JPH0433875B2 - - Google Patents

Info

Publication number
JPH0433875B2
JPH0433875B2 JP62334055A JP33405587A JPH0433875B2 JP H0433875 B2 JPH0433875 B2 JP H0433875B2 JP 62334055 A JP62334055 A JP 62334055A JP 33405587 A JP33405587 A JP 33405587A JP H0433875 B2 JPH0433875 B2 JP H0433875B2
Authority
JP
Japan
Prior art keywords
corrosion
layer
ultra
thin film
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62334055A
Other languages
Japanese (ja)
Other versions
JPH01176095A (en
Inventor
Teruaki Isaki
Makoto Yoshida
Masami Oosawa
Yukinobu Higuchi
Hisaaki Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33405587A priority Critical patent/JPH01176095A/en
Priority to US07/284,120 priority patent/US4910095A/en
Priority to AU27516/88A priority patent/AU601094B2/en
Priority to CA000586933A priority patent/CA1334018C/en
Priority to KR1019880017830A priority patent/KR910007162B1/en
Priority to EP88312413A priority patent/EP0323756B1/en
Priority to DE3851425T priority patent/DE3851425T2/en
Publication of JPH01176095A publication Critical patent/JPH01176095A/en
Priority to US07/437,439 priority patent/US5082536A/en
Publication of JPH0433875B2 publication Critical patent/JPH0433875B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、めつき層中に無機物又は有機物の薄
膜で被覆処理(この処理をマイクロカプセル化と
呼ぶことにする)された微粒子等を含有する高耐
食性電気複合めつき鋼板に関するものである。 (従来技術) 近年、北米、欧州をはじめとする冬期寒冷地に
おいては、道路凍結防止のため、岩塩や塩化カル
シウムなどが散布され、自動車が使用される環境
は増々厳しいものになつている。このような環境
において、一定期間赤錆発生なし、孔あきなしを
満足する高耐食性自動車用めつき鋼板の開発が急
務である。これに対して、2つの開発の動きがあ
る。すなわち、米国、カナダのような電力コスト
の安価な国での厚目付電気めつき鋼板の開発と日
本のように電力コストが高く溶接性、めつき加工
密着性等に対するユーザーの要求が厳しい国での
薄目付で高耐食性な電気めつき鋼板の開発があ
る。本発明は、後者に関するもので、薄目付電気
めつき鋼板は、現在までに、Zn−Fe、Zn−Ni、
Zn−Mn等亜鉛合金めつき鋼板およびZn又はZn
−Ni合金めつき層上にクロメート+有機樹脂塗
装を施こした有機複層電気めつき鋼板が開発され
ている。しかし、上記合金めつきおよび有機複層
電気めつき鋼板は20〜30g/m2程度の薄目付であ
り、現在国内外自動車メーカーの目標の“耐外面
錆5年(自動車外面部に赤錆が5年間発生しない
こと)”−“耐孔あき10年(自動車外面および内面
からの孔あきが10年間生じないこと)”特に、“耐
孔あき10年”を満足するまでに至つていないと言
われている。そこで、最近では、さらに高耐食性
を有するめつき鋼板として、めつき層中に阻止に
腐食防止の性質を持つた微粒子を分散共析させた
めつき鋼板いわゆる高耐食性複合めつき鋼板の製
造が検討されている。 (発明の解決しようとする問題点) 複合めつき鋼板は分散共析する微粒子によつて
めつき層に種々の性質を与えることが可能で、新
しい機能をもつめつき鋼板として多く使用される
傾向にある。例えば、最近高耐食性を発揮する複
合めつき鋼板が特開昭60−96786号公報、特開昭
60−211094〜211096号公報等多くの特許公報によ
つて紹介さている。 特開昭60−96786号公報は、ZnやZn−Ni合金
めつき層中に、防錆顔料(例えばPbCrO4
SrCrO4、ZnCrO4、BaCrO4、Zn3(PO42等)を
分散共析させた複合めつき鋼板とその製造法が記
されている。この複合めつき鋼板は、前記合金め
つきや有機複層電気めつきに比べて耐外面錆や耐
孔あきに対してすぐれた耐食性を有するものと評
価することができる。しかしながら、特開昭60−
96786号公報のように難溶性クロム酸塩の防錆顔
料(水溶液中で、ほとんど溶解しない)のみを含
有しためつき鋼板は、本発明者らが目標とする耐
食性レベルに至つていない。本発明者らの腐食促
進試験結果を第1図に示す。ここで溶融亜鉛めつ
き(90g/m2)は耐孔あき10年レベルにあり、比
較材として使用した。図から、Znめつき中に
BaCrO4粒子のみを分散させた複合めつき鋼板
は、溶融亜鉛めつき鋼板(90g/m2)に比べ耐
孔あき性が劣つている。また、難溶性クロム酸塩
等の防錆顔料が充分に分散析出しためつき層を得
ることは困難である。この理由は本発明者らの推
測によると難溶性クロム酸塩等の防錆顔料は、亜
鉛めつき浴中において表面電位がほぼゼロである
ため、鋼板を陰極にして電解処理しても浴中
Zn2+イオンが優先析出し、防錆顔料のめつき層
への析出が起こり難く、その結果、安定した耐食
性を有する複合めつき鋼板が得られない。また、
特開昭60−211095号公報には、Zn−Ni合金めつ
き層中に、クロム、アルミナ(Al2O3)、シリカ
(SiO2)等を分散共析させた複合めつき鋼板が示
されている。この公報では、めつき浴中のクロム
供給源として塩化クロム(CrCl3)を使用してい
るが、塩化クロムがめつき浴中で溶解し、Cr3+
オンを放出する。この浴中で鋼板を陰極にして電
解処理すると、金属クロムおよび塩化クロム
(Cr2O3・nH3O)が析出し、めつき層はZn−Ni
−Cr(+Cr2O3・nH3O)となり、さらに、アルミ
ナやシリカを共析した複合めつき鋼板を製造す
る。この複合めつき鋼板は、Zn−Ni合金めつき
やZn−Ni−Cr(+Cr2O3・nH3O)めつき層に比
べ、耐食性向上幅が小さく第1図にZn−Ni−Cr
−Al2O3系複合めつき鋼板の腐食促進試験結果を
示すように、耐孔あき10年を満足するまでには至
つていない。すなわち、Zn−Ni−Cr−Al2O3
複合めつき鋼板も溶融亜鉛めつき鋼板(90g/
m2)の耐孔あき性に及ばない。 第1図は本発明複合めつき鋼板および比較材の
無塗装材の複合腐食試験50サイクル実施後の腐食
深さ結果を示す。 (注)複合腐食試験サイクル内容は
(Industrial Application Field) The present invention provides highly corrosion-resistant electrical composite plating containing fine particles coated with a thin film of an inorganic or organic material (this treatment is referred to as microencapsulation) in the plating layer. It concerns steel plates. (Prior Art) In recent years, in cold winter regions such as North America and Europe, rock salt, calcium chloride, etc. are being sprayed to prevent roads from freezing, and the environment in which automobiles are used has become increasingly harsh. In such an environment, there is an urgent need to develop highly corrosion-resistant galvanized steel sheets for automobiles that do not develop red rust or develop holes for a certain period of time. In response to this, there are two developments. In other words, the development of thick electroplated steel sheets in countries with low electricity costs, such as the United States and Canada, and the development of thick electroplated steel sheets in countries such as Japan, where electricity costs are high and users have strict requirements for weldability, plating adhesion, etc. An electroplated steel sheet with a thin coating weight and high corrosion resistance has been developed. The present invention relates to the latter, and up to now, thin electroplated steel sheets include Zn-Fe, Zn-Ni, Zn-Fe, Zn-Ni,
Zn alloy coated steel sheets such as Zn-Mn and Zn or Zn
-An organic multilayer electroplated steel sheet has been developed in which a chromate + organic resin coating is applied on the Ni alloy plating layer. However, the above-mentioned alloy-plated and organic multi-layer electroplated steel sheets have a light weight of about 20 to 30 g/m 2 , and the current goal of domestic and foreign automakers is ``5-year resistance to external rust'' (red rust on the exterior of the automobile is 5 years). - "10 years of perforation resistance (no perforation from the outside or inside of the vehicle for 10 years)" In particular, it is said that the requirement of "10 years of perforation resistance" has not yet been met. It is being said. Therefore, recently, in order to produce galvanized steel sheets with even higher corrosion resistance, the production of so-called highly corrosion-resistant composite galvanized steel sheets has been studied, in which fine particles with anti-corrosion properties are dispersed and co-deposited in the galvanized layer. ing. (Problems to be solved by the invention) Composite galvanized steel sheets can provide various properties to the galvanized layer through dispersed and eutectoid fine particles, and there is a tendency for composite galvanized steel sheets to be often used as galvanized steel sheets with new functions. It is in. For example, recently, composite galvanized steel sheets exhibiting high corrosion resistance have been published in Japanese Patent Application Laid-Open No. 60-96786,
It has been introduced in many patent publications such as 60-211094 to 211096. JP-A-60-96786 discloses that anticorrosion pigments (e.g., PbCrO 4 ,
This paper describes a composite galvanized steel sheet in which SrCrO 4 , ZnCrO 4 , BaCrO 4 , Zn 3 (PO 4 ) 2, etc.) are dispersed and eutectoid, and a method for producing the same. This composite plated steel sheet can be evaluated as having superior corrosion resistance against external rust and pitting compared to the alloy plating and organic multilayer electroplating. However, JP-A-60-
A laminated steel sheet containing only a slightly soluble chromate anticorrosive pigment (almost insoluble in an aqueous solution) as disclosed in Japanese Patent No. 96786 has not reached the level of corrosion resistance targeted by the present inventors. The results of the accelerated corrosion test conducted by the present inventors are shown in FIG. Here, the hot-dip galvanizing (90 g/m 2 ) was at the level of 10-year perforation resistance, and was used as a comparison material. From the figure, during Zn plating
Composite galvanized steel sheets in which only BaCrO 4 particles are dispersed have inferior pitting resistance compared to hot-dip galvanized steel sheets (90 g/m 2 ). Furthermore, it is difficult to obtain a matted layer in which a rust-preventing pigment such as a hardly soluble chromate is sufficiently dispersed and precipitated. The reason for this is that anti-rust pigments such as poorly soluble chromates have a surface potential of almost zero in a galvanizing bath, so even if they are electrolytically treated using a steel plate as a cathode, they will remain in the bath.
Zn 2+ ions preferentially precipitate, making it difficult for the anticorrosive pigment to precipitate onto the plating layer, and as a result, a composite plated steel sheet with stable corrosion resistance cannot be obtained. Also,
JP-A-60-211095 discloses a composite plated steel sheet in which chromium, alumina (Al 2 O 3 ), silica (SiO 2 ), etc. are dispersed and eutectoid in a Zn-Ni alloy plated layer. ing. This publication uses chromium chloride (CrCl 3 ) as a chromium source in the plating bath, but chromium chloride dissolves in the plating bath and releases Cr 3+ ions. When electrolytically treated in this bath using a steel plate as a cathode, metallic chromium and chromium chloride (Cr 2 O 3 · nH 3 O) are precipitated, and the plating layer is Zn-Ni.
−Cr (+Cr 2 O 3・nH 3 O), and a composite plated steel sheet with alumina and silica eutectoid is manufactured. This composite plated steel sheet has a small improvement in corrosion resistance compared to Zn-Ni alloy plating or Zn-Ni-Cr (+Cr 2 O 3 nH 3 O) plating layer, and as shown in Figure 1, Zn-Ni-Cr
-As shown in the accelerated corrosion test results for Al 2 O 3 composite plated steel sheets, the 10-year perforation resistance has not yet been achieved. In other words, Zn-Ni-Cr-Al 2 O 3 composite galvanized steel sheet and hot-dip galvanized steel sheet (90g/
m 2 ). FIG. 1 shows the corrosion depth results after 50 cycles of the composite corrosion test of the composite plated steel plate of the present invention and the uncoated comparative material. (Note) The contents of the complex corrosion test cycle are

【表】 注 評価サンプル 1:Zn−0.3%BaCrO4複合めつき鋼板(特開昭
60−96786号公報条件にてめつき) 2:Zn−1%Ni−1%Cr−1%Al2O3複合めつ
き鋼板(特開昭60−211095号公報条件にてめつ
き) 3:Zn−10%Co−4%BaCrO4(SiO2薄膜コー
ト)(本発明による複合めつき) 4:溶融亜鉛厚めつき(90g/m2) (問題点を解決するための手段) そこで、本発明者らは、より高耐食性を有する
複合めつき鋼板開発の必要性を痛感し、鋭意検討
した結果、第1図に示すように、極薄膜で表面被
覆することによりマイクロカプセル化された微粒
子を分散共析させためつき層を施しためつき鋼板
は、自動車用防錆鋼板としてすぐれた特性を有
し、特に耐錆性、耐孔あき性にすぐれていること
を見い出した。 すなわち本発明の要旨は、 (1) めつき層中で防食作用を有するイオンを放出
することにより腐食生成物を形成する化合物ま
たはそれ自体腐食抑制能を有する化合物あるい
はその両者からなる腐食阻止微粒子を、SiO2
Al2O3、ZrO2、TiO2のいずれか1種又はそれ
以上からなる極薄皮膜で被覆したカプセル、ま
たは皮膜形成能を有する有機高分子からなる極
薄皮膜で被覆したカプセルを含有する、亜鉛め
つき層又は亜鉛とCo、Mn、Cr、Sn、Sb、
Pb、Ni、Moの1種又は2種以上からなる合金
めつき層を鋼板の片面又は両面に有してなるこ
とを特徴とする高耐食性電気複合めつき鋼板。 (2) めつき層中で防食作用を有するイオンを放出
することにより腐食生成物を形成する化合物ま
たはそれ自体腐食抑制能を有する化合物あるい
はその両者からなる腐食阻止微粒子を、SiO2
Al2O3、ZrO2、TiO2のいずれか1種又はそれ
以上からなる極薄皮膜で被覆したカプセル、ま
たは皮膜形成能を有する有機高分子からなる極
薄皮膜で被覆したカプセルを含有する、亜鉛め
つき層又は亜鉛とCo、Mn、Cr、Sn、Sb、
Pb、Ni、Moの1種以上からなる合金めつき層
とその上に夫々Zn、Fe、Co、Ni、Mn、Crの
1種又は2種以上からなる電気めつき層を有す
る複層を鋼板の片面又は両面に有してなること
を特徴とする高耐食性電気複合めつき鋼板。 (3) めつき層中で防食作用を有するイオンを放出
することにより腐食生成物を形成する化合物ま
たはそれ自体腐食抑制能を有する化合物あるい
はその両者からなる腐食阻止微粒子を、SiO2
Al2O3、ZrO2、TiO2のいずれか1種又はそれ
以上からなる極薄皮膜で被覆したカプセル、ま
たは皮膜形成能を有する有機高分子からなる極
薄皮膜で被覆したカプセルを含有する、亜鉛め
つき層又は亜鉛とCo、Mn、Cr、Sn、Sb、
Pb、Ni、Moの1種以上からなる合金めつき層
とその上に夫々樹脂塗装皮膜を有してなる積層
を鋼板の片面又は両面に有してなることを特徴
とする高耐食性電気複合めつき鋼板。 (4) めつき層中で防食作用を有するイオンを放出
することにより腐食生成物を形成する化合物ま
たはそれ自体腐食抑制能を有する化合物あるい
はその両者からなる腐食阻止微粒子を、SiO2
Al2O3、ZrO2、TiO2のいずれか1種又はそれ
以上からなる極薄皮膜で被覆したカプセル、ま
たは皮膜形成能を有する有機高分子からなる極
薄皮膜で被覆したカプセルを含有する、亜鉛め
つき層又は亜鉛とCo、Mn、Cr、Sn、Sb、
Pb、Ni、Moの1種以上からなる合金めつき層
とその上に夫々Fe、Co、Ni、Mn、Crの1種
又は2種以上からなる電気めつき層と、更にそ
の上に樹脂塗装皮膜を積層したものを鋼板の片
面又は両面に有してなることを特徴とする高耐
食性電気複合めつき鋼板である。 (作用) 本発明の複合めつき鋼板の構造について詳細に
説明する。第2図a,b,c,dは本発明複合め
つき鋼板モデルの断面図を示したものである。第
2図aにおいて、 1は鋼板で、通常の表面処理用鋼板製造工程を
経て表面清浄された薄鋼板である。 2は亜鉛又は亜鉛とCo、Mn、Cr、Sn、Sb、
Pb、Ni、Moの1種又は2種以上からなる合金め
つき層で、鋼板1の片面又は両面に付着される。 3は、マイクロカプセル化された各種微粒子で
ある。 マイクロカプセル化された腐食阻止微粒子は、
難溶性クロム酸塩微粒子(PbCrO4、SrCrO4
BaCrO4、ZnCrO4等)、易溶性クロム酸塩
(CrO3、Na2CrO4、K2CrO4、K2O・4ZnO・
4CrO3等)、アルミ化合物(Zn、Al合金粉末、
Al2O3・2SiO2・2H2O等)、リン酸塩(Zn3
(PO42・2H2O等)、モリブデン化合物(ZnO・
ZnMoO4、CaMoO4・ZnMoO4、PbCrO4
PbMoO4・PbSO4等)、チタン化合物(TiO2
NiO・Sb2O3等)をはじめとする無機物粒子また
はフツ素樹脂、ポリプロピレン樹脂等の有機物粒
子のいずれでもよい。 上記のような微粒子をマイクロカプセル化する
極薄膜は、SiO2、TiO2、AL2O3、ZrO2等の1種
又は2種以上の無機物やエチルセルロース、アミ
ノ樹脂、塩化ビニリデン樹脂、ポリエチレン、ポ
リエチレン等の有機物質から成る。その膜厚は、
10Å〜1μ(望ましくは10Å〜500Å)がよい。膜
厚が1μを超えると薄膜材質の性質が顕著に現れ
(例えばSiO2では粒子の凝集が起こりやすい)る
ため、めつき性がやや劣化し、また逆に10Åより
薄くなると、被覆性が劣化するため、粒子の溶解
を抑制する効果が低下する傾向にある。粒子をマ
イクロカプセル化することにより、次の作用が発
生する。上記微粒子自体は、めつき浴中で表面電
位がゼロあるいはわずかに帯電しているにすぎな
いため電気泳動作用を利用する電気めつき法にお
いては、めつき層への充分な分散共析を確保でき
ない。しかし、SiO2、TiO2、Al2O3、ZrO2等の
極薄膜は、それ自体電位を持つており、この性質
は、微粒子表面に被覆処理された場合でも変化す
ることがないため、微粒子に電位を持たせること
が可能である。このため、微粒子のめつき層への
分散共析量を向上させることができる。 マイクロカプセル化の2つの利点は、めつき浴
中で微粒子の溶解を抑制することである。例え
ば、難溶性クロム酸塩微粒子は、微量であるがめ
つき浴に溶解し、Cr6+イオンを放出する。この
Cr6+イオンが一定濃度以上になると、微粒子の放
出量が低下したり、めつき外観が黒く粉体状を呈
し、めつき密着性も劣化する。そこでマイクロカ
プセル化によつて、微粒子の溶解を抑制し、長時
間安定しためつき鋼板を得ることが可能になる。 マイクロカプセル化の3つ目の利点は、微粒子
のみの分散共析よりも耐食性を向上する。その理
由は、微粒子の持つ腐食阻止性質がそのままマイ
クロカプセル化後も有効に働いているためと思わ
れる。 分散微粒子およびマイクロカプセル化微粒子の
腐食阻止作用について詳細に述べる。 微粒子をめつき層に分散共析させることによ
り、めつき層の耐食性が向上する理由は、次のよ
うに考えられる。難溶性クロム酸塩微粒子を分散
共析させた場合は、腐食環境において、めつき層
の腐食進行に伴い、分解し、Cr6+イオンを放出す
る。このCr6+イオンがめつき層金属と反応して、
耐食性にすぐれたクロム化合物やクロム酸化物又
は水酸化物を形成する。これにより高耐食性が向
上される。さらに、このクロム化合物層が破壊さ
れてもめつき層全体に微粒子が均一分散している
ことから、再び上記形成反応が繰り返えされ、耐
食性が維持される。 次に、マイクロカプセル化微粒子を使用した場
合耐食性が一層向上する。マイクロカプセル化に
よるSiO2等の皮膜は完全密閉型でなく、多孔質
となつているため、Cr6+イオンが少量ずつ溶出し
て、クロム化合物による防錆皮膜を形成して耐食
性を向上させることはカプセル化しない微粒子の
作用と同じである。しかしながら、マイクロカプ
セル化した難溶性クロム酸塩微粒子の場合、カプ
セル化しない難溶性クロム酸塩微粒子に比べ、
Cr6+イオンの溶出速度が抑えられることにより
(発明者らの実験によると1/3〜1/10の速度とな
る)、防錆皮膜形成寿命がそれだけ延長する大き
な特徴がある。自動車向防錆鋼板の耐孔あき寿命
は前述の如く10年という長期を目標としたもので
あり、実験で実施する腐食促進試験も1〜3ケ月
の長期にわたるものである。 従つて、めつき層中の分散粒子が一時的にCr6+
イオンを放出してクロム化合物による厚い防錆皮
膜を形成するよりも、徐々にCr6+イオンを放出し
て薄い防錆皮膜を繰り返して生成する方が、長期
の防食性を発揮する。 なお、代表例として難溶性クロム酸塩微粒子か
ら溶出するCr6+イオの防食作用について述べた
が、リン酸塩化物から溶出するPO4 3-イオン、モ
リブデン化合物から溶出するMoO4 2-イオンにつ
いても作用は同じである。つまりこれらは防食作
用を有するイオンを放出する。またアルミ化合
物、チタン化合物およびフツ素樹脂等の有機物粒
子は、それ自体に防食作用があり、腐食因子に対
してバリアー効果を発揮する腐食抑制層として作
用する効果がある。マイクロカプセル化された微
粒子の含有量は、発明者らの実験によると、めつ
き付着量の0.1〜30wt%がよい(望ましくは0.5〜
20wt%がよい)。0.1%より低ければ、耐食性向上
に効果が小さく、また30%を超えるとめつき加工
密着性が劣化する傾向にある。 こうして得られた複合めつき層は、前述したよ
うに耐錆性、耐孔あき性については充分な性能を
示すが、塗装前処理として実施する化成処理の皮
膜結晶を阻害する場合がある。例えば、マイクロ
カプセル化された難溶性クロム酸塩微粒子を含有
した複合めき層は、カプセル化されても、皮膜は
完全な密閉型でなく多孔質のため微粒子の性質を
保持している。化成処理として行なわれるリン酸
塩処理はクロム上では反応しないめ皮膜結晶が粗
大化したり、スケ(結晶が形成されない)を発生
し、塗装後の塗料密着性や塗装後の耐孔あきにバ
ラツキを生ずる要因となる。そのため、自動車外
板等の塗装を施こすような場合には、第2図bで
示すように複合めつき層上に1〜5g/m2の電気
薄めつき層を施こかことが有効である。この電
気めつき層は1g/m2より少ない場合は複合め
つき層を完全にカバーすることが難しくなり、ま
た5g/m2を越えると、めつき面密着性がやや劣
化傾向にあるため、上記範囲でコントロールする
方がよい。この電気めつき層は、Zn、Fe、
Co、Mn、Crの1種又は2種以上から成るめつき
層多層処理してもよい。但しその場合の全付着量
は、1〜5g/m2でコントロールするのは前記理
由と同じである。 また化成処理を行なわない場合は、第2図cお
よびdで示すように有機樹脂やクロメート処理後
に有機樹脂皮膜、クロムイオンを含有した有機樹
脂皮膜のいずれかの皮膜を複合めつき層あるい
は電気薄めつき層の上に施こすことにより、塗
装後の塗料密着性や耐孔あき性を確保することが
できる。この作用は、腐食阻止微粒子を包みこん
でいるカプセルの材質がSiO2、TiO2等の無機物
や有機物であるため、それらを含有した複合めつ
き層上に処理される樹脂との結合性(−O…H等
の化学結合が発生すると考えられる)が強くな
る。樹脂皮膜と塗料との密着性は良好であり、樹
脂塗装を施された複合めつき鋼板の塗料密着性も
良好である。 さらに耐食性を向上させるために、複合めつき
層上にクロムメート処理を行なうこともよい。し
かし、クロメート処理のみでは自動車生産工程で
の脱脂、化成処理工程においてクロメート皮膜中
のクロム(特にCr6+イオン)の溶出が懸念され
る。クロムの溶出は、公害衛生的に大きな社会問
題となるため、溶出はほぼゼロに抑えなければな
らない。クロメートの手法によつてクロムの溶出
に差が生ずることが知られている(溶出大←塗布
型クロメート>反応型クロメート>電解クロメー
ト→溶出小)が耐食性能は溶出性の逆の順にな
る。このため要求される耐食性能等に応じて使い
分けが必要となる。しかし、いずれのクロメート
処理においてもクロムの溶出が起こるため、クロ
メート処理後には樹脂塗装によつて被覆すること
が必要となる。またクロムを樹脂塗料の中に含有
させておいてその塗料を鋼板上に塗装し焼き付け
ることでクロムを樹脂中に固定化することで溶出
防止を行なうこともできる。 ここで有機樹脂とは、エポキシ系、エポキシフ
エノール系、水溶性アクリルエマルジヨン系樹脂
等であり、その塗装処理法は、ロールコート法、
静電霧化法、カーテンフロー法等のいずれでもよ
い。その時の樹脂液組成は樹脂分が5〜50重量%
であり、またクロムを含有する場合はその樹脂分
の1〜20重量%のクロムイオンを含有するものが
使用される。しかし、その皮膜厚が0.1μより少な
いとクロメート中のクロムの溶出防止能が著しく
低下し、また2μを越えると溶接が難しくなるた
め、0.1〜2μの範囲でコントロールすることが望
ましい。 次に本発明を実施例に基づいて説明する。 冷延鋼板をアルカリ脱脂し、10%硫酸で酸洗し
た後、水洗し、以下の条件により電気複合めつき
はを実施した。 めつき卓上ポンプで液循環を行ないながら、各
種微粒子のめつき浴中添加量を変化させて、浴中
PH=2の硫酸酸性亜鉛又は亜鉛合金めつき浴中に
て、鋼板を陰極として電解処理することにより行
なつた。例えば Zn−Co−BaCrO4(SiO2薄膜コート粒子)複合
めつきの場合には、 ZnSO4・7H2O 180g/ CoSo4・7H2O 10〜450g/ BaCrO4 5〜60g/ (SiO2薄膜にてマイクロカプセル化 された粒子) pH=2.0、浴温度=50℃ 電流密度 40A/dm2 電解時間 22sec 全付着量(目標) 22g/m2 (ここで、微粒子の被覆材質(例えばSiO2)の
膜厚は10Å〜1μのものを適宜用いた) 次に、複合めつきの上に行なう薄電気めつきに
ついては、硫酸亜鉛めつき浴中にFe、Co、Ni、
Mn、Crの硫酸塩を適当量添加(Znめつきの場合
は、添加なし)しためつき浴を用いて、全付着量
が1〜5g/m2の範囲で実施した。 また、樹脂塗装およびクロムを含有した樹脂塗
装は、樹脂として水溶性アクリルエマルジヨン系
を用い、ロールコート法により実施した。また、
クロメート処理樹脂塗装については、ロールコー
ト法にて樹脂塗装を行ない、クロメートについて
は塗布、反応および電解のいずれのタイプでも行
なつた。 このようにして製造した種々の本発明複合めつ
き鋼板については、以下の性能評価試験を行なつ
た。 (1) 耐食性 処理:無塗装および塗装材(Full−dip型
化成処理→カチオン電着塗装→スクラツチ
傷) 評価:複合腐食試験(CCT)50サイクル
後の赤錆発生率と腐食深さ測定 (注)CCT:塩水噴霧(35℃×6Hr)、乾燥
(70℃、60%×4Hr)、湿潤(49℃、>95%
×4Hr)、冷凍(−20℃×4Hr)の順に行
い、これを1サイクルとする複合腐食試験 (2) 塗料密着性 処理:Full−dip型化成処理→3コート塗
装→温水浸漬(40℃×10日間) 評価:試験後2mmのゴバン目×100マスを
入れ、テーピングにより塗膜剥離率を測定 (3) 赤錆発生率の評価は、次のように行なつた。 ◎…赤錆発生率 0% ○…赤錆発生率 5%以下 △…赤錆発生率 5〜20% ×…赤錆発生率 20〜50% ××…赤錆発生率 50%以上 (4) 腐食深さの評価は次のようである。 ◎…腐食深さ 0mm ○…腐食深さ 0.1mm以下 △…腐食深さ 0.1〜0.3mm ×…腐食深さ 0.3〜0.5mm ××…腐食深さ 0.5mm以上 (5) 塗料密着性の評価は次のようである。 ◎…塗膜剥離率 0% ○…塗膜剥離率 5%以下 △…塗膜剥離率 5〜20% ×…塗膜剥離率 20〜50% ××…塗膜剥離率 50%以上 第1表に評価結果を示す。これから明らかなよ
うに、本発明の複合めつき鋼板は比較材に比べて
諸性能にすぐれた高耐食性複合めつき鋼板である
ことがよくわかる。
[Table] Note Evaluation sample 1: Zn-0.3%BaCrO 4 composite plated steel plate (JP-A-Sho
60-96786 publication conditions) 2: Zn-1%Ni-1%Cr-1%Al 2 O 3 composite plated steel plate (plated under the conditions of JP-A-60-211095 publication) 3: Zn-10%Co-4%BaCrO 4 (SiO 2 thin film coating) (composite plating according to the present invention) 4: Hot-dip zinc thick plating (90 g/m 2 ) (Means for solving the problem) Therefore, the present invention They were acutely aware of the need to develop a composite galvanized steel sheet with higher corrosion resistance, and as a result of intensive study, as shown in Figure 1, they succeeded in dispersing micro-encapsulated fine particles by coating the surface with an ultra-thin film. It has been found that a toughened steel sheet provided with a eutectoid toughened layer has excellent properties as a rust-preventing steel sheet for automobiles, and is particularly excellent in rust resistance and porosity resistance. That is, the gist of the present invention is as follows: (1) Corrosion-inhibiting fine particles consisting of a compound that forms corrosion products by releasing ions having an anticorrosion effect in a plating layer, a compound that itself has corrosion-inhibiting ability, or both. , SiO 2 ,
Containing a capsule coated with an ultra-thin film made of one or more of Al 2 O 3 , ZrO 2 , TiO 2 or a capsule coated with an ultra-thin film made of an organic polymer having film-forming ability, Galvanized layer or zinc and Co, Mn, Cr, Sn, Sb,
A highly corrosion-resistant electrical composite plated steel sheet, characterized in that it has an alloy plating layer consisting of one or more of Pb, Ni, and Mo on one or both sides of the steel sheet. (2) Corrosion-inhibiting fine particles consisting of a compound that forms corrosion products by releasing ions that have an anticorrosion effect in the plating layer, a compound that itself has a corrosion-inhibiting ability, or both, are mixed with SiO 2 ,
Containing a capsule coated with an ultra-thin film made of one or more of Al 2 O 3 , ZrO 2 , TiO 2 or a capsule coated with an ultra-thin film made of an organic polymer having film-forming ability, Galvanized layer or zinc and Co, Mn, Cr, Sn, Sb,
A multi-layer steel plate having an alloy plating layer consisting of one or more types of Pb, Ni, and Mo, and an electroplating layer each consisting of one or more types of Zn, Fe, Co, Ni, Mn, and Cr on top of the alloy plating layer. A highly corrosion-resistant electrically composite galvanized steel sheet, characterized in that it has on one or both sides thereof. (3) Corrosion-inhibiting fine particles consisting of a compound that forms corrosion products by releasing ions that have an anticorrosion effect in the plating layer, a compound that itself has a corrosion-inhibiting ability, or both, are mixed with SiO 2 ,
Containing a capsule coated with an ultra-thin film made of one or more of Al 2 O 3 , ZrO 2 , TiO 2 or a capsule coated with an ultra-thin film made of an organic polymer having film-forming ability, Galvanized layer or zinc and Co, Mn, Cr, Sn, Sb,
A highly corrosion-resistant electrical composite material comprising a laminated layer consisting of an alloy plating layer made of one or more of Pb, Ni, and Mo and a resin coating film on one or both sides of a steel plate. Steel plate. (4) Corrosion-inhibiting fine particles consisting of a compound that forms corrosion products by releasing ions having an anti-corrosion effect in the plating layer, a compound that itself has corrosion-inhibiting ability, or both, are mixed with SiO 2 ,
Containing a capsule coated with an ultra-thin film made of one or more of Al 2 O 3 , ZrO 2 , TiO 2 or a capsule coated with an ultra-thin film made of an organic polymer having film-forming ability, Galvanized layer or zinc and Co, Mn, Cr, Sn, Sb,
An alloy plating layer made of one or more of Pb, Ni, and Mo, an electroplated layer each made of one or more of Fe, Co, Ni, Mn, and Cr, and a resin coating on top of that. This is a highly corrosion-resistant electrically composite plated steel sheet characterized by having a laminated film on one or both sides of the steel sheet. (Function) The structure of the composite plated steel sheet of the present invention will be explained in detail. Figures 2a, b, c, and d show cross-sectional views of the composite plated steel plate model of the present invention. In FIG. 2a, 1 is a steel plate, which is a thin steel plate whose surface has been cleaned through a normal surface treatment steel plate manufacturing process. 2 is zinc or zinc and Co, Mn, Cr, Sn, Sb,
This is an alloy plating layer made of one or more of Pb, Ni, and Mo, and is attached to one or both sides of the steel plate 1. 3 is various micro-encapsulated fine particles. Microencapsulated corrosion inhibiting particulates are
Slightly soluble chromate fine particles (PbCrO 4 , SrCrO 4 ,
BaCrO 4 , ZnCrO 4 etc.), easily soluble chromates (CrO 3 , Na 2 CrO 4 , K 2 CrO 4 , K 2 O・4ZnO・
4CrO 3 , etc.), aluminum compounds (Zn, Al alloy powder,
Al 2 O 3・2SiO 2・2H 2 O, etc.), phosphates (Zn 3
(PO 4 ) 2・2H 2 O, etc.), molybdenum compounds (ZnO・
ZnMoO 4 , CaMoO 4・ZnMoO 4 , PbCrO 4
PbMoO 4 , PbSO 4, etc.), titanium compounds (TiO 2 ,
The particles may be either inorganic particles such as NiO.Sb 2 O 3 (NiO, Sb 2 O 3, etc.) or organic particles such as fluororesin or polypropylene resin. The ultrathin film that microcapsulates the fine particles described above can be made of one or more inorganic substances such as SiO 2 , TiO 2 , AL 2 O 3 , ZrO 2 , ethyl cellulose, amino resin, vinylidene chloride resin, polyethylene, polyethylene It consists of organic substances such as The film thickness is
The thickness is preferably 10 Å to 1 μ (preferably 10 Å to 500 Å). When the film thickness exceeds 1μ, the properties of the thin film material become noticeable (for example, SiO 2 tends to cause particle agglomeration), resulting in a slight deterioration in plating performance, and conversely, when it becomes thinner than 10Å, coverage deteriorates. Therefore, the effect of suppressing particle dissolution tends to decrease. By microencapsulating particles, the following effects occur. The fine particles themselves have zero surface potential or are only slightly charged in the plating bath, so in electroplating methods that use electrophoresis, sufficient dispersion and co-deposition into the plating layer is ensured. Can not. However, ultrathin films such as SiO 2 , TiO 2 , Al 2 O 3 , ZrO 2 , etc. have potential by themselves, and this property does not change even when coated on the surface of fine particles. It is possible to give a potential to Therefore, it is possible to improve the amount of dispersion of fine particles into the plating layer. Two advantages of microencapsulation are that it suppresses dissolution of microparticles in the plating bath. For example, slightly soluble chromate fine particles dissolve in a plating bath and release Cr 6+ ions, albeit in a small amount. this
When the concentration of Cr 6+ ions exceeds a certain level, the amount of released fine particles decreases, the appearance of the plating becomes black and powdery, and the adhesion of the plating deteriorates. Therefore, microencapsulation suppresses the dissolution of fine particles and makes it possible to obtain a laminated steel sheet that is stable for a long time. The third advantage of microencapsulation is that it improves corrosion resistance compared to dispersion eutectoid of only fine particles. The reason for this is thought to be that the corrosion inhibiting properties of the fine particles remain effective even after microencapsulation. The corrosion inhibiting effect of dispersed fine particles and microencapsulated fine particles will be described in detail. The reason why the corrosion resistance of the plating layer is improved by dispersing and eutectoiding the fine particles in the plating layer is considered to be as follows. When sparingly soluble chromate fine particles are dispersed and eutectoid, they decompose in a corrosive environment as the corrosion of the plating layer progresses, releasing Cr 6+ ions. This Cr 6+ ion reacts with the plating layer metal,
Forms chromium compounds, chromium oxides, or hydroxides with excellent corrosion resistance. This improves high corrosion resistance. Furthermore, even if this chromium compound layer is destroyed, since the fine particles are uniformly dispersed throughout the plating layer, the above formation reaction is repeated again, and corrosion resistance is maintained. Next, when microencapsulated fine particles are used, corrosion resistance is further improved. The film of SiO 2 etc. produced by micro-encapsulation is not completely sealed and is porous, so Cr 6+ ions are eluted little by little, forming a rust-preventing film of chromium compounds and improving corrosion resistance. is the same as that of non-encapsulated particles. However, in the case of microencapsulated sparingly soluble chromate particles, compared to non-encapsulated sparingly soluble chromate particles,
By suppressing the elution rate of Cr 6+ ions (according to experiments conducted by the inventors, the rate is 1/3 to 1/10), a major feature is that the lifespan of rust-preventing film formation is extended accordingly. As mentioned above, the long-term perforation-resistant life of anticorrosive steel sheets for automobiles is targeted at 10 years, and the accelerated corrosion tests carried out in experiments also last for 1 to 3 months. Therefore, the dispersed particles in the plating layer temporarily become Cr 6+
Rather than releasing ions to form a thick anti-corrosion film made of chromium compounds, gradually releasing Cr 6+ ions to repeatedly form thin anti-rust films provides longer-term corrosion protection. As a representative example, we have described the anticorrosion effect of Cr 6+ ions eluted from poorly soluble chromate fine particles, but we have also discussed PO 4 3- ions eluted from phosphate chlorides and MoO 4 2- ions eluted from molybdenum compounds. The effect is the same. In other words, they release ions that have an anticorrosion effect. In addition, organic particles such as aluminum compounds, titanium compounds, and fluororesins have anticorrosion properties in themselves, and have the effect of acting as a corrosion inhibiting layer that exhibits a barrier effect against corrosion factors. According to experiments conducted by the inventors, the content of microencapsulated fine particles is preferably 0.1 to 30 wt% of the plating amount (preferably 0.5 to 30 wt%).
20wt% is good). If it is less than 0.1%, the effect on improving corrosion resistance is small, and if it exceeds 30%, the plating adhesion tends to deteriorate. Although the composite plated layer thus obtained exhibits sufficient rust resistance and porosity resistance as described above, it may inhibit the film crystallization of the chemical conversion treatment performed as a pre-painting treatment. For example, a composite plating layer containing microencapsulated poorly soluble chromate fine particles retains the properties of fine particles because the film is not completely sealed and is porous even if it is encapsulated. Phosphate treatment, which is carried out as a chemical conversion treatment, does not react on chromium, so it may cause the film crystals to become coarser or to cause scratches (crystals are not formed), which may cause variations in paint adhesion after painting and porosity resistance after painting. It becomes a factor that occurs. Therefore, when painting automobile exterior panels, etc., it is effective to apply an electric thinning layer of 1 to 5 g/m 2 on the composite plating layer as shown in Figure 2b. be. If this electroplated layer is less than 1 g/m 2 , it will be difficult to completely cover the composite plating layer, and if it exceeds 5 g/m 2 , the adhesion to the plated surface will tend to deteriorate slightly. It is better to control within the above range. This electroplated layer consists of Zn, Fe,
Multi-layer plating treatment may be performed, consisting of one or more of Co, Mn, and Cr. However, in that case, the total adhesion amount is controlled at 1 to 5 g/m 2 for the same reason as above. In addition, if chemical conversion treatment is not performed, as shown in Figure 2 c and d, either an organic resin film or an organic resin film containing chromium ions is applied as a composite plating layer or an electrically thin layer after organic resin or chromate treatment. By applying it on top of the coating layer, it is possible to ensure paint adhesion and puncture resistance after painting. This effect is due to the fact that the material of the capsule enclosing the corrosion-inhibiting fine particles is an inorganic or organic substance such as SiO 2 or TiO 2 , so the bonding property (- It is thought that chemical bonds such as O...H are generated) become stronger. The adhesion between the resin film and the paint is good, and the adhesion of the resin-coated composite plated steel sheet to the paint is also good. Furthermore, in order to improve corrosion resistance, it is also possible to perform chromate treatment on the composite plating layer. However, with chromate treatment alone, there is a concern that chromium (particularly Cr 6+ ions) in the chromate film may be leached out during the degreasing and chemical conversion treatment steps in the automobile production process. Since the elution of chromium is a major social problem in terms of pollution and hygiene, it is necessary to suppress the elution to almost zero. It is known that there are differences in chromium elution depending on the chromate method (high elution ← coated chromate > reactive chromate > electrolytic chromate → small elution), but corrosion resistance is in the opposite order of elution. Therefore, it is necessary to use them properly depending on the required corrosion resistance performance, etc. However, in any chromate treatment, chromium elution occurs, so it is necessary to cover with resin coating after the chromate treatment. It is also possible to prevent chromium from elution by incorporating chromium into a resin paint and applying the paint onto a steel plate and baking it to fix the chromium in the resin. Here, the organic resins include epoxy resins, epoxyphenol resins, water-soluble acrylic emulsion resins, etc., and the coating methods include roll coating,
Either electrostatic atomization method, curtain flow method, etc. may be used. At that time, the resin liquid composition has a resin content of 5 to 50% by weight.
If chromium is contained, one containing 1 to 20% by weight of chromium ions based on the resin content is used. However, if the film thickness is less than 0.1μ, the ability to prevent the elution of chromium in chromate will be significantly reduced, and if it exceeds 2μ, welding becomes difficult, so it is desirable to control it within the range of 0.1 to 2μ. Next, the present invention will be explained based on examples. Cold-rolled steel sheets were degreased with alkali, pickled with 10% sulfuric acid, washed with water, and subjected to electric composite plating under the following conditions. While circulating the liquid with a plating tabletop pump, the amount of various fine particles added to the plating bath can be changed to
The electrolytic treatment was carried out in a sulfuric acid acidic zinc or zinc alloy plating bath with pH=2, using a steel plate as a cathode. For example, in the case of Zn-Co-BaCrO 4 (SiO 2 thin film coated particles) composite plating, ZnSO 4 7H 2 O 180 g / CoSo 4 7H 2 O 10-450 g / BaCrO 4 5-60 g / (SiO 2 thin film coated particles) pH=2.0, Bath temperature=50℃ Current density 40A/dm 2 Electrolysis time 22sec Total deposition amount (target) 22g/m 2 (Here, the coating material of the particles (e.g. SiO 2 ) (The film thickness was 10 Å to 1 μ as appropriate.) Next, for thin electroplating on top of composite plating, Fe, Co, Ni,
Using a tacking bath in which appropriate amounts of Mn and Cr sulfates were added (no addition was made in the case of Zn plating), the total adhesion amount was in the range of 1 to 5 g/m 2 . Further, the resin coating and the resin coating containing chromium were performed by a roll coating method using a water-soluble acrylic emulsion system as the resin. Also,
Chromate-treated resin coating was performed by roll coating, and chromate was applied by coating, reaction, or electrolysis. The following performance evaluation tests were conducted on the various composite plated steel sheets of the present invention manufactured in this manner. (1) Corrosion resistance Treatment: Unpainted and painted materials (Full-dip chemical conversion treatment → cationic electrodeposition coating → scratch damage) Evaluation: Measurement of red rust incidence and corrosion depth after 50 cycles of combined corrosion test (CCT) (Note) CCT: Salt spray (35℃ x 6Hr), dry (70℃, 60% x 4Hr), wet (49℃, >95%
Composite corrosion test (2) Paint adhesion Treatment: Full-dip chemical conversion treatment → 3-coat painting → Hot water immersion (40℃× (10 days) Evaluation: After the test, 100 squares of 2 mm squares were placed, and the rate of paint film peeling was measured by taping (3) The rate of occurrence of red rust was evaluated as follows. ◎...Red rust occurrence rate 0% ○...Red rust occurrence rate 5% or less △...Red rust occurrence rate 5-20% ×...Red rust occurrence rate 20-50% ××...Red rust occurrence rate 50% or more (4) Evaluation of corrosion depth is as follows. ◎...Corrosion depth 0mm ○...Corrosion depth 0.1mm or less△...Corrosion depth 0.1~0.3mm ×...Corrosion depth 0.3~0.5mm ××...Corrosion depth 0.5mm or more (5) Evaluation of paint adhesion It looks like this: ◎... Paint film peeling rate 0% ○... Paint film peeling rate 5% or less △... Paint film peeling rate 5-20% ×... Paint film peeling rate 20-50% ××... Paint film peeling rate 50% or more Table 1 shows the evaluation results. As is clear from this, it is clearly seen that the composite plated steel plate of the present invention is a highly corrosion-resistant composite plated steel plate with superior performance compared to comparative materials.

【表】【table】

【表】【table】

【表】 構成要素4の〓〓〓は多層構造を意味する。
(発明の効果) SiO2等の薄膜で表面被覆された腐食阻止微粒
子を使用することにより、微粒子の溶解が抑制さ
れ、また微粒子の腐食阻止能も長期継続させるこ
とができ、非被覆粒子分散に比べて諸性能に優れ
ている。さらに、易溶性化合物を表面被覆するこ
とでめつき層中への分散析出が可能となる。本発
明は、上記性質をもつた微粒子をめつき層に分散
共析させた高耐食性亜鉛又は亜鉛合金系電気複合
めつき鋼板が得られる。
[Table] 〓〓〓 in component 4 means a multilayer structure.
(Effect of the invention) By using corrosion-inhibiting fine particles whose surface is coated with a thin film such as SiO 2 , dissolution of the fine particles is suppressed, and the corrosion-inhibiting ability of the fine particles can be maintained for a long period of time. It has superior performance in comparison. Furthermore, by coating the surface with an easily soluble compound, it becomes possible to disperse and precipitate the compound into the plating layer. The present invention provides a highly corrosion-resistant zinc or zinc alloy electrolytically composite plated steel sheet in which fine particles having the above properties are dispersed and eutectoided in the plated layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明複合めつき鋼板および比較材の
腐食深さ結果を示し、第2図は本発明の複合めつ
き鋼板モデルの断面図を示す。
FIG. 1 shows the corrosion depth results of the composite plated steel plate of the present invention and a comparative material, and FIG. 2 shows a cross-sectional view of the composite plated steel plate model of the present invention.

Claims (1)

【特許請求の範囲】 1 めつき層中で防食作用を有するイオンを放出
することにより腐食生成物を形成する化合物また
はそれ自体腐食抑制能を有する化合物あるいはそ
の両者からなる腐食阻止微粒子を、SiO2
Al2O3、ZrO2、TiO2のいずれか1種又はそれ以
上からなる極薄皮膜で被覆したカプセル、または
皮膜形成能を有する有機高分子からなる極薄皮膜
で被覆したカプセルを含有する、亜鉛めつき層又
は亜鉛とCo、Mn、Cr、Sn、Sb、Pb、Ni、Mo
の1種又は2種以上からなる合金めつき層を鋼板
の片面又は両面に有してなることを特徴とする高
耐食性電気複合めつき鋼板。 2 めつき層中で防食作用を有するイオンを放出
することにより腐食生成物を形成する化合物また
はそれ自体腐食抑制能を有する化合物あるいはそ
の両者からなる腐食阻止微粒子を、SiO2
Al2O3、ZrO2、TiO2のいずれか1種又はそれ以
上からなる極薄皮膜で被覆したカプセル、または
皮膜形成能を有する有機高分子からなる極薄皮膜
で被覆したカプセルを含有する、亜鉛めつき層又
は亜鉛とCo、Mn、Cr、Sn、Sb、Pb、Ni、Mo
の1種以上からなる合金めつき層とその上に夫々
Zn、Fe、Co、Ni、Mn、Crの1種又は2種以上
からなる電気めつき層を有する複層を鋼板の片面
又は両面に有してなることを特徴とする高耐食性
電気複合めつき鋼板。 3 めつき層中で防食作用を有するイオンを放出
することにより腐食生成物を形成する化合物また
はそれ自体腐食抑制能を有する化合物あるいはそ
の両者からなる腐食阻止微粒子を、SiO2
Al2O3、ZrO2、TiO2のいずれか1種又はそれ以
上からなる極薄皮膜で被覆したカプセル、または
皮膜形成能を有する有機高分子からなる極薄皮膜
で被覆したカプセルを含有する、亜鉛めつき層又
は亜鉛とCo、Mn、Cr、Sn、Sb、Pb、Ni、Mo
の1種以上からなる合金めつき層とその上に夫々
樹脂塗装皮膜を有してなる積層を鋼板の片面又は
両面に有してなることを特徴とする高耐食性電気
複合めつき鋼板。 4 めつき層中で防食作用を有するイオンを放出
することにより腐食生成物を形成する化合物また
はそれ自体腐食抑制能を有する化合物あるいはそ
の両者からなる腐食阻止微粒子を、SiO2
Al2O3、ZrO2、TiO2のいずれか1種又はそれ以
上からなる極薄皮膜で被覆したカプセル、または
皮膜形成能を有する有機高分子からなる極薄皮膜
で被覆したカプセルを含有する、亜鉛めつき層又
は亜鉛とCo、Mn、Cr、Sn、Sb、Pb、Ni、Mo
の1種以上からなる合金めつき層とその上に夫々
Fe、Co、Ni、Mn、Crの1種又は2種以上から
なる電気めつき層と、更にその上に樹脂塗装皮膜
を積層したものを鋼板の片面又は両面に有してな
ることを特徴とする高耐食性電気複合めつき鋼
板。
[Scope of Claims] 1 Corrosion-inhibiting fine particles consisting of a compound that forms corrosion products by releasing ions having an anticorrosion effect in the plating layer, a compound that itself has corrosion-inhibiting ability, or both, are formed by SiO 2 ,
Containing a capsule coated with an ultra-thin film made of one or more of Al 2 O 3 , ZrO 2 , TiO 2 or a capsule coated with an ultra-thin film made of an organic polymer having film-forming ability, Galvanized layer or zinc and Co, Mn, Cr, Sn, Sb, Pb, Ni, Mo
A highly corrosion-resistant electrical composite plated steel sheet, characterized in that it has an alloy plating layer consisting of one or more of the following on one or both sides of the steel sheet. 2 Corrosion-inhibiting fine particles consisting of a compound that forms corrosion products by releasing ions that have an anticorrosion effect in the plating layer, a compound that itself has corrosion-inhibiting ability, or both, are mixed with SiO 2 ,
Containing a capsule coated with an ultra-thin film made of one or more of Al 2 O 3 , ZrO 2 , TiO 2 or a capsule coated with an ultra-thin film made of an organic polymer having film-forming ability, Galvanized layer or zinc and Co, Mn, Cr, Sn, Sb, Pb, Ni, Mo
An alloy plating layer consisting of one or more types of
Highly corrosion-resistant electro-composite plating characterized by having a multi-layer electroplated layer made of one or more of Zn, Fe, Co, Ni, Mn, and Cr on one or both sides of a steel sheet. steel plate. 3 Corrosion-inhibiting fine particles consisting of a compound that forms corrosion products by releasing ions that have an anticorrosion effect in the plating layer, a compound that itself has corrosion-inhibiting ability, or both, are mixed with SiO 2 ,
Containing a capsule coated with an ultra-thin film made of one or more of Al 2 O 3 , ZrO 2 , TiO 2 or a capsule coated with an ultra-thin film made of an organic polymer having film-forming ability, Galvanized layer or zinc and Co, Mn, Cr, Sn, Sb, Pb, Ni, Mo
1. A highly corrosion-resistant electrically composite plated steel sheet comprising a laminated layer comprising one or more alloy plating layers and a resin coating film on one or both sides of the steel sheet. 4 Corrosion-inhibiting fine particles consisting of a compound that forms corrosion products by releasing ions having an anti-corrosion effect in the plating layer, a compound that itself has corrosion-inhibiting ability, or both, are mixed with SiO 2 ,
Containing a capsule coated with an ultra-thin film made of one or more of Al 2 O 3 , ZrO 2 , TiO 2 or a capsule coated with an ultra-thin film made of an organic polymer having film-forming ability, Galvanized layer or zinc and Co, Mn, Cr, Sn, Sb, Pb, Ni, Mo
An alloy plating layer consisting of one or more types of
It is characterized by having an electroplated layer made of one or more of Fe, Co, Ni, Mn, and Cr, and a resin coating film laminated thereon on one or both sides of the steel plate. Highly corrosion resistant electrical composite galvanized steel sheet.
JP33405587A 1987-12-29 1987-12-29 Composite electroplated steel sheet having high corrosion resistance Granted JPH01176095A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP33405587A JPH01176095A (en) 1987-12-29 1987-12-29 Composite electroplated steel sheet having high corrosion resistance
US07/284,120 US4910095A (en) 1987-12-29 1988-12-14 High corrosion resistant plated composite steel strip
AU27516/88A AU601094B2 (en) 1987-12-29 1988-12-22 High corrosion resistant plated composite steel strip and method of producing same
CA000586933A CA1334018C (en) 1987-12-29 1988-12-22 High corrosion resistant plated composite steel strip and method of producing same
KR1019880017830A KR910007162B1 (en) 1987-12-29 1988-12-29 High corrosion resistant plated composite steel strip and method therefor
EP88312413A EP0323756B1 (en) 1987-12-29 1988-12-29 Corrosion-resistant plated composite steel strip and method of producing same
DE3851425T DE3851425T2 (en) 1987-12-29 1988-12-29 Steel sheet clad with corrosion-resistant composite material and process for its manufacture.
US07/437,439 US5082536A (en) 1987-12-29 1989-11-16 Method of producing a high corrosion resistant plated composite steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33405587A JPH01176095A (en) 1987-12-29 1987-12-29 Composite electroplated steel sheet having high corrosion resistance

Publications (2)

Publication Number Publication Date
JPH01176095A JPH01176095A (en) 1989-07-12
JPH0433875B2 true JPH0433875B2 (en) 1992-06-04

Family

ID=18273005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33405587A Granted JPH01176095A (en) 1987-12-29 1987-12-29 Composite electroplated steel sheet having high corrosion resistance

Country Status (1)

Country Link
JP (1) JPH01176095A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020110180A1 (en) 2001-02-09 2002-08-15 Barney Alfred A. Temperature-sensing composition
JP4383865B2 (en) * 2001-09-17 2009-12-16 マサチューセッツ・インスティテュート・オブ・テクノロジー Semiconductor nanocrystal composite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159342A (en) * 1978-06-08 1979-12-17 Nippon Steel Corp Manufacture of corrosion resistant zinc composite- electroplated steel products
JPS60141898A (en) * 1983-12-29 1985-07-26 Nippon Steel Corp Composite electroplated steel sheet and its production
JPS61127900A (en) * 1984-11-22 1986-06-16 Kawasaki Steel Corp Composite plating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159342A (en) * 1978-06-08 1979-12-17 Nippon Steel Corp Manufacture of corrosion resistant zinc composite- electroplated steel products
JPS60141898A (en) * 1983-12-29 1985-07-26 Nippon Steel Corp Composite electroplated steel sheet and its production
JPS61127900A (en) * 1984-11-22 1986-06-16 Kawasaki Steel Corp Composite plating method

Also Published As

Publication number Publication date
JPH01176095A (en) 1989-07-12

Similar Documents

Publication Publication Date Title
KR910007162B1 (en) High corrosion resistant plated composite steel strip and method therefor
JP3851482B2 (en) Galvanized steel sheet with excellent white rust resistance and coating adhesion
US4800134A (en) High corrosion resistant plated composite steel strip
JPS5815554B2 (en) Plated steel materials for cationic electrodeposition coating
JPH0129873B2 (en)
JPH0433878B2 (en)
JPH0433875B2 (en)
JPH08218193A (en) Organic film compositely coated steel sheet
JPH0494928A (en) High corrosion resistant damping steel sheet
JPH0433877B2 (en)
JPH0433876B2 (en)
JPH01176551A (en) Highly corrosion resistant organic composite plated steel plate
EP0342585B1 (en) Coated steel sheets and process for producing the same
JPS6213590A (en) Surface-treated steel sheet having excellent coating property, adhesion after coating and corrosion resistance and its production
JPH0359154B2 (en)
JPH0359155B2 (en)
JPH025839B2 (en)
JPH11310897A (en) Surface treated steel plate for fuel tank
JPS6089597A (en) Composite product
JP2532999B2 (en) Highly corrosion resistant surface treated steel sheet
JPS63143294A (en) Double-layer electroplated steel sheet having excellent corrosion resistance
JPH02159398A (en) Production of composite plated steel sheet having high corrosion resistance
JP2836771B2 (en) Undercoat chromate treatment method for painted steel sheet
JPH11138095A (en) Organic coated steel plate for fuel tank
JPH08302489A (en) Highly corrosion-resistant surface-treated steel sheet and its production