waste is effectively used. Become. [Rubber composition for inner liner] The amount of each component constituting the rubber composition for inner liner of the present invention will be described.
【0013】石炭灰の配合割合は、ジエン系ゴム100
重量部に対し、石炭灰5〜30重量部であり、好ましく
は15〜25重量部である。石炭灰の配合割合が、ジエ
ン系ゴム100重量部に対して5重量部未満であると、
配合量が少なすぎ、空気非透過性が低下する。他方、ジ
エン系ゴム100重量部に対して30重量部を超える
と、引張物性が低下して力学物性の釣り合いが崩れ、亀
裂が生じる。The mixing ratio of coal ash is 100% diene rubber.
The amount is 5 to 30 parts by weight, preferably 15 to 25 parts by weight, based on parts by weight. When the compounding ratio of the coal ash is less than 5 parts by weight based on 100 parts by weight of the diene rubber,
If the amount is too small, the air impermeability decreases. On the other hand, if the amount exceeds 30 parts by weight with respect to 100 parts by weight of the diene rubber, the tensile properties are reduced, the balance of the mechanical properties is lost, and cracks occur.
【0014】本発明のインナーライナー用ゴム組成物に
は、必要に応じて、カーボンブラック、シリカ等の他の
補強剤;ナフテン系プロセスオイル等の軟化剤;イオ
ウ、不溶性イオウ、硫黄化合物等の加硫剤;酸化亜鉛、
ステアリン酸等の加硫助剤;メルカプトベンゾチアゾー
ル(MBT)、ベンゾチアジルジスルフィド(MBT
S)、N−tert−ブチル−2−ベンゾチアゾリルス
ルフェンアミド(TBBS)、N−シクロヘキシル−2
−ベンゾチアジルスルフェンアミド(CBS)等のチア
ゾール系促進剤や、ジフェニルグアニジン(DPG)等
のグアニジン系促進剤等の加硫促進剤;有機繊維;発泡
剤;老化防止剤;加硫遅延剤;ワックス等の添加剤を配
合することができる。ゴム組成物中のこれらの添加剤の
配合量は、特に制限はなく、適宜使用することができ
る。The rubber composition for an inner liner of the present invention may contain, if necessary, other reinforcing agents such as carbon black and silica; softeners such as naphthenic process oils; and additives such as sulfur, insoluble sulfur and sulfur compounds. Sulfuric acid; zinc oxide,
Vulcanization aids such as stearic acid; mercaptobenzothiazole (MBT), benzothiazyl disulfide (MBT)
S), N-tert-butyl-2-benzothiazolylsulfenamide (TBBS), N-cyclohexyl-2
-Vulcanization accelerators such as thiazole accelerators such as benzothiazylsulfenamide (CBS) and guanidine accelerators such as diphenylguanidine (DPG); organic fibers; foaming agents; aging inhibitors; An additive such as wax can be blended. The amounts of these additives in the rubber composition are not particularly limited, and can be appropriately used.
【0015】本発明のインナーライナー用ゴム組成物の
製造方法としては、公知の方法を適用することができ
る。上記各成分を、たとえば、バンバリーミキサーや、
二軸ローラー等の混練機等を用いて混練し、得られた混
練物をカレンダー押出機等を用いて押出す等の通常の方
法で、混練、押出等を行うことによって得られる。本発
明のインナーライナー用ゴム組成物を用いて成形加硫す
ることによって、安価で、空気非透過性に優れたインナ
ーライナーを有するタイヤが得られる。As a method for producing the rubber composition for an inner liner of the present invention, a known method can be applied. Each of the above components, for example, Banbury mixer,
It is obtained by kneading using a kneading machine such as a twin-screw roller or the like, and kneading, extruding or the like by a usual method such as extruding the obtained kneaded material using a calendar extruder or the like. By molding and vulcanizing using the rubber composition for an inner liner of the present invention, a tire having an inner liner which is inexpensive and has excellent air impermeability can be obtained.
【0016】[0016]
【実施例】以下に本発明の具体的な実施例および比較例
を示すが、本発明は下記実施例に限定されない。以下
で、「部」は「重量部」、「%」は「重量%」を示す。 −実施例A1− 天然ゴム(RSS#3、TECK BEE HANG社
製)70部、スチレン・ブタジエンゴム(SBR150
2、住友化学社製)30部、カーボンブラックGPF
(ダイヤブラックN660、三菱化学社製)40部、石
炭灰A(FA10、テクノ・リソース社製;平均粒子
径:4.8μm、最大粒子径:10μm、比重:2.
4)20部、粘着付与剤(ハイレッツG100X、三井
石油化学社製)2部、加硫助剤としてのステアリン酸2
部および酸化亜鉛3部、アロマテックオイル5部、加硫
剤としてのイオウ1.5部および加硫促進剤(サンセラ
ーNS、三新化学社製)1部を用意し、270リットル
のバンバリーミキサー(神戸製鋼社製)を用いて、15
0℃で5分間混練した。次に、カレンダー押出機(中田
エンジニアリング社製)を用いて、得られた混練物を押
し出して、ゴム組成物(A1)を調製した。The present invention will be described in more detail with reference to the following Examples and Comparative Examples. However, the present invention is not limited to the following Examples. Hereinafter, “parts” indicates “parts by weight” and “%” indicates “% by weight”. Example A1-70 parts of natural rubber (RSS # 3, manufactured by TECK BEE HANG), styrene-butadiene rubber (SBR150
2. Sumitomo Chemical Co., Ltd.) 30 parts, carbon black GPF
(Diablack N660, manufactured by Mitsubishi Chemical Corporation) 40 parts, coal ash A (FA10, manufactured by Techno Resources Co .; average particle diameter: 4.8 μm, maximum particle diameter: 10 μm, specific gravity: 2.
4) 20 parts, 2 parts of a tackifier (Heiretz G100X, manufactured by Mitsui Petrochemicals), stearic acid 2 as a vulcanization aid
Parts and 3 parts of zinc oxide, 5 parts of aromatic oil, 1.5 parts of sulfur as a vulcanizing agent and 1 part of a vulcanization accelerator (Sancellar NS, manufactured by Sanshin Chemical Co., Ltd.), and a 270 liter Banbury mixer ( Using Kobe Steel)
Kneaded at 0 ° C. for 5 minutes. Next, the obtained kneaded material was extruded using a calender extruder (manufactured by Nakata Engineering Co., Ltd.) to prepare a rubber composition (A1).
【0017】ゴム組成物(A1)を成形し、170℃で
12分加硫して得られたインナーライナー(A1)の硬
度、引張物性(破断強度および伸度)、亀裂成長性およ
びタイヤ空気非透過性を、以下の評価方法で性能を評価
した。ゴム組成物(A1)の配合コストを以下の評価方
法で評価した。これらの結果を表2に示す。 <評価方法>硬度 JIS−HSにしたがって、測定した。引張物性 JIS K6251に基づくダンベル3号形を上記イン
ナーライナーと同条件で成形し、破断強度(単位:MP
a)および伸度(単位:%)を測定した。亀裂成長性 JIS K−6260にしたがって測定した。実施例A
1および比較例A1〜A6では比較例A6を100、実
施例B1および比較例B1〜B6では比較例B6を10
0とする指数で測定結果を算出した。指数が大きいほ
ど、亀裂が生じにくく、良好である。なお、比較例A6
およびB6を100したのは、比較例A6については実
施例A1、比較例B6については実施例B1と硬度が同
じ値であり、亀裂成長性を比較しやすいからである。タイヤ空気非透過性 インナーライナーを装着し、リム組みしたタイヤ(18
5/65 R14)にブルドン管式圧力計を取り付け、
初期圧力(P0)を測定した後、21±2℃の室内で9
0日間放置し、90日後の圧力(P90)を測定した。P
0およびP90から、1月当たりの空気圧力ロス率(%)
を下式にしたがって計算した。測定結果は指数で表示
し、実施例A1および比較例A1〜A6では比較例A6
を100、実施例B1および比較例B1〜B6では比較
例B6を100とした。指数が小さいほど、空気が透過
しにくく、良好である。なお、比較例A6およびB6を
100したのは、比較例A6については実施例A1、比
較例B6については実施例B1と硬度が同じ値であり、
空気非透過性を比較しやすいからである。The rubber composition (A1) is molded and vulcanized at 170 ° C. for 12 minutes. The hardness, tensile properties (rupture strength and elongation), crack growth and tire airness of the inner liner (A1) are obtained. The permeability was evaluated for performance by the following evaluation method. The compounding cost of the rubber composition (A1) was evaluated by the following evaluation method. Table 2 shows the results. <Evaluation method> Hardness was measured according to JIS-HS. Tensile properties A dumbbell No. 3 based on JIS K6251 was molded under the same conditions as the inner liner, and the breaking strength (unit: MP)
a) and elongation (unit:%) were measured. Crack growth was measured according to JIS K-6260. Example A
In Comparative Example A1 and Comparative Examples A1 to A6, Comparative Example A6 was 100, and in Example B1 and Comparative Examples B1 to B6, Comparative Example B6 was 10.
The measurement result was calculated with an index of 0. The higher the index, the better the cracks are less likely to occur. Comparative Example A6
The reason why B6 is set to 100 is that the hardness of Comparative Example A6 is the same as that of Example A1 and that of Comparative Example B6 is the same as that of Example B1, and the crack growth properties are easily compared. A rim-mounted tire (18) with a tire air-impermeable inner liner
Attach a Bourdon tube pressure gauge to 5/65 R14)
After measuring the initial pressure (P 0 ), 9
It was left for 0 days, and the pressure (P 90 ) after 90 days was measured. P
0 and P 90, the air pressure loss rate per month (%)
Was calculated according to the following equation. The measurement results are indicated by indices. In Example A1 and Comparative Examples A1 to A6, Comparative Example A6 was used.
Was 100, and Comparative Example B6 was 100 in Example B1 and Comparative Examples B1 to B6. The smaller the index, the better the air is less likely to penetrate. It should be noted that the comparative examples A6 and B6 were 100 because the hardness of the comparative example A6 was the same as that of the example A1 and the comparative example B6 was the same as that of the example B1.
This is because it is easy to compare the air non-permeability.
【0018】1月当たりの空気圧力ロス率(%)=
〔(P0−P90)/P0〕×100×(30/90)配合コスト 各実施例および比較例で、配合ゴム1リットル当たりの
単価を計算した。計算結果を指数で表示し、実施例A1
および比較例A1〜A6では比較例A6を100、実施
例B1および比較例B1〜B6では比較例B6を100
とした。なお、比較例A6およびB6を100したの
は、これらでは安価である材料が配合されていないた
め、配合コストが一番高く、比較しやすいからである。Air pressure loss rate per month (%) =
[(P 0 -P 90 ) / P 0 ] × 100 × (30/90) Compounding cost The unit price per liter of compounded rubber was calculated in each of Examples and Comparative Examples. Example A1 shows the calculation result as an index.
In Comparative Examples A1 to A6, Comparative Example A6 was 100, and in Example B1 and Comparative Examples B1 to B6, Comparative Example B6 was 100.
And The reason why the comparative examples A6 and B6 are set to 100 is that since inexpensive materials are not blended in these, the blending cost is highest and the comparison is easy.
【0019】−比較例A1〜A4− 実施例A1で、石炭灰Aを表2にそれぞれ示した充填剤
に変更する以外は実施例A1と同様にして、比較ゴム組
成物(A1)〜(A4)を調製し、実施例A1と同様の
方法で評価した。その結果をそれぞれ表2に示す。な
お、重質炭酸カルシウムとしては、白石カルシウム社製
のホワイトンSB(平均粒子径:1.5μm、比重:
2.7);極微細表面処理炭酸カルシウムとしては、白
石カルシウム社製のハクエンカCC(平均粒子径:0.
03μm、比重:2.6);ハードクレーとしては、白
石カルシウム社製のハードクレー(平均粒子径:2.0
μm、比重:2.6);石炭灰Bとしては、テクノ・リ
ソース社製のFA20(平均粒子径:10.4μm、最
大粒子径:20μm、比重:2.4)を用いた。Comparative Examples A1 to A4- Comparative rubber compositions (A1) to (A4) were prepared in the same manner as in Example A1, except that coal ash A was changed to the fillers shown in Table 2. ) Was prepared and evaluated in the same manner as in Example A1. Table 2 shows the results. In addition, as heavy calcium carbonate, Whiten SB (average particle diameter: 1.5 μm, specific gravity:
2.7); As the ultrafine surface-treated calcium carbonate, Hakuenka CC (average particle diameter: 0.
03 μm, specific gravity: 2.6); Hard clay manufactured by Shiraishi Calcium Co. (average particle diameter: 2.0)
μm, specific gravity: 2.6); As coal ash B, FA20 (average particle diameter: 10.4 μm, maximum particle diameter: 20 μm, specific gravity: 2.4) manufactured by Techno Resource Co., Ltd. was used.
【0020】−比較例A5− 実施例A1で、カーボンブラックGPFおよび石炭灰A
の配合量を表2に示す量に変更する以外は、実施例A1
と同様にして、比較ゴム組成物(A5)を調製し、実施
例A1と同様の方法で評価した。その結果を表2に示
す。 −比較例A6− 実施例A1で、カーボンブラックGPFおよび石炭灰A
の配合量を表2に示す量に変更する以外は、実施例A1
と同様にして、比較ゴム組成物(A6)を調製し、実施
例A1と同様の方法で評価した。その結果を表2に示
す。Comparative Example A5- Carbon black GPF and coal ash A in Example A1
Example A1 except that the compounding amount of was changed to the amount shown in Table 2.
In the same manner as in Example 1, a comparative rubber composition (A5) was prepared and evaluated in the same manner as in Example A1. Table 2 shows the results. -Comparative Example A6- In Example A1, carbon black GPF and coal ash A
Example A1 except that the compounding amount of was changed to the amount shown in Table 2.
In the same manner as in Example 1, a comparative rubber composition (A6) was prepared and evaluated in the same manner as in Example A1. Table 2 shows the results.
【0021】−比較例A7− 実施例A1で、石炭灰Aの配合量を表2に示す量に変更
する以外は、実施例A1と同様にして、比較ゴム組成物
(A7)を調製し、実施例A1と同様の方法で評価し
た。その結果を表2に示す。 −比較例A8− 実施例A1で、石炭灰Aを石炭灰Cに示す量に変更する
以外は、実施例A1と同様にして、比較ゴム組成物(A
7)を調製し、実施例A1と同様の方法で評価した。そ
の結果を表2に示す。なお、石炭灰Cとしては、テクノ
・リソース社製のFA10(石炭灰A)をさらに分級し
て得られた小粒径物(平均粒子径:2.5μm、最大粒
子径:6μm、比重:2.4)を用いた。Comparative Example A7 A comparative rubber composition (A7) was prepared in the same manner as in Example A1, except that the amount of coal ash A was changed to the amount shown in Table 2. Evaluation was performed in the same manner as in Example A1. Table 2 shows the results. -Comparative Example A8-A comparative rubber composition (A) was prepared in the same manner as in Example A1 except that the amount of coal ash A was changed to that shown in coal ash C in Example A1.
7) was prepared and evaluated in the same manner as in Example A1. Table 2 shows the results. As the coal ash C, a small particle (average particle diameter: 2.5 μm, maximum particle diameter: 6 μm, specific gravity: 2) obtained by further classifying FA10 (coal ash A) manufactured by Techno Resources Co., Ltd. .4) was used.
【0022】[0022]
【表2】 [Table 2]
【0023】上記表2では、粘着付与剤、加硫助剤、ア
ロマテックオイル、加硫剤および加硫促進剤の配合量は
記載していないが、すべて実施例A1と同量配合した。 <評価結果>実施例A1では、同じ硬度の比較例A6よ
りも、安価で、釣り合いのとれた力学物性を有し、タイ
ヤ空気非透過性に優れている。In Table 2 above, the amounts of the tackifier, vulcanization aid, aromatech oil, vulcanizing agent and vulcanization accelerator are not described, but all were blended in the same amounts as in Example A1. <Evaluation Results> Example A1 is less expensive, has balanced mechanical properties, and has excellent tire air impermeability than Comparative Example A6 having the same hardness.
【0024】実施例A1では、充填剤の種類が異なる比
較例A1〜A3よりも、配合コストが低く、安価であ
る。実施例A1では、平均粒子径が7μmを超える石炭
灰Bを用いた比較例A4や、石炭灰Aの配合量が多い比
較例A5よりも、亀裂が生じにくく、引張物性が高くて
釣り合いのとれた力学物性を有している。In Example A1, the compounding cost is lower and lower than in Comparative Examples A1 to A3 in which the type of filler is different. In Example A1, cracks are less likely to occur and tensile properties are higher than in Comparative Example A4 using coal ash B having an average particle diameter of more than 7 μm or Comparative Example A5 in which the blending amount of coal ash A is large, and the balance is high. Mechanical properties.
【0025】実施例A1では、石炭灰Aの配合量が少な
い比較例A7よりも、安価で、タイヤ空気非透過性が高
く、また、平均粒子径が3μm未満の石炭灰Cを用いた
比較例A8よりも、安価である。 −実施例B1− 実施例A1で、スチレン・ブタジエンゴムをブチルゴム
(クロロブチルHT1068、住友化学社製)に変更す
る以外は実施例A1と同様にして、ゴム組成物(B1)
を調製し、実施例A1と同様の方法で評価した。その結
果を表3に示す。In Example A1, a comparative example using coal ash C, which is less expensive, has higher tire air impermeability and has an average particle diameter of less than 3 μm, is lower than Comparative Example A7 in which the blending amount of coal ash A is small. It is cheaper than A8. -Example B1-A rubber composition (B1) was prepared in the same manner as in Example A1, except that the styrene-butadiene rubber was changed to butyl rubber (chlorobutyl HT1068, manufactured by Sumitomo Chemical Co., Ltd.).
Was prepared and evaluated in the same manner as in Example A1. Table 3 shows the results.
【0026】−比較例B1〜B4− 実施例B1で、石炭灰Aを表3にそれぞれ示した充填剤
に変更する以外は実施例B1と同様にして、比較ゴム組
成物(B1)〜(B4)を調製し、実施例B1と同様の
方法で評価した。その結果をそれぞれ表3に示す。な
お、重質炭酸カルシウムは白石カルシウム社製のホワイ
トンSB(平均粒子径:1.5μm、比重:2.7)、
極微細表面処理炭酸カルシウムは白石カルシウム社製の
ハクエンカCC(平均粒子径:0.03μm、比重:
2.6)、ハードクレーは白石カルシウム社製のハード
クレー(平均粒子径:2.0μm、比重:2.6)、石
炭灰Bはテクノ・リソース社製のFA20(平均粒子
径:10.4μm、最大粒子径:20μm、比重:2.
4)を用いた。Comparative Examples B1 to B4 Comparative rubber compositions (B1) to (B4) were prepared in the same manner as in Example B1, except that coal ash A was changed to the fillers shown in Table 3. ) Was prepared and evaluated in the same manner as in Example B1. Table 3 shows the results. The heavy calcium carbonate was Whiten SB (average particle diameter: 1.5 μm, specific gravity: 2.7) manufactured by Shiraishi Calcium Co., Ltd.
The ultra-fine surface-treated calcium carbonate is Hakuenka CC (average particle size: 0.03 μm, specific gravity:
2.6), the hard clay is a hard clay manufactured by Shiraishi Calcium Co. (average particle diameter: 2.0 μm, specific gravity: 2.6), and the coal ash B is FA20 manufactured by Techno Resource Co. (average particle diameter: 10.4 μm) , Maximum particle diameter: 20 μm, specific gravity: 2.
4) was used.
【0027】−比較例B5− 実施例B1で、カーボンブラックGPFおよび石炭灰A
の配合量を表3に示す量に変更する以外は、実施例B1
と同様にして、比較ゴム組成物(B5)を調製し、実施
例B1と同様の方法で評価した。その結果を表3に示
す。 −比較例B6− 実施例B1で、カーボンブラックGPFおよび石炭灰A
の配合量を表3に示す量に変更する以外は、実施例B1
と同様にして、比較ゴム組成物(B6)を調製し、実施
例B1と同様の方法で評価した。その結果を表3に示
す。Comparative Example B5- Carbon black GPF and coal ash A in Example B1
Example B1 except that the blending amount of was changed to the amount shown in Table 3.
In the same manner as in Example 1, a comparative rubber composition (B5) was prepared and evaluated in the same manner as in Example B1. Table 3 shows the results. -Comparative Example B6- Carbon black GPF and coal ash A in Example B1
Example B1 except that the blending amount of was changed to the amount shown in Table 3.
In the same manner as in Example B1, a comparative rubber composition (B6) was prepared and evaluated in the same manner as in Example B1. Table 3 shows the results.
【0028】−比較例B7− 実施例B1で、石炭灰Aの配合量を表3に示す量に変更
する以外は、実施例B1と同様にして、比較ゴム組成物
(B7)を調製し、実施例B1と同様の方法で評価し
た。その結果を表3に示す。 −比較例B8− 実施例B1で、石炭灰Aを石炭灰Cに示す量に変更する
以外は、実施例B1と同様にして、比較ゴム組成物(B
7)を調製し、実施例A1と同様の方法で評価した。そ
の結果を表3に示す。Comparative Example B7 A comparative rubber composition (B7) was prepared in the same manner as in Example B1, except that the amount of coal ash A was changed to the amount shown in Table 3 in Example B1. Evaluation was performed in the same manner as in Example B1. Table 3 shows the results. -Comparative Example B8- A comparative rubber composition (B) was prepared in the same manner as in Example B1 except that the amount of coal ash A was changed to that shown in coal ash C in Example B1.
7) was prepared and evaluated in the same manner as in Example A1. Table 3 shows the results.
【0029】[0029]
【表3】 [Table 3]
【0030】上記表3では、粘着付与剤、加硫助剤、ア
ロマテックオイル、加硫剤および加硫促進剤の配合量は
記載していないが、すべて実施例B1と同量配合した。 <評価結果> 実施例B1では、同じ硬度の比較例B6よりも、安価
で、釣り合いのとれた力学物性を有し、タイヤ空気非透
過性に優れている。In Table 3 above, the amounts of tackifier, vulcanization aid, aromatech oil, vulcanizing agent and vulcanization accelerator are not described, but all were mixed in the same amounts as in Example B1. <Evaluation Results> Example B1 is less expensive, has balanced mechanical properties, and is excellent in tire air impermeability than Comparative Example B6 having the same hardness.
【0031】実施例B1では、充填剤の種類が異なる比
較例B1〜B3よりも、配合コストが低く、安価であ
る。実施例B1では、平均粒子径が7μmを超える石炭
灰Bを用いた比較例B4や、石炭灰Aの配合量が多い比
較例B5よりも、亀裂が生じにくく、引張物性が高くて
釣り合いのとれた力学物性を有している。In Example B1, the compounding cost is lower and lower than in Comparative Examples B1 to B3 in which the type of filler is different. In Example B1, cracks are less likely to occur, and the tensile properties are higher and more balanced than Comparative Example B4 using coal ash B having an average particle diameter of more than 7 μm or Comparative Example B5 having a large amount of coal ash A. Mechanical properties.
【0032】実施例B1では、石炭灰Aの配合量が少な
い比較例B7よりも、安価で、タイヤ空気非透過性が高
く、また、平均粒子径が3μm未満の石炭灰Cを用いた
比較例B8よりも、安価である。In Example B1, a comparative example using coal ash C, which is less expensive, has higher tire air impermeability, and has an average particle diameter of less than 3 μm, is lower than Comparative Example B7 in which the amount of coal ash A is small. It is cheaper than B8.
【0033】[0033]
【発明の効果】本発明にかかるインナーライナー用ゴム
組成物は、石炭灰を有効利用することにより、安価で、
しかも、釣り合いのとれた力学物性を有し、空気非透過
性に優れたインナーライナーの製造に用いることができ
る。このインナーライナーを用いると、インナーライナ
ーゲージを減少させることも可能であり、タイヤ製造の
コストも低下させることができる。石炭灰は、その大部
分が産業廃棄物として埋め立て投棄されているのが現状
であるが、このゴム組成物を構成する成分として有効利
用されるようになる。The rubber composition for an inner liner according to the present invention is inexpensive by effectively utilizing coal ash,
Moreover, it can be used for producing an inner liner having balanced mechanical properties and excellent air impermeability. When this inner liner is used, the inner liner gauge can be reduced, and the cost of tire production can be reduced. At present, most of coal ash is landfilled and discarded as industrial waste, but it will be effectively used as a component of this rubber composition.
Claims (1)
タジエンゴム、イソプレンゴムおよびブチルゴムから選
ばれた少なくとも1種のジエン系ゴム100重量部に対
し、平均粒子径3〜7μmの石炭灰5〜30重量部を配
合してなる、インナーライナー用ゴム組成物。1 to 5 parts by weight of coal ash having an average particle diameter of 3 to 7 μm per 100 parts by weight of at least one diene rubber selected from natural rubber, butadiene rubber, styrene / butadiene rubber, isoprene rubber and butyl rubber. A rubber composition for an inner liner, wherein the rubber composition comprises parts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10203816A JP2000034366A (en) | 1998-07-17 | 1998-07-17 | Rubber composition for inner liner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10203816A JP2000034366A (en) | 1998-07-17 | 1998-07-17 | Rubber composition for inner liner |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000034366A true JP2000034366A (en) | 2000-02-02 |
Family
ID=16480204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10203816A Withdrawn JP2000034366A (en) | 1998-07-17 | 1998-07-17 | Rubber composition for inner liner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000034366A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005009763A1 (en) * | 2003-07-28 | 2005-02-03 | The Yokohama Rubber Co.,Ltd. | Pneumatic tire |
EP1700882A1 (en) * | 2005-03-08 | 2006-09-13 | Sumtiomo Rubber Industries Ltd | Rubber composition for inner liner and tire comprising the same |
JP2006299205A (en) * | 2005-04-25 | 2006-11-02 | Chugoku Koatsu Concrete Kogyo Kk | Water-stop material for concrete |
JP2006341705A (en) * | 2005-06-08 | 2006-12-21 | Sumitomo Rubber Ind Ltd | Pneumatic radial tire |
JP2009114339A (en) * | 2007-11-07 | 2009-05-28 | Toyo Tire & Rubber Co Ltd | Rubber composition and pneumatic tire |
JP2011057940A (en) * | 2009-09-14 | 2011-03-24 | Sumitomo Rubber Ind Ltd | Rubber composition for inner liner of racing tire and racing tire |
KR20160042220A (en) * | 2014-10-07 | 2016-04-19 | 금호타이어 주식회사 | Rubber composite of tyre with fly ash |
JP6209649B1 (en) * | 2016-06-10 | 2017-10-04 | 南国興産株式会社 | Filler for rubber compound |
-
1998
- 1998-07-17 JP JP10203816A patent/JP2000034366A/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005009763A1 (en) * | 2003-07-28 | 2005-02-03 | The Yokohama Rubber Co.,Ltd. | Pneumatic tire |
EP1700882A1 (en) * | 2005-03-08 | 2006-09-13 | Sumtiomo Rubber Industries Ltd | Rubber composition for inner liner and tire comprising the same |
US7863371B2 (en) | 2005-03-08 | 2011-01-04 | Sumitomo Rubber Industries, Ltd. | Rubber composition for inner liner and tire comprising the same |
JP2006299205A (en) * | 2005-04-25 | 2006-11-02 | Chugoku Koatsu Concrete Kogyo Kk | Water-stop material for concrete |
JP2006341705A (en) * | 2005-06-08 | 2006-12-21 | Sumitomo Rubber Ind Ltd | Pneumatic radial tire |
JP2009114339A (en) * | 2007-11-07 | 2009-05-28 | Toyo Tire & Rubber Co Ltd | Rubber composition and pneumatic tire |
JP2011057940A (en) * | 2009-09-14 | 2011-03-24 | Sumitomo Rubber Ind Ltd | Rubber composition for inner liner of racing tire and racing tire |
KR20160042220A (en) * | 2014-10-07 | 2016-04-19 | 금호타이어 주식회사 | Rubber composite of tyre with fly ash |
KR101696033B1 (en) | 2014-10-07 | 2017-01-13 | 금호타이어 주식회사 | Rubber composite of tyre with fly ash |
JP6209649B1 (en) * | 2016-06-10 | 2017-10-04 | 南国興産株式会社 | Filler for rubber compound |
JP2017218549A (en) * | 2016-06-10 | 2017-12-14 | 南国興産株式会社 | Filler for rubber compound |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007169431A (en) | Rubber composition for side wall | |
JP2010248423A (en) | Rubber composition and tire using the same | |
KR20070009401A (en) | Rubber composition and process for preparing the same | |
JP2007191677A (en) | Rubber composition and tire having clinch and/or apex using the same | |
JP5552730B2 (en) | Rubber composition for undertread | |
JP2000034366A (en) | Rubber composition for inner liner | |
JP2009073886A (en) | Rubber composition for racing tire and racing tire with tread obtained using the same | |
JP2007177111A (en) | Rubber composition for coating carcass cord and tire using the same | |
JP6619965B2 (en) | Modified diene rubber, rubber composition, tire, modified diene rubber production method and additive | |
JP4208564B2 (en) | Rubber composition for tire tread | |
JP4402535B2 (en) | Rubber composition and pneumatic tire using the same | |
JP2012153758A (en) | Production method for rubber composition for tire | |
JP2009263478A (en) | Rubber composition and tire using the same | |
JP2010241960A (en) | Rubber composition for inner liner and tire | |
JP2005105007A (en) | Rubber composition and pneumatic tire | |
JP4268946B2 (en) | Side reinforcing rubber composition and run-flat tire using the same | |
JP2007084793A (en) | Rubber composition for side reinforcement and run flat tire using the same | |
JP4462862B2 (en) | Rubber composition | |
JP2003041059A (en) | Rubber composition for tire tread | |
JP5164384B2 (en) | Processed powder rubber, rubber composition and pneumatic tire using the same | |
JP2003183442A (en) | Rubber composition and tire using the same | |
JP2008013584A (en) | Rubber composition for tire inner liner, and pneumatic tire | |
JP2005113027A (en) | Rubber composition for inner liner and pneumatic tire using the same | |
JP2007246710A (en) | Rubber composition for sidewall | |
JP2005060442A (en) | Rubber composition for inner liner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050425 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20061107 |