JP2008208250A - Vinyl chloride-based resin molded form - Google Patents
Vinyl chloride-based resin molded form Download PDFInfo
- Publication number
- JP2008208250A JP2008208250A JP2007047363A JP2007047363A JP2008208250A JP 2008208250 A JP2008208250 A JP 2008208250A JP 2007047363 A JP2007047363 A JP 2007047363A JP 2007047363 A JP2007047363 A JP 2007047363A JP 2008208250 A JP2008208250 A JP 2008208250A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- vinyl chloride
- impact resistance
- parts
- chloride resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は塩化ビニル系樹脂成形体に関し、特に、難燃性と耐衝撃性を併せ持った塩化ビニル系樹脂成形体に関する。 The present invention relates to a vinyl chloride resin molded body, and particularly to a vinyl chloride resin molded body having both flame retardancy and impact resistance.
塩化ビニル樹脂は成形性が良く、安価であり、耐薬品性も良好であるため、工業用材料をはじめあらゆる分野に広く利用されている。 Since vinyl chloride resin has good moldability, is inexpensive, and has good chemical resistance, it is widely used in various fields including industrial materials.
かかる塩化ビニル樹脂の成形体は、塩素を多量に含むため良好な難燃性を有しているが、火災等により200℃以上の高温に晒されると、熱分解を起こして多量の発煙を生じると同時に、塩素ガスや塩化水素ガスなどの腐食性ガスを発生する。そこで、これを防止するため、従来からリン系難燃剤やハロゲン系難燃剤、或いは、水酸化マグネシウム等の含水化合物を塩化ビニル樹脂に添加して、その難燃性を向上させている。また、本出願人も、塩化ビニル系樹脂に酸化チタンをかなり多量に含有させて難燃性を高めた塩化ビニル系樹脂成形体を既に提案している(特許文献1)。 Such a molded body of vinyl chloride resin has good flame retardancy because it contains a large amount of chlorine, but when it is exposed to a high temperature of 200 ° C. or more due to a fire or the like, it causes thermal decomposition and generates a large amount of smoke. At the same time, corrosive gases such as chlorine gas and hydrogen chloride gas are generated. Therefore, in order to prevent this, a flame retardant is conventionally improved by adding a phosphorus flame retardant, a halogen flame retardant, or a water-containing compound such as magnesium hydroxide to the vinyl chloride resin. In addition, the present applicant has already proposed a vinyl chloride resin molded article in which a considerably large amount of titanium oxide is contained in a vinyl chloride resin to enhance flame retardancy (Patent Document 1).
一方、塩素含有率60〜70質量%の塩化ビニル系樹脂40〜70質量%と、アクリルゴム、塩素化ポリエチレン、AES樹脂の群から選ばれる少なくとも一種の衝撃改良剤10〜40質量部と、スチレン系化合物とシアン化ビニル系化合物との共重合体15〜40質量%と、ヒンダードアミン系光安定剤0.01〜5質量%とからなる組成とし、良好な耐候性、耐衝撃性、耐熱性、難燃性を付与した塩化ビニル系樹脂組成物も知られている(特許文献2)。
しかしながら、従来のように難燃剤や含水化合物を塩化ビニル系樹脂に含有させたり、特許文献1のように酸化チタンを塩化ビニル系樹脂に含有させると、難燃性は向上するけれども、機械的強度、特に耐衝撃強度の低下を招くという問題がある。 However, when a flame retardant or a water-containing compound is contained in a vinyl chloride resin as in the prior art, or titanium oxide is contained in a vinyl chloride resin as in Patent Document 1, the flame resistance is improved, but the mechanical strength is increased. In particular, there is a problem that the impact strength is reduced.
一方、特許文献2の塩化ビニル系樹脂組成物は、難燃性を付与するために高塩素化度の塩化ビニル系樹脂を用いており、このような高塩素化度の塩化ビニル系樹脂は耐衝撃性に劣るものであるが、これをカバーするためにアクリルゴム、塩素化ポリエチレン、AES樹脂などの衝撃改良剤を加えているので、ASTM D−256に準拠して測定した23℃での耐衝撃強度は悪くない。けれども、0℃以下の低温域における耐衝撃強度の良否は不明であり、衝撃改良剤がどの程度のガラス転移点となるように合成されたものであるかが開示されていないので、低温域での耐衝撃強度の良否を推測することはできない。仮に、衝撃改良剤のガラス転移点がそれほど低くなければ(例えば−20〜−30℃程度であれば)、低温域(例えば−20℃付近)での耐衝撃強度は大幅に低下し、良好な耐衝撃性を期待することはできない。 On the other hand, the vinyl chloride resin composition of Patent Document 2 uses a vinyl chloride resin having a high chlorination degree in order to impart flame retardancy. Although it is inferior in impact, impact modifiers such as acrylic rubber, chlorinated polyethylene, and AES resin are added to cover this, so resistance to resistance at 23 ° C. measured in accordance with ASTM D-256. Impact strength is not bad. However, the quality of impact strength in a low temperature range of 0 ° C. or lower is unclear, and it is not disclosed how much the impact modifier is synthesized to have a glass transition point. The quality of the impact strength cannot be estimated. If the glass transition point of the impact modifier is not so low (for example, about −20 to −30 ° C.), the impact resistance strength in the low temperature range (for example, around −20 ° C.) is greatly reduced and good. Impact resistance cannot be expected.
本発明は上記事情の下になされたもので、その解決しようとする課題は、FM4910の難燃性テスト(FMRC)に合格できる難燃性と、常温から低温域に至るまでの良好な耐衝撃性とを併せ持った塩化ビニル系樹脂成形体を提供することにある。 The present invention has been made under the above circumstances, and the problems to be solved are flame retardancy that can pass the flame retardancy test (FMRC) of FM4910, and good impact resistance from room temperature to low temperature range. Another object of the present invention is to provide a vinyl chloride resin molded body having both properties.
上記課題を解決するため、本発明に係る塩化ビニル系樹脂成形体は、成形体中の有機成分に占める塩素の比率が50〜64質量%の塩化ビニル系樹脂成形体であって、ガラス転移点が−55℃以下のゴム成分とポリメタクリル酸メチル成分とが共重合した耐衝撃改良剤を、塩化ビニル系樹脂100質量部に対して8〜15質量部含有させたことを特徴とするものである。 In order to solve the above problems, a vinyl chloride resin molded body according to the present invention is a vinyl chloride resin molded body having a chlorine ratio of 50 to 64% by mass in the organic component in the molded body, and has a glass transition point. Is characterized by containing 8 to 15 parts by mass of an impact modifier obtained by copolymerizing a rubber component having a temperature of −55 ° C. or less and a polymethyl methacrylate component with respect to 100 parts by mass of the vinyl chloride resin. is there.
本発明の塩化ビニル系樹脂成形体においては、耐衝撃改良剤に占めるゴム成分の比率が50質量%を越え、95質量%以下であることが好ましく、耐衝撃改良剤の数平均粒子径は0.10〜0.50μmであることが好ましい。そして、ゴム成分は、−55℃以下のガラス転移点を有するスチレンブタジエンゴム、シリコンゴム、アクリル酸ブチルゴムのいずれかであることが好ましい。 In the vinyl chloride resin molded article of the present invention, the ratio of the rubber component in the impact resistance improver is preferably more than 50% by mass and 95% by mass or less, and the number average particle diameter of the impact resistance improver is 0. It is preferably 10 to 0.50 μm. The rubber component is preferably any one of styrene butadiene rubber, silicon rubber, and butyl acrylate rubber having a glass transition point of −55 ° C. or lower.
本発明の塩化ビニル系樹脂成形体は、良好な難燃性と常温から低温域に至るまでの良好な耐衝撃性を併せ持ち、FM4910の難燃性テスト(FMRC)に基づいて測定した難燃指数FPIが6以下、発煙指数SDIが0.4以下であり、JIS K 7111−1に基づいて測定した23℃でのシャルピー衝撃強さが7kJ/m2以上、JIS K 7111−1に準じて測定した0℃でのシャルピー衝撃強さが5kJ/m2以上、JIS K 7111−1に準じて測定した−20℃でのシャルピー衝撃強さが4kJ/m2以上である。 The vinyl chloride resin molded article of the present invention has both good flame retardancy and good impact resistance from room temperature to low temperature range, and flame retardancy index measured based on the flame retardancy test (FMRC) of FM4910 FPI is 6 or less, smoke index SDI is 0.4 or less, Charpy impact strength at 23 ° C. measured based on JIS K 7111-1 is 7 kJ / m 2 or more, measured according to JIS K 7111-1. The Charpy impact strength at 0 ° C. is 5 kJ / m 2 or more, and the Charpy impact strength at −20 ° C. measured according to JIS K 7111-1 is 4 kJ / m 2 or more.
上記のFM4910の難燃性テスト(FMRC)とは、北米を根拠地とする産業相互保険組織(ファクトリー・ミューチアル・システム)が定める評価基準のClass Number4910として挙げられているクリーンルーム材料の難燃性テスト(FMRC Clean Room Materials Flammability Test)のことである。 The above flame retardant test (FMRC) of FM4910 is a flame retardant test of clean room materials listed as Class Number 4910 of the evaluation standard established by the industry mutual insurance organization (factory mutual system) based in North America ( FMRC Clean Room Materials Flammability Test).
本発明の塩化ビニル系樹脂成形体は、含有される耐衝撃改良剤の一方の共重合成分がポリメタクリル酸メチル成分で、耐衝撃改良剤と塩化ビニル系樹脂との相溶性が良いため、耐衝撃改良剤が均等に分散されて含有され、この耐衝撃改良剤の他方の共重合成分であるゴム成分によって耐衝撃性が高められる。特に、このゴム成分はガラス転移点が−55℃以下と低く、0℃以下の低温域(例えば−20℃)においてもゴム弾性が大幅に損なわれることがないため、常温域は勿論、0℃以下の低温域においても、前記のように良好なシャルピー衝撃強さを発揮する。このような作用効果は、塩化ビニル系樹脂100質量部に対して耐衝撃改良剤を8質量部以上含有させた場合に顕著に発揮されるが、15質量部を越えて過剰に含有させると、多量の耐衝撃改良剤によって成形体の耐熱性が低下する傾向が見られるので、15質量部以下とする必要がある。耐衝撃改良剤の含有量が8〜15質量部の範囲内であると、常温から低温域に至るまで充分なシャルピー衝撃強さを発揮できることは、後述する実施例のデータで裏付けられる。また、この塩化ビニル系樹脂成形体は、成形体中の有機成分(全有機成分)に占める塩素の比率(以下、成形体有機成分の塩素含有率という)が50〜64質量%と高いため、多量の塩素によって良好な難燃性が発揮され、しかも、難燃性を低下させる傾向にある耐衝撃改良剤の含有量が15質量部以下に抑えられているので、前記のようにFM4910の難燃性テスト(FMRC)に合格できる難燃性を有している。 In the vinyl chloride resin molded article of the present invention, one copolymer component of the contained impact resistance improver is a polymethyl methacrylate component, and the compatibility between the impact resistance improver and the vinyl chloride resin is good. The impact modifier is contained evenly dispersed, and the impact resistance is enhanced by the rubber component which is the other copolymer component of the impact modifier. In particular, the rubber component has a low glass transition point of −55 ° C. or lower, and rubber elasticity is not significantly impaired even in a low temperature range of 0 ° C. or lower (eg, −20 ° C.). Even in the following low temperature range, it exhibits good Charpy impact strength as described above. Such an effect is remarkably exhibited when the impact resistance improver is contained in an amount of 8 parts by mass or more with respect to 100 parts by mass of the vinyl chloride resin. Since there is a tendency that the heat resistance of the molded body is lowered by a large amount of the impact resistance improving agent, it is necessary to make it 15 parts by mass or less. The fact that the impact resistance improver content is in the range of 8 to 15 parts by mass can demonstrate sufficient Charpy impact strength from room temperature to a low temperature range, which is supported by the data of Examples described later. In addition, since this vinyl chloride resin molded body has a high ratio of chlorine to the organic components (total organic components) in the molded body (hereinafter referred to as the chlorine content of the molded body organic component) as high as 50 to 64% by mass, Good flame retardancy is exhibited by a large amount of chlorine, and the content of the impact modifier that tends to lower the flame retardancy is suppressed to 15 parts by mass or less. It has flame resistance that can pass the flammability test (FMRC).
特に、耐衝撃改良剤に占めるゴム成分の比率が50質量%を越え、95質量%以下であると、良好な耐衝撃性が発揮される。ゴム成分が50質量%以下と少ない場合は、耐衝撃性を充分高めることが難しく、ゴム成分が95質量%を越える場合は、ポリメタクリル酸メチル成分の不足により耐衝撃改良剤の相溶性が大幅に低下するので、やはり耐衝撃性を高めることが難しくなる。 In particular, when the ratio of the rubber component in the impact resistance improver exceeds 50 mass% and is 95 mass% or less, good impact resistance is exhibited. When the rubber component is less than 50% by mass, it is difficult to sufficiently improve the impact resistance. When the rubber component exceeds 95% by mass, the compatibility of the impact modifier is greatly increased due to the lack of the polymethyl methacrylate component. Therefore, it is difficult to improve the impact resistance.
また、耐衝撃改良剤の数平均粒子径が0.10〜0.50μmであると、耐衝撃改良剤の分散性が良好であり、そのゴム弾性によって外部からの衝撃を充分に吸収できるが、数平均粒子径が0.50μmよりも大きくなると耐衝撃改良剤の分散性が低下し、0.10μmより小さくなると外部からの衝撃を吸収し難くなるので、良好な耐衝撃性を発揮することが困難になる。 Moreover, when the number average particle diameter of the impact resistance improver is 0.10 to 0.50 μm, the dispersibility of the impact resistance improver is good, and the impact from the outside can be sufficiently absorbed by its rubber elasticity. When the number average particle size is larger than 0.50 μm, the dispersibility of the impact modifier is lowered. When the number average particle size is smaller than 0.10 μm, it is difficult to absorb external impacts, and therefore, good impact resistance can be exhibited. It becomes difficult.
以下、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
本発明の塩化ビニル系樹脂成形体は、板状、棒状、管状、異形状など所望の立体形状に成形されたものであって、塩化ビニル系樹脂を主成分とし、これに耐衝撃改良剤と、必要に応じて種々の添加剤とを適量含有させたものである。 The vinyl chloride resin molded body of the present invention is molded into a desired three-dimensional shape such as a plate shape, rod shape, tubular shape, irregular shape, etc., and has a vinyl chloride resin as a main component, and an impact resistance improver and In this case, various additives are contained in appropriate amounts as required.
この成形体の主成分となる塩化ビニル系樹脂は、1)塩素化度(「塩素化度」は塩化ビニル樹脂または後塩素化塩化ビニル樹脂単体中に含まれる塩素分の比率を示し、以下も同様とする)が58質量%以上、68%以下の後塩素化塩化ビニル樹脂、2)この後塩素化塩化ビニル樹脂に塩素化度が略56質量%の通常の塩化ビニル樹脂を混合した樹脂、3)これらの後塩素化ビニル樹脂又は混合樹脂に酢酸ビニル樹脂やアクリル樹脂等を混合した樹脂などからなるものであって、この塩化ビニル系樹脂成形体は、成形体中の全有機成分に占める塩素の比率(成形体有機成分の塩素含有率)が50〜64質量%となっている。塩化ビニル系樹脂の重合度は特に限定されないが、後塩素化塩化ビニル樹脂については、500〜1000の重合度、好ましくは600〜800の重合度を有するものが使用され、この後塩素化塩化ビニル樹脂に混合する通常の塩素化度の塩化ビニル樹脂については、500〜1400の重合度、好ましくは700〜1000の重合度を有するものが使用される。 The vinyl chloride resin that is the main component of this molded body is: 1) Degree of chlorination (“chlorination degree” indicates the proportion of chlorine contained in the vinyl chloride resin or post-chlorinated vinyl chloride resin alone, and The same) is a post-chlorinated vinyl chloride resin of 58% by mass or more and 68% or less, and 2) a resin obtained by mixing a normal vinyl chloride resin having a chlorination degree of about 56% by mass with a chlorinated vinyl chloride resin thereafter. 3) These post-chlorinated vinyl resins or mixed resins are made of a resin obtained by mixing a vinyl acetate resin, an acrylic resin, or the like, and this vinyl chloride resin molded article occupies all organic components in the molded article. The ratio of chlorine (the chlorine content of the molded body organic component) is 50 to 64% by mass. The degree of polymerization of the vinyl chloride resin is not particularly limited, but for the post-chlorinated vinyl chloride resin, those having a polymerization degree of 500 to 1000, preferably 600 to 800, are used. Thereafter, the chlorinated vinyl chloride is used. As for the vinyl chloride resin having a normal chlorination degree to be mixed with the resin, those having a polymerization degree of 500 to 1400, preferably 700 to 1000 are used.
上記のように成形体有機成分の塩素含有率が50〜64質量%であり、その主成分の後塩素化塩化ビニル樹脂やこれに混合する塩化ビニル樹脂が上記の重合度を有するものであると、多量に含まれる塩素によって難燃性が向上し、後述するように耐衝撃改良剤の含有量が15質量%以下に抑えられていることと相俟って、FM4910の難燃性テスト(FMRC)に合格する難燃性を付与することが可能となる。より好ましい成形体有機成分の塩素含有率は52〜60質量%、さらに好ましくは52〜56質量%である。 As described above, the chlorine content of the organic component of the molded body is 50 to 64% by mass, and the post-chlorinated vinyl chloride resin and the vinyl chloride resin mixed with the main component have the above degree of polymerization. In combination with the fact that the flame retardancy is improved by a large amount of chlorine, and the content of the impact modifier is suppressed to 15% by mass or less as will be described later, the flame retardancy test of FM4910 (FMRC It is possible to impart flame retardancy that passes More preferably, the chlorine content of the molded body organic component is 52 to 60% by mass, and more preferably 52 to 56% by mass.
本発明の塩化ビニル系樹脂成形体に含有させる耐衝撃改良剤は、ガラス転移点が−55℃以下のゴム成分とポリメタクリル酸メチル成分との共重合物であって、ポリメタクリル酸メチル成分によって塩化ビニル系樹脂との相溶性を高めると共に、ゴム成分によって外部からの衝撃を吸収緩和し、成形体の耐衝撃性を向上させるものである。このような耐衝撃改良剤は難燃性と耐衝撃性を両立させる観点から、塩化ビニル系樹脂100質量部に対して8〜15質量部含有させる必要があり、好ましくは8〜12質量部、更に好ましくは8〜10質量部含有させる。 The impact resistance improver contained in the vinyl chloride resin molded article of the present invention is a copolymer of a rubber component having a glass transition point of −55 ° C. or less and a polymethyl methacrylate component, and depending on the polymethyl methacrylate component. While improving compatibility with a vinyl chloride resin, the impact from the outside is absorbed and reduced by the rubber component, and the impact resistance of the molded body is improved. Such an impact resistance improving agent needs to be contained in an amount of 8 to 15 parts by mass, preferably 8 to 12 parts by mass with respect to 100 parts by mass of the vinyl chloride resin, from the viewpoint of achieving both flame retardancy and impact resistance. More preferably, 8-10 mass parts is contained.
耐衝撃改良剤のゴム成分は、0℃以下の低温域、例えば−20℃付近の低温域においても良好な耐衝撃強度を発揮させるためには、そのガラス転移点が−55℃以下であることが必要であり、ガラス転移点が−55℃よりも高いゴム成分を共重合成分とする耐衝撃改良剤は、低温域においてゴム成分のゴム弾性がかなり損なわれるため、充分な耐衝撃強度を発揮させることはできない。即ち、低温域での耐衝撃強度は、ゴム成分のガラス転移点が低いほど、大きくなると考えられる。より好ましいゴム成分のガラス転移点は、−58℃以下である。 The rubber component of the impact resistance improver has a glass transition point of −55 ° C. or lower in order to exhibit good impact strength even in a low temperature range of 0 ° C. or lower, for example, in a low temperature range near −20 ° C. The impact resistance improver that uses a rubber component having a glass transition point higher than −55 ° C. as a copolymer component significantly deteriorates the rubber elasticity of the rubber component in a low temperature range, and thus exhibits sufficient impact strength. I can't let you. That is, it is considered that the impact strength at low temperatures increases as the glass transition point of the rubber component decreases. A more preferable glass transition point of the rubber component is −58 ° C. or lower.
耐衝撃改良剤のゴム成分としては、−55℃以下のガラス転移点を有する各種のゴム成分を採用できるが、その中でも、ポリメタクリル酸メチル成分と共重合反応しやすく、ゴム弾性に優れ、難燃性に悪影響を及ぼす心配がない、−55℃以下のガラス転移点を有するスチレンブタジエンゴム、シリコンゴム、アクリル酸ブチルゴムなどが好ましく採用される。これらのゴム成分は、合成する際に成分組成や反応密度(架橋密度)などを調節して、−55℃以下のより好ましいガラス転移点となるように調整してもよい。 As the rubber component of the impact resistance improver, various rubber components having a glass transition point of −55 ° C. or less can be adopted, but among them, the copolymerization reaction with the polymethyl methacrylate component is easy, and the rubber elasticity is excellent and difficult. Styrene butadiene rubber, silicon rubber, butyl acrylate rubber or the like having a glass transition point of −55 ° C. or less that does not have a concern of adversely affecting the flammability is preferably employed. These rubber components may be adjusted so as to have a more preferable glass transition point of −55 ° C. or lower by adjusting the component composition, reaction density (crosslinking density) and the like during synthesis.
耐衝撃改良剤に占めるゴム成分の比率は、50質量%を越えて、95質量%以下であることが好ましい。ゴム成分が50質量%以下と少ない場合は、耐衝撃性を充分に高めることが難しくなり、ゴム成分が95質量%を越える場合は、ポリメタクリル酸メチル成分の不足により耐衝撃改良剤の相溶性が低下するので、やはり耐衝撃性を高めることが難しくなる。ゴム成分のより好ましい比率は60〜92質量%である。 The ratio of the rubber component in the impact resistance improver is preferably more than 50% by mass and 95% by mass or less. When the rubber component is as small as 50% by mass or less, it is difficult to sufficiently increase the impact resistance. When the rubber component exceeds 95% by mass, the compatibility of the impact modifier due to the lack of the polymethyl methacrylate component. , It becomes difficult to improve the impact resistance. A more preferable ratio of the rubber component is 60 to 92% by mass.
また、耐衝撃改良剤の数平均粒子径は0.10〜0.50μmであることが好ましい。数平均粒子径が0.50μmよりも大きくなると、耐衝撃改良剤の分散性が低下し、0.10μmより小さくなると外部からの衝撃を吸収し難くなるので、いずれの場合も良好な耐衝撃性を発揮することが困難になる。耐衝撃改良剤のより好ましい数平均粒子径は0.15〜0.40μmである。 The number average particle size of the impact modifier is preferably 0.10 to 0.50 μm. When the number average particle size is larger than 0.50 μm, the dispersibility of the impact resistance modifier is lowered, and when it is smaller than 0.10 μm, it is difficult to absorb external impacts. It becomes difficult to demonstrate. A more preferred number average particle size of the impact resistance improver is 0.15 to 0.40 μm.
本発明の成形体は、上記の耐衝撃改良剤を塩化ビニル系樹脂100質量部に対して8〜15質量部均等に含有させるため、後述する実施例のデータによって裏付けられるように、常温域から低温域まで良好な耐衝撃性を発揮し、JIS K 7111−1に基づいて測定した23℃でのシャルピー衝撃強さが7kJ/m2以上、JIS K 7111−1に準じて測定した0℃でのシャルピー衝撃強さが5kJ/m2以上、JIS K 7111−1に準じて測定した−20℃でのシャルピー衝撃強さが4kJ/m2以上となる。耐衝撃改良剤の含有量が8質量部より少ない場合は、満足な耐衝撃強度を付与することが困難となり、また、15質量部を越えて過剰に含有させる場合は、成形体の難燃性が低下する傾向が見られるので、いずれの場合も好ましくない。 Since the molded article of the present invention contains the above-mentioned impact resistance improver equally in an amount of 8 to 15 parts by mass with respect to 100 parts by mass of the vinyl chloride resin, from the room temperature range, as supported by the data of the examples described later. Excellent impact resistance up to low temperature range, Charpy impact strength at 23 ° C. measured according to JIS K 7111-1 is 7 kJ / m 2 or more, at 0 ° C. measured according to JIS K 7111-1 Charpy impact strength 5 kJ / m 2 or more, Charpy impact strength at -20 ° C. as measured in accordance with JIS K 7111-1 is 4 kJ / m 2 or more. When the content of the impact resistance improver is less than 8 parts by mass, it becomes difficult to give satisfactory impact strength, and when the content exceeds 15 parts by mass, the flame retardancy of the molded product Is not preferable in any case.
また、本発明の成形体に適宜含有させる添加剤としては、有機錫系、有機鉛系やカルシウム亜鉛系などの安定剤、アクリル系などの加工助剤、ポリエチレン系やエステル系やアクリル系などの滑剤、炭酸カルシウムや酸化チタンなどの充填剤、金属水和物(水酸化アルミニウム、水酸化マグネシウム)や三酸化アンチモンなどの難燃剤が挙げられる。添加量は、塩化ビニル系樹脂100質量部に対して、安定剤が1〜10質量部(好ましくは2〜8質量部)、加工助剤が0〜10質量部(好ましくは0.2〜3質量部)、滑剤が0.1〜5質量部(好ましくは0.1〜3質量部)、充填剤が0〜30質量部(好ましくは1〜20質量部)、難燃剤が0〜10質量部(好ましくは2〜7質量部)である。上記の添加剤のうち加工助剤、充填剤、難燃剤は、添加しなくてもよい。 Moreover, as an additive contained suitably in the molded object of this invention, stabilizers, such as an organic tin type, an organic lead type, and a calcium zinc type, a processing aid, such as an acrylic type, a polyethylene type, an ester type, an acrylic type, etc. Examples include lubricants, fillers such as calcium carbonate and titanium oxide, and flame retardants such as metal hydrates (aluminum hydroxide and magnesium hydroxide) and antimony trioxide. The added amount is 1 to 10 parts by mass (preferably 2 to 8 parts by mass) of the stabilizer and 0 to 10 parts by mass (preferably 0.2 to 3 parts) of the processing aid with respect to 100 parts by mass of the vinyl chloride resin. Mass part), the lubricant is 0.1 to 5 parts by mass (preferably 0.1 to 3 parts by mass), the filler is 0 to 30 parts by mass (preferably 1 to 20 parts by mass), and the flame retardant is 0 to 10 parts by mass. Part (preferably 2 to 7 parts by mass). Of the above additives, processing aids, fillers, and flame retardants may not be added.
本発明の塩化ビニル系樹脂成形体は、前記の塩化ビニル系樹脂100質量部に前記の耐衝撃改良剤を8〜15質量部、前記の各添加剤を前記添加量だけ加えて均等に混練し、これを公知の押出成形法や射出成形法で板状、棒状、管状、異形状など所望の立体形状に成形して製造される。また、公知のカレンダープレス法や連続プレス法によっても製造される。 The vinyl chloride resin molded article of the present invention is kneaded uniformly by adding 8 to 15 parts by mass of the impact resistance improver to 100 parts by mass of the vinyl chloride resin and adding each of the additives as described above. These are manufactured by molding them into a desired three-dimensional shape such as a plate shape, a rod shape, a tubular shape or an irregular shape by a known extrusion molding method or injection molding method. Moreover, it manufactures also by the well-known calendar press method and the continuous press method.
次に、本発明の更に具体的な実施例と比較例を説明する。 Next, more specific examples and comparative examples of the present invention will be described.
[実施例1]
塩素化度が64.5質量%、重合度が670の後塩素化塩化ビニル樹脂100質量部に対して、下記のMBS系耐衝撃改良剤Aを10質量部、ブチル錫マレート系安定剤を2.5質量部、アクリル系加工助剤を2.0質量部、エステル系滑剤を0.5質量部、アクリル系滑剤を2.0質量部、充填剤の酸化チタンを0.6質量部含有させた塩化ビニル系樹脂成形体の試験片を作製した。この試験片の成形体有機成分の塩素塩素含有率は55.0質量%である。
MBS系耐衝撃改良剤A: スチレンブタジエンゴム(SBR)とポリメタクリル酸メチルとの共重合体で、数平均粒子径が0.19μm、ゴム成分の比率が70質量%、ゴム成分のガラス転移点が−58℃である。
[Example 1]
10 parts by mass of the following MBS impact modifier A and 2 parts of butyltin malate stabilizer are added to 100 parts by mass of post-chlorinated vinyl chloride resin having a chlorination degree of 64.5% by mass and a polymerization degree of 670. 0.5 parts by mass, 2.0 parts by mass of acrylic processing aid, 0.5 parts by mass of ester lubricant, 2.0 parts by mass of acrylic lubricant, and 0.6 parts by mass of titanium oxide as a filler A test piece of a vinyl chloride resin molded body was prepared. The chlorine content of the molded body organic component of this test piece is 55.0% by mass.
MBS impact resistance improver A: a copolymer of styrene butadiene rubber (SBR) and polymethyl methacrylate, having a number average particle size of 0.19 μm, a rubber component ratio of 70% by mass, and a glass transition point of the rubber component Is -58 ° C.
この試験片についてFM4910の難燃性テスト(FMRC)を行い、難燃指数FPIと発煙指数SDIを求めた。その結果を下記の表1に示す。
また、この試験片について、JIS K 7111−1に基づいて23℃でのシャルピー衝撃強さを測定すると共に、JIS K 7111−1に準じて0℃と−20℃のシャルピー衝撃強さを測定した。その結果を下記の表1に示す。
なお、シャルピー衝撃強さの試験片はタイプAのノッチ付きのものを用い、エッジワイズ衝撃、平行衝撃によって測定を行った。
The test piece was subjected to a flame retardancy test (FMRC) of FM4910 to obtain a flame retardance index FPI and a smoke index SDI. The results are shown in Table 1 below.
For this test piece, the Charpy impact strength at 23 ° C. was measured based on JIS K 7111-1, and the Charpy impact strength at 0 ° C. and −20 ° C. was measured according to JIS K 7111-1. . The results are shown in Table 1 below.
The Charpy impact strength test piece was a type A notched test piece, which was measured by edgewise impact and parallel impact.
[実施例2]
実施例1のMBS系耐衝撃改良剤Aを下記のシリコン系耐衝撃改良剤Bに変更した以外は実施例1と同様にして塩化ビニル系樹脂成形体の試験片を作製し、この試験片について、実施例1と同様にして難燃指数FPIと、発煙指数SDIと、23℃,0℃,−20℃におけるシャルピー衝撃強さを測定した。その結果を下記の表1に併記する。なお、この試験片の成形体有機成分の塩素塩素含有率は55.0質量%である。
シリコン系耐衝撃改良剤B: シリコンゴムとポリメタクリル酸メチルとの共重合体で、数平均粒子径が0.30μm、ゴム成分の比率が90質量%、ゴム成分のガラス転移点が−125℃である。
[Example 2]
A test piece of a vinyl chloride resin molded article was prepared in the same manner as in Example 1 except that the MBS impact resistance improver A of Example 1 was changed to the following silicon impact resistance improver B. The flame retardant index FPI, the smoke index SDI, and the Charpy impact strength at 23 ° C., 0 ° C., and −20 ° C. were measured in the same manner as in Example 1. The results are also shown in Table 1 below. In addition, the chlorine-chlorine content rate of the molded body organic component of this test piece is 55.0 mass%.
Silicon-based impact modifier B: A copolymer of silicon rubber and polymethyl methacrylate, having a number average particle size of 0.30 μm, a rubber component ratio of 90% by mass, and a glass transition point of the rubber component of −125 ° C. It is.
[比較例1〜3]
実施例1のMBS系耐衝撃改良剤Aを、比較例1では下記のMBS系耐衝撃改良剤Cに変更し、比較例2では下記のシリコン系耐衝撃改良剤Dに変更し、比較例3では下記のアクリル系耐衝撃改良剤Eに変更した以外は、実施例1と同様にして比較用の塩化ビニル系樹脂成形体の試験片を作製し、比較用の各試験片について、実施例1と同様に23℃,0℃,−20℃におけるシャルピー衝撃強さを測定した。そして、比較例2の試験片について、実施例1と同様に難燃指数FPIと発煙指数SDIを求めた。その結果を下記の表1に併記する。
MBS系耐衝撃改良剤C: スチレンブタジエンゴムとポリメタクリル酸メチルとの共重合体で、数平均粒子径が0.13μm、ゴム成分の比率が50質量%、ゴム成分のガラス転移点が−58℃である。
シリコン系耐衝撃改良剤D: シリコンゴムとポリメタクリル酸メチルとの共重合体で、数平均粒子径が0.30μm、ゴム成分の比率が33質量%、ゴム成分のガラス転移点が−125℃である。
アクリル系耐衝撃改良剤E: アクリル酸ブチルゴムとポリメタクリル酸メチルとの共重合体で、数平均粒子径が0.17μm、ゴム成分の比率が90質量%、ゴム成分のガラス転移点が−54℃である。
[Comparative Examples 1-3]
The MBS impact modifier A of Example 1 was changed to the following MBS impact modifier C in Comparative Example 1, and changed to the following silicon impact modifier D in Comparative Example 2, and Comparative Example 3 Then, a test piece of a vinyl chloride resin molded article for comparison was prepared in the same manner as in Example 1 except that the acrylic impact resistance improver E described below was changed. The Charpy impact strength at 23 ° C., 0 ° C., and −20 ° C. was measured in the same manner as above. And about the test piece of the comparative example 2, the flame-retardant index FPI and the smoke generation index SDI were calculated | required similarly to Example 1. FIG. The results are also shown in Table 1 below.
MBS impact resistance improver C: a copolymer of styrene butadiene rubber and polymethyl methacrylate having a number average particle size of 0.13 μm, a rubber component ratio of 50 mass%, and a rubber component having a glass transition point of −58. ° C.
Silicone impact resistance improver D: A copolymer of silicon rubber and polymethyl methacrylate having a number average particle size of 0.30 μm, a rubber component ratio of 33% by mass, and a glass transition point of the rubber component of −125 ° C. It is.
Acrylic impact modifier E: A copolymer of butyl acrylate rubber and polymethyl methacrylate, having a number average particle size of 0.17 μm, a rubber component ratio of 90 mass%, and a glass transition point of the rubber component of −54. ° C.
この表1を見れば、耐衝撃改良剤として、数平均粒子径が0.19μm、ゴム成分がガラス転移点−58℃のスチレンブタジエンゴム、ゴム成分の占める比率が70質量%のMBS系耐衝撃改良剤Aを、塩素化度が64.5質量%の後塩素化塩化ビニル樹脂100質量部に10質量部含有させた実施例1の塩化ビニル系樹脂成形体の試験片は、FPIが4.08でFM4910の難燃性テスト(FMRC)の合格基準の6以下を満たしており、SDIも0.14で合格基準の0.4以下を満たしていることがわかる。そして、シャルピー衝撃強さも、23℃で46.38kJ/m2、0℃で12.19kJ/m2、−20℃で7.06kJ/m2であり、本発明の目標値(23℃で7kJ/m2以上、0℃で5kJ/m2以上、−20℃で4kJ/m2以上)を満たしていることがわかる。 As shown in Table 1, as an impact resistance improver, the number average particle diameter is 0.19 μm, the rubber component is a styrene butadiene rubber having a glass transition point of −58 ° C., and the proportion of the rubber component is 70% by mass. The test piece of the vinyl chloride resin molded article of Example 1 in which the improving agent A was contained in 10 parts by mass in 100 parts by mass of a post-chlorinated vinyl chloride resin having a chlorination degree of 64.5% by mass had an FPI of 4. It can be seen that 08 meets FM4910 flame retardant test (FMRC) acceptance criteria of 6 or less, and SDI is 0.14 also meets acceptance criteria of 0.4 or less. The Charpy impact strength is also, 12.19kJ / m 2 at 46.38kJ / m 2, 0 ℃ at 23 ° C., a 7.06kJ / m 2 at -20 ° C., the target value (23 ° C. of the present invention 7kJ / m 2 or more, 0 ° C. at 5 kJ / m 2 or more, it can be seen that meets the 4 kJ / m 2 or more) at -20 ° C..
また、耐衝撃改良剤として、数平均粒子径が0.30μm、ゴム成分がガラス転移点−125℃のシリコンゴム、ゴム成分の占める比率が90質量%のシリコン系耐衝撃改良剤Bを、塩素化度が64.5質量%の後塩素化塩化ビニル樹脂100質量部に10質量部含有させた実施例2の塩化ビニル系樹脂成形体の試験片も、FPIが4.83、SDIが0.11で、いずれもFM4910の難燃性テスト(FMRC)の合格基準を満たしており、また、シャルピー衝撃強さも、23℃で36.33kJ/m2、0℃で11.02kJ/m2、−20℃で10.03kJ/m2と、本発明の目標値を満たしていることがわかる。 Further, as an impact resistance improver, silicon rubber having a number average particle diameter of 0.30 μm, a rubber component having a glass transition point of −125 ° C., and a silicon-based impact resistance improver B having a rubber component ratio of 90% by mass is chlorine. The test piece of the vinyl chloride resin molded article of Example 2 containing 10 parts by mass in 100 parts by mass of post-chlorinated vinyl chloride resin having a degree of conversion of 64.5% by mass was also FPI 4.83 and SDI 0.8. 11, both satisfies the acceptance criteria of the flame retardancy test (FMRC) of FM4910, also Charpy impact strength also, 11.02kJ / m 2 at 36.33kJ / m 2, 0 ℃ at 23 ° C., - It can be seen that the target value of the present invention is satisfied, which is 10.03 kJ / m 2 at 20 ° C.
これに対し、耐衝撃改良剤として、ゴム成分(スチレンブタジエンゴム)の占める比率が50質量%と少ないMBS系耐衝撃改良剤Cを含有させた比較例1の試験片は、シャルピー衝撃強さが、23℃で3.74kJ/m2、0℃で3.33kJ/m2、−20℃で2.95kJ/m2であり、いずれも本発明の目標値を満たさないことがわかる。また、ゴム成分(シリコンゴム)の占める比率が33質量%と少ないシリコン系耐衝撃改良剤Dを含有させた比較例2の試験片は、改良剤Dの数平均粒子系が30μmと大きく、ゴム成分のガラス転移点が−125℃と低いので、ゴム成分の占める比率が33質量%と少なくても、23℃と0℃におけるシャルピー衝撃強さは目標値を満たすが、−20℃におけるシャルピー衝撃強さは3.62kJ/m2と小さく、目標値を満たすことができない。これらのことから、−20℃付近の低温域で良好なシャルピー衝撃強さを有する塩化ビニル系樹脂成形体を得るためには、ゴム成分の占める比率が50質量%を越える耐衝撃改良剤を使用する必要があることがわかる。 On the other hand, as an impact resistance improver, the test piece of Comparative Example 1 containing MBS impact resistance improver C with a rubber component (styrene butadiene rubber) occupying a small proportion of 50% by mass has a Charpy impact strength. , 3.33kJ / m 2 at 3.74kJ / m 2, 0 ℃ at 23 ° C., a 2.95kJ / m 2 at -20 ° C., either it can be seen that does not satisfy the target value of the present invention. Further, the test piece of Comparative Example 2 containing the silicon-based impact resistance improver D having a small proportion of the rubber component (silicone rubber) of 33% by mass has a large number average particle size of the improver D of 30 μm, and the rubber Since the glass transition point of the component is as low as −125 ° C., the Charpy impact strength at 23 ° C. and 0 ° C. satisfies the target value even when the ratio of the rubber component is as small as 33% by mass, but the Charpy impact at −20 ° C. The strength is as small as 3.62 kJ / m 2 and the target value cannot be satisfied. From these facts, in order to obtain a vinyl chloride resin molded article having good Charpy impact strength in a low temperature range around -20 ° C., an impact resistance improver in which the proportion of the rubber component exceeds 50% by mass is used. I know you need to do that.
また、耐衝撃改良剤として、ガラス転移点が−54℃のアクリル酸ブチルゴムをゴム成分とするアクリル系耐衝撃改良剤Eを含有させた比較例3の試験片は、耐衝撃改良剤のゴム成分の占める比率が90%と高いため、23℃におけるシャルピー衝撃強さは目標値を満たすが、ゴム成分のガラス転移点が−54℃と高いため、0℃と−20℃におけるシャルピー衝撃強さは、それぞれ4.04kJ/m2、3.234kJ/m2と小さく、目標値を満たすことができない。このことから、0℃以下の低温域で良好なシャルピー衝撃強さを有する塩化ビニル系樹脂成形体を得るためには、ガラス転移点が−55℃以下のゴム成分を有する耐衝撃改良剤を使用する必要があることがわかる。 In addition, the test piece of Comparative Example 3 containing an acrylic impact resistance improver E having a rubber component of butyl acrylate rubber having a glass transition point of −54 ° C. as an impact resistance improver is a rubber component of the impact resistance improver. Is 90%, the Charpy impact strength at 23 ° C meets the target value, but the glass transition point of the rubber component is -54 ° C, so the Charpy impact strength at 0 ° C and -20 ° C is each 4.04kJ / m 2, smaller and 3.234kJ / m 2, can not meet the target values. From this, in order to obtain a vinyl chloride resin molded article having good Charpy impact strength in a low temperature range of 0 ° C. or lower, an impact resistance improver having a rubber component having a glass transition point of −55 ° C. or lower is used. I know you need to do that.
また、シリコン系耐衝撃改良剤Dを含有させた比較例2の試験片は、耐衝撃改良剤のゴム成分の占める比率が小さいため、−20℃でのシャルピー衝撃強さの目標値を満たしていないが、実施例1や実施例2の試験片と同様に、FPIやSDIが難燃性テスト(FMRC)の合格基準をクリアしており、このことから、ゴム成分とポリメタクリル酸メチルとを共重合させた耐衝撃改良剤は、ゴム成分が多くても少なくても、耐衝撃改良剤が本発明の含有量の範囲内で含有されている限り、成形体の難燃性を低下させる恐れのないことがわかる。 Further, the test piece of Comparative Example 2 containing the silicon-based impact resistance improver D satisfies the target value of Charpy impact strength at −20 ° C. because the ratio of the rubber component of the impact resistance improver is small. However, as with the test pieces of Example 1 and Example 2, FPI and SDI cleared the acceptance criteria of the flame retardancy test (FMRC), and from this, the rubber component and polymethyl methacrylate were added. The copolymerized impact modifier may reduce the flame retardancy of the molded article, as long as the impact modifier is contained within the content range of the present invention, whether the rubber component is large or small. I understand that there is no.
[実施例3]
塩素化度が64.5質量%、重合度が670の後塩素化塩化ビニル樹脂100質量部に対して、ブチル錫マレート系安定剤を2.5質量部、アクリル系加工助剤を2.0質量部、エステル系滑剤を0.5質量部、アクリル系滑剤を2.0質量部、充填剤の酸化チタンを0.6質量部含有させたものを基本組成物とし、この基本組成物に前記のMBS系耐衝撃改良剤Aをそれぞれ6質量部、8質量部、10質量部、15質量部含有させて、MBS系耐衝撃改良剤Aの含有量が異なる4種類の塩化ビニル系樹脂成形体の試験片を作製した。
[Example 3]
The chlorination degree is 64.5% by mass, the polymerization degree is 670, and the post-chlorination vinyl chloride resin is 100 parts by mass. A basic composition containing 0.5 parts by mass of an ester lubricant, 2.0 parts by mass of an acrylic lubricant, and 0.6 parts by mass of titanium oxide as a filler is used as a basic composition. 4 types of vinyl chloride resin molded products containing 6 parts by mass, 8 parts by mass, 10 parts by mass and 15 parts by mass of MBS impact resistance improver A, respectively, and different contents of MBS impact resistance improver A A test piece was prepared.
同様に、上記の基本組成物に前記のシリコン系耐衝撃改良剤Bをそれぞれ6質量部、8質量部、10質量部、15質量部含有させて、シリコン系耐衝撃改良剤Bの含有量が異なる4種類の塩化ビニル系樹脂成形体の試験片を作製し、同様に、上記の基本組成物に前記のMBS系耐衝撃改良剤Cをそれぞれ6質量部、8質量部、10質量部、15質量部含有させて、MBS系耐衝撃改良剤Cの含有量が異なる4種類の塩化ビニル系樹脂成形体の試験片を作製し、同様に、上記の基本組成物に前記のシリコン系耐衝撃改良剤Dをそれぞれ6質量部、8質量部、10質量部、15質量部含有させて、シリコン系耐衝撃改良剤Dの含有量が異なる4種類の塩化ビニル系樹脂成形体の試験片を作製し、同様に、上記の基本組成物に前記のアクリル系耐衝撃改良剤Eをそれぞれ6質量部、8質量部、10質量部、15質量部含有させて、アクリル系耐衝撃改良剤Eの含有量が異なる4種類の塩化ビニル系樹脂成形体の試験片を作製した。 Similarly, 6 parts by mass, 8 parts by mass, 10 parts by mass, and 15 parts by mass of the silicon-based impact resistance improver B are contained in the basic composition, respectively. Four different types of vinyl chloride resin molded specimens were prepared. Similarly, the MBS impact resistance improver C was added to the above basic composition in an amount of 6 parts by mass, 8 parts by mass, 10 parts by mass, 15 parts, respectively. Four kinds of vinyl chloride resin molded specimens containing different parts of MBS impact resistance improver C were prepared, and the above silicon composition was improved in the same manner. 6 parts by weight, 8 parts by weight, 10 parts by weight, and 15 parts by weight of the agent D were prepared, and four types of vinyl chloride resin molded specimens having different contents of the silicon-based impact resistance improver D were prepared. Similarly, the above-mentioned acrylic 6 parts by weight, 8 parts by weight, 10 parts by weight, and 15 parts by weight of the improving agent E are prepared, and four kinds of test pieces of vinyl chloride resin molded bodies having different contents of the acrylic impact resistance improving agent E are produced. did.
上記の各試験片について、実施例1と同様に23℃、0℃、−20℃におけるシャルピー衝撃強さを測定した。その結果を下記の表2に示す。 About each said test piece, it carried out similarly to Example 1, and measured the Charpy impact strength in 23 degreeC, 0 degreeC, and -20 degreeC. The results are shown in Table 2 below.
この表2を見ると、全ての試験片は耐衝撃改良剤の含有量が多くなるほど、23℃、0℃、−20℃のいずれのシャルピー衝撃強さも増大することがわかる。そして、前記のMBS系耐衝撃改良剤A(スチレンブタジエンゴムとポリメタクリル酸メチルとの共重合体で、数平均粒子径が0.19μm、ゴム成分の比率が70質量%、ゴム成分のガラス転移点が−58℃であるもの)を含有させた試験片と、前記のシリコン系耐衝撃改良剤B(シリコンゴムとポリメタクリル酸メチルとの共重合体で、数平均粒子径が0.30μm、ゴム成分の比率が90質量%、ゴム成分のガラス転移点が−125℃であるもの)を含有させた試験片は、耐衝撃改良剤の含有量が6質量部である場合には、23℃、0℃、−20℃のいずれのシャルピー衝撃強さも目標値を満たすことはできないが、含有量が8質量部、10質量部、15質量部の場合には全て目標値を満たすことがわかる。これより、常温から低温域において良好な耐衝撃性を発揮させるためには、耐衝撃改良剤を8〜15質量部含有させる必要のあることが裏付けられる。 From Table 2, it can be seen that the Charpy impact strengths of 23 ° C., 0 ° C., and −20 ° C. increase as the content of the impact modifier increases in all the test pieces. The MBS impact modifier A (a copolymer of styrene butadiene rubber and polymethyl methacrylate, having a number average particle size of 0.19 μm, a rubber component ratio of 70% by mass, and a glass transition of the rubber component. A test piece containing a point of −58 ° C.) and the above-described silicon-based impact modifier B (a copolymer of silicon rubber and polymethyl methacrylate having a number average particle size of 0.30 μm, When the content of the impact modifier is 6 parts by mass, the test piece containing 90% by mass of the rubber component and the glass transition point of the rubber component of −125 ° C. is 23 ° C. However, any Charpy impact strength of 0 ° C. and −20 ° C. cannot satisfy the target value, but it can be seen that the target values are all satisfied when the content is 8 parts by mass, 10 parts by mass, and 15 parts by mass. This confirms that it is necessary to contain 8 to 15 parts by mass of an impact resistance improver in order to exhibit good impact resistance from room temperature to low temperatures.
これに対し、前記のMBS系耐衝撃改良剤Cを含有させた試験片は、スチレンブタジエンゴムの比率が50質量%と低いため、耐衝撃改良剤Cの含有量が6質量部、8質量部、10質量部、15質量部のいずれの場合でもシャルピー衝撃強さの目標値を満たすことができない。そして、前記のシリコン系耐衝撃改良剤Dを含有させた試験片は、シリコンゴムのガラス転移点が−125℃と低いにも拘わらずゴム成分の比率が33質量%と少ないため、耐衝撃改良剤Dの含有量が6質量部、8質量部の場合には、23℃と0℃におけるシャルピー衝撃強度の目標値を満たすことができず、また、−20℃におけるシャルピー衝撃強度の目標値は、6質量部でも8質量部でも10質量部でも満たすことはできない。更に、前記のアクリル系耐衝撃改良剤Eを含有させた試験片は、アクリル酸ブチルゴムのガラス転移点が−54℃であるため、耐衝撃改良剤の含有量が6質量部、8質量部、10質量部、15質量部のいずれの場合でも、−20℃の低温域におけるシャルピー衝撃強さの目標値を満たすことができず、含有量が10質量部と15質量部の場合に23℃のシャルピー衝撃強さの目標値を満たし、含有量が15質量部の場合に0℃のシャルピー衝撃強さの目標値を満たすだけである。このことより、常温から低温域における耐衝撃性を高めるためには、耐衝撃改良剤のゴム成分の占める比率が50質量%を越え、ゴム成分のガラス転移点が−55℃以下であることも必要であることがわかる。 On the other hand, the test piece containing the MBS impact resistance improver C has a ratio of styrene butadiene rubber as low as 50% by mass, and therefore the content of the impact resistance improver C is 6 parts by mass and 8 parts by mass. In either case of 10 parts by mass or 15 parts by mass, the target value of Charpy impact strength cannot be satisfied. The test piece containing the silicon-based impact resistance improver D has a small rubber component ratio of 33% by mass although the glass transition point of silicon rubber is as low as −125 ° C. When the content of the agent D is 6 parts by mass and 8 parts by mass, the target value of Charpy impact strength at 23 ° C. and 0 ° C. cannot be satisfied, and the target value of Charpy impact strength at −20 ° C. is 6 parts by mass, 8 parts by mass or 10 parts by mass cannot be satisfied. Furthermore, since the test piece containing the acrylic impact resistance improver E has a glass transition point of butyl acrylate rubber of −54 ° C., the content of the impact resistance improver is 6 parts by mass, 8 parts by mass, In either case of 10 parts by mass or 15 parts by mass, the target value of Charpy impact strength in a low temperature range of −20 ° C. cannot be satisfied, and the content is 23 ° C. when the content is 10 parts by mass and 15 parts by mass. The Charpy impact strength target value is satisfied, and when the content is 15 parts by mass, the Charpy impact strength target value of 0 ° C. is only satisfied. From this, in order to increase the impact resistance from room temperature to low temperature, the ratio of the rubber component of the impact modifier is over 50% by mass, and the glass transition point of the rubber component is −55 ° C. or less. It turns out that it is necessary.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007047363A JP2008208250A (en) | 2007-02-27 | 2007-02-27 | Vinyl chloride-based resin molded form |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007047363A JP2008208250A (en) | 2007-02-27 | 2007-02-27 | Vinyl chloride-based resin molded form |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008208250A true JP2008208250A (en) | 2008-09-11 |
Family
ID=39784845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007047363A Pending JP2008208250A (en) | 2007-02-27 | 2007-02-27 | Vinyl chloride-based resin molded form |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008208250A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014224176A (en) * | 2013-05-15 | 2014-12-04 | 積水化学工業株式会社 | Heat-chlorinated polyvinyl chloride resin composition and molded article |
JP2019137722A (en) * | 2018-02-06 | 2019-08-22 | 積水化学工業株式会社 | Resin composition for molding |
JPWO2019065742A1 (en) * | 2017-09-27 | 2019-11-14 | 積水化学工業株式会社 | Molding resin composition |
WO2021199988A1 (en) * | 2020-03-31 | 2021-10-07 | 株式会社オートネットワーク技術研究所 | Sealing member and waterproof connector |
-
2007
- 2007-02-27 JP JP2007047363A patent/JP2008208250A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014224176A (en) * | 2013-05-15 | 2014-12-04 | 積水化学工業株式会社 | Heat-chlorinated polyvinyl chloride resin composition and molded article |
JPWO2019065742A1 (en) * | 2017-09-27 | 2019-11-14 | 積水化学工業株式会社 | Molding resin composition |
JP2019137722A (en) * | 2018-02-06 | 2019-08-22 | 積水化学工業株式会社 | Resin composition for molding |
JP7078415B2 (en) | 2018-02-06 | 2022-05-31 | 積水化学工業株式会社 | Resin composition for molding |
WO2021199988A1 (en) * | 2020-03-31 | 2021-10-07 | 株式会社オートネットワーク技術研究所 | Sealing member and waterproof connector |
JP2021161158A (en) * | 2020-03-31 | 2021-10-11 | 株式会社オートネットワーク技術研究所 | Sealing member and waterproof connector |
JP7347298B2 (en) | 2020-03-31 | 2023-09-20 | 株式会社オートネットワーク技術研究所 | Seal members and waterproof connectors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109627671A (en) | A kind of ABS composite material | |
KR20070024168A (en) | Flame retardant thermoplastic resin composition having improved impact strength and excellent flowability | |
JP2013231134A (en) | Vinyl chloride resin composition, and wire and cable using the same | |
CN102093711A (en) | Phosphorus flame-retarding polyamide compound and preparation method thereof | |
JP4584741B2 (en) | Flame retardant resin composition | |
JP2008208250A (en) | Vinyl chloride-based resin molded form | |
JP3958277B2 (en) | Thermoplastic resin composition | |
JP2006008940A (en) | Nonhalogen flame retardant resin composition | |
JP2002226659A (en) | Flame retardant polyvinyl chloride resin molded article | |
JP3921448B2 (en) | Flame retardant polypropylene resin composition | |
JP4402936B2 (en) | Extruded body | |
JP2007009000A (en) | Polyolefin-based resin composition | |
US6316118B1 (en) | Fire-retardant vinyl chloride resin molding | |
CN111372991A (en) | Flame retardant poly (vinyl chloride) compounds | |
JP2006515036A (en) | Flame retardant polypropylene resin composition with excellent wind and rain resistance | |
JP2002363348A (en) | Flame-retardant resin composition | |
JP2018060632A (en) | Insulated wire | |
JP4438244B2 (en) | Vinyl chloride resin composition and flame retardant vinyl chloride sheet | |
JPH07102144A (en) | Vinyl chloride-based resin composition having combustibility index of semi-noncombustibility or non-combustibility and emitting small amount of hydrogen chloride gas in combustion and film obtained from the same | |
JP3648032B2 (en) | Flame retardant resin composition | |
JP5031008B2 (en) | Vinyl chloride resin composition | |
JPH0450251A (en) | Vinyl chloride resin composition | |
JP2006299182A (en) | Vinyl chloride resin composition | |
CN107011654A (en) | A kind of halogen-free flameproof enhancing PA6/PBT alloys and preparation method thereof | |
JP4209735B2 (en) | Transparent and flame retardant vinyl chloride resin laminate with whitening resistance to hot water |