JPH0433878B2 - - Google Patents

Info

Publication number
JPH0433878B2
JPH0433878B2 JP62334058A JP33405887A JPH0433878B2 JP H0433878 B2 JPH0433878 B2 JP H0433878B2 JP 62334058 A JP62334058 A JP 62334058A JP 33405887 A JP33405887 A JP 33405887A JP H0433878 B2 JPH0433878 B2 JP H0433878B2
Authority
JP
Japan
Prior art keywords
corrosion
fine particles
sio
tio
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62334058A
Other languages
Japanese (ja)
Other versions
JPH01176099A (en
Inventor
Teruaki Isaki
Makoto Yoshida
Masami Oosawa
Yukinobu Higuchi
Hisaaki Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33405887A priority Critical patent/JPH01176099A/en
Priority to US07/284,120 priority patent/US4910095A/en
Priority to CA000586933A priority patent/CA1334018C/en
Priority to AU27516/88A priority patent/AU601094B2/en
Priority to EP88312413A priority patent/EP0323756B1/en
Priority to DE3851425T priority patent/DE3851425T2/en
Priority to KR1019880017830A priority patent/KR910007162B1/en
Publication of JPH01176099A publication Critical patent/JPH01176099A/en
Priority to US07/437,439 priority patent/US5082536A/en
Publication of JPH0433878B2 publication Critical patent/JPH0433878B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、Zn−Fe系合金めつき層中に無機物
又は有機物の薄膜で被覆処理(この処理をマイク
ロカプセル化と呼ぶことにする)された腐食阻止
微粒子とSiO2、TiO2等の微粒子とを混合して含
有する高耐食性電気複合めつき鋼板に関するもの
である。 (従来の技術) 近年、北米、欧州をはじめとする冬期寒冷地に
おいては、道路凍結防止のため、岩塩や塩化カル
シウムなどが散布されており、自動車が使用され
る環境は増々厳しいものになつている。このよう
な環境において、一定期間赤錆発生なし、孔あき
なしを満足する高耐食性自動車用めつき鋼板の開
発が急務である。これに対して、2つの開発の動
きがある。すなわち、米国、カナダのような電力
コストの安価な国での厚目付電気めつき鋼板の開
発と日本のように電力コストが高く溶接性、めつ
き加工密着性等に対するユーザーの要求が厳しい
国での薄目付で高耐食性な電気めつき鋼板の開発
がある。本発明は、後者に関するもので、薄目付
電気めつき鋼板は、現在までに、Zn−Fe、Zn−
Ni、Zn−Mn等亜鉛合金めつき鋼板およびZn又
はZn−Ni合金めつき層上にクロメート+有機樹
脂塗装を施こした有機複層電気めつき鋼板が開発
されている。しかし、上記合金めつきおよび有機
複層電気めつき鋼板は20〜30g/m2程度の薄目付
であり、現在国内外自動車メーカーの目標の“耐
外面錆5年(自動車外面部に赤錆が5年間発生し
ないこと)”−“耐孔あき10年(自動車外面および
内面からの孔あきが10年間生じないこと)”特に、
“耐孔あき10年”を満足するまでに至つていない
と言われている。そこで、最近では、さらに高耐
食性を有するめつき鋼板として、めつき層中に腐
食防止の性質を持つた微粒子を分散共析させため
つき鋼板いわゆる高耐食性複合めつき鋼板の製造
が検討されている。 (発明の解決しようとする問題点) 複合めつき鋼板は分散共析する微粒子によつて
めつき層に種々の性質を与えることが可能であ
り、新しい機能をもつめつき鋼板として多く使用
される傾向にある。例えば、最近高耐食性を発揮
する複合めつき鋼板が特開昭60−96786号公報、
特開昭60−211094〜211096号公報等多くの特許公
報によつて紹介されている。 特開昭60−96786号公報は、ZnやZn−Ni合金
めつき層中に、防錆顔料(例えばPbCrO4
SrCrO4、ZnCrO4、BaCrO4、Zn3(PO42等)を
分散共析させた複合めつき鋼板とその製造法が記
されている。この複合めつき鋼板は、前記合金め
つきや有機複層電気めつきに比べて耐外面錆や耐
孔あきに対してすぐれた耐食性を有するものと評
価することができる。しかしながら、特開昭60−
96786号公報のように難溶性クロム酸塩の防錆顔
料のみ(水溶液中で、ほとんど溶解しない)を含
有しためつき鋼板は、本発明者らが目標とする耐
食性レベルに至つていない。本発明者らの腐食促
進試験結果を第1図に示す。ここで溶融亜鉛めつ
き(90g/m2)は耐孔あき10年レベルにあり、比
較材として使用した。Znめつき中にBaCrO4粒子
のみを分散させた複合めつき鋼板は、溶融亜鉛
めつき鋼板(90g/m2)に比べ耐孔あき性が劣
つている。また、難溶性クロム酸塩等の防錆顔料
が充分に分散析出しためつき層を得ることは困難
である。この理由は本発明者らの推測によると難
溶性クロム酸塩等の防錆顔料は、亜鉛めつき浴中
において表面電位がほぼゼロであるため、めつき
浴中で鋼板を陰極にして電解処理しても浴中
Zn2+イオンが優先析出し、防錆顔料のめつき層
への析出が起こり難く、その結果、安定した耐食
性を有する複合めつき鋼板が得られない。また、
特開昭60−211095号公報には、Zn−Ni合金めつ
き層中に、クロム、アルミナ(Al2O3)、シリカ
(SiO2)等を分散共析させた複合めつき鋼板が示
されている。この公報では、めつき浴中のクロム
供給源として塩化クロム(CrCl3)を使用してい
るが、塩化クロムがめつき浴中で溶解し、Cr3+
オンを放出する。この浴中で鋼板を陰極にして電
解処理すると、金属クロムおよび酸化クロム
(Cr2O3・nH3O)が析出し、めつき層はZn−Ni
−Cr(+Cr2O3・nH3O)となり、さらに、アルミ
ナやシリカを共析した複合めつき鋼板を製造す
る。この複合めつき鋼板は、Zn−Ni合金めつき、
Zn−Ni−Cr(+Cr2O3・nH3O)めつき層に比べ、
耐食性向上幅が小さく、第1図にZn−Ni−Cr−
Al2O3系複合めつき鋼板の腐食促進試験結果を
示すように、耐孔あき10年を満足するまでには至
つていない。すなわち、Zn−Ni−Cr−Al2O3
複合めつき鋼板もやはり溶融亜鉛めつき鋼板(90
g/m2)の耐孔あき性に及ばない。 第1図は本発明複合めつき鋼板および比較材の
無塗装材の複合腐食試験30サイクル実施後の腐食
深さ結果を示す。 (注)複合腐食試験サイクル内容は
(Industrial Application Field) The present invention consists of corrosion-inhibiting fine particles and SiO 2 coated with a thin film of an inorganic or organic material (this treatment will be referred to as microencapsulation) in a Zn-Fe alloy plating layer. This invention relates to a highly corrosion-resistant electrically composite galvanized steel sheet containing a mixture of fine particles such as , TiO 2 and the like. (Conventional technology) In recent years, in cold winter regions such as North America and Europe, rock salt and calcium chloride have been sprayed to prevent roads from freezing, and the environment in which automobiles are used has become increasingly harsh. There is. In such an environment, there is an urgent need to develop highly corrosion-resistant galvanized steel sheets for automobiles that do not develop red rust or develop holes for a certain period of time. In response to this, there are two developments. In other words, the development of thick electroplated steel sheets in countries with low electricity costs, such as the United States and Canada, and the development of thick electroplated steel sheets in countries such as Japan, where electricity costs are high and users have strict requirements for weldability, plating adhesion, etc. An electroplated steel sheet with a thin coating weight and high corrosion resistance has been developed. The present invention relates to the latter, and to date, thin electroplated steel sheets have been developed such as Zn-Fe, Zn-Fe, Zn-
Steel sheets plated with zinc alloys such as Ni and Zn-Mn, and organic multilayer electroplated steel sheets in which a chromate + organic resin coating is applied on the Zn or Zn-Ni alloy plating layer have been developed. However, the above-mentioned alloy-plated and organic multi-layer electroplated steel sheets have a light weight of about 20 to 30 g/m 2 , and the current goal of domestic and foreign automakers is ``5-year resistance to external rust'' (red rust on the exterior of the automobile is 5 years). - 10 years of perforation resistance (no perforations from the outside or inside of the vehicle for 10 years)
It is said that it has not yet reached the point where it satisfies the "10 year perforation resistance" requirement. Therefore, recently, as a galvanized steel sheet with even higher corrosion resistance, the production of a so-called highly corrosion-resistant composite galvanized steel sheet is being considered, in which fine particles with anti-corrosion properties are dispersed and co-deposited in the galvanized layer. . (Problems to be solved by the invention) Composite galvanized steel sheets can provide various properties to the galvanized layer through dispersed and eutectoid fine particles, and are often used as galvanized steel sheets with new functions. There is a tendency. For example, recently, a composite galvanized steel sheet exhibiting high corrosion resistance was published in Japanese Patent Application Laid-Open No. 60-96786.
It has been introduced in many patent publications such as JP-A-60-211094-211096. JP-A-60-96786 discloses that anticorrosion pigments (e.g., PbCrO 4 ,
This paper describes a composite galvanized steel sheet in which SrCrO 4 , ZnCrO 4 , BaCrO 4 , Zn 3 (PO 4 ) 2, etc.) are dispersed and eutectoid, and a method for producing the same. This composite plated steel sheet can be evaluated as having superior corrosion resistance against external rust and pitting compared to the alloy plating and organic multilayer electroplating. However, JP-A-60-
A laminated steel sheet containing only a slightly soluble chromate rust preventive pigment (almost insoluble in an aqueous solution) as disclosed in Japanese Patent No. 96786 has not reached the level of corrosion resistance targeted by the present inventors. The results of the accelerated corrosion test conducted by the present inventors are shown in FIG. Here, the hot-dip galvanizing (90 g/m 2 ) was at the level of 10-year perforation resistance, and was used as a comparative material. A composite plated steel sheet in which only BaCrO 4 particles are dispersed during Zn plating has inferior pitting resistance compared to a hot-dip galvanized steel sheet (90 g/m 2 ). Furthermore, it is difficult to obtain a matted layer in which a rust-preventing pigment such as a hardly soluble chromate is sufficiently dispersed and precipitated. The reason for this is that anti-rust pigments such as poorly soluble chromates have a surface potential of almost zero in a galvanizing bath. Even in the bath
Zn 2+ ions preferentially precipitate, making it difficult for the anticorrosive pigment to precipitate onto the plating layer, and as a result, a composite plated steel sheet with stable corrosion resistance cannot be obtained. Also,
JP-A-60-211095 discloses a composite plated steel sheet in which chromium, alumina (Al 2 O 3 ), silica (SiO 2 ), etc. are dispersed and eutectoid in a Zn-Ni alloy plated layer. ing. This publication uses chromium chloride (CrCl 3 ) as a chromium source in the plating bath, but chromium chloride dissolves in the plating bath and releases Cr 3+ ions. When electrolytically treated in this bath using a steel plate as a cathode, metallic chromium and chromium oxide (Cr 2 O 3 nH 3 O) are precipitated, and the plating layer is Zn-Ni.
−Cr (+Cr 2 O 3・nH 3 O), and a composite plated steel sheet with alumina and silica eutectoid is manufactured. This composite plated steel sheet has Zn-Ni alloy plating,
Compared to the Zn−Ni−Cr (+Cr 2 O 3・nH 3 O) plated layer,
The improvement in corrosion resistance is small, and Figure 1 shows that Zn-Ni-Cr-
As shown in the accelerated corrosion test results for Al 2 O 3 composite plated steel sheets, the 10-year perforation resistance has not yet been achieved. In other words, the Zn-Ni-Cr- Al2O3 composite galvanized steel sheet is also a hot - dip galvanized steel sheet (90
g/m 2 ). FIG. 1 shows the corrosion depth results after 30 cycles of the composite corrosion test of the composite plated steel plate of the present invention and the uncoated comparative material. (Note) The contents of the complex corrosion test cycle are

【表】 注 評価サンプル 1:Zn−0.3%BaCrO4複合めつき鋼板(特開昭
60−96786号公報条件にてめつき) 2:Zn−1%Ni−1%Cr−1%Al2O3複合めつ
き鋼板(特開昭60−211095号公報条件にてめつ
き) 3:Zn−8%FE−7%BaCrO4(SiO2薄膜コー
ト)−2%AlO3(本発明による複合めつき) 4:溶融亜鉛厚めつき(90g/m2) (問題点を解決するための手段) そこで、本発明者らは、より高耐食性を有する
複合めつき鋼板開発の必要性を痛感し、鋭意検討
した結果、第1図に示すように極薄膜で表面被覆
することによりマイクロカプセル化された微粒子
とSiO2、TiO2、Cr2O3、Al2O3、ZrO2、SnO2
Sb2O5の微粒子又はコロイド粒子を分散共析させ
ためつき層を施しためつき鋼板は、自動車用防
錆鋼板としてすぐれた特性を有し、特に耐錆性、
耐孔あき性にすぐれていることを見い出した。 すなわち本発明の要旨は、 (1) めつき層中で防食作用を有するイオンを放出
することにより腐食生成物を形成する化合物ま
たはそれ自体腐食抑制能を有する化合物あるい
はその両者からなる腐食阻止微粒子をSiO2
Al2O3、ZrO2、TiO2のいずれか1種又はそれ
以上からなる極薄皮膜で被覆したカプセル、ま
たは皮膜形成能を有する有機高分子からなる極
薄皮膜で被覆したカプセルと、SiO2、TiO2
Cr2O3、Al2O3、ZrO2、SnO2、Sb2O5の微粒子
あるいはそのコロイド粒子の1種又は2種以上
を混合して含有する、Zn−Fe合金層あるいは
Mn、Cr、Sn、Sb、Moの1種又は2種以上を
含有したZn−Fe系合金めつき層を鋼板の片面
又は両面に有してなることを特徴とする高耐食
性電気複合めつき鋼板。 (2) めつき層中で防食作用を有するイオンを放出
することにより腐食生成物を形成する化合物ま
たはそれ自体腐食抑制能を有する化合物あるい
はその両者からなる腐食阻止微粒子をSiO2
Al2O3、ZrO2、TiO2のいずれか1種又はそれ
以上からなる極薄皮膜で被覆したカプセル、ま
たは皮膜形成能を有する有機高分子からなる極
薄皮膜で被覆したカプセルと、SiO2、TiO2
Cr2O3、Al2O3、ZrO2、SnO2、Sb2O5の微粒子
あるいはそのコロイド粒子の1種又は2種以上
を混合して含有する、Zn−Fe合金層あるいは
Mn、Cr、Sn、Sb、Pb、Moの1種又は2種以
上を含有したZn−Fe系合金めつき層を有し、
その上に夫々Zn、Fe、Co、Ni、Mn、Crの1
種又は2種以上からなる電気めつき層を1〜5
g/m2を形成せしめた複層めつき層を鋼板の片
面又は両面に有してなることを特徴とする高耐
食性電気複合めつき鋼板。 (3) めつき層中で防食作用を有するイオンを放出
することにより腐食生成物を形成する化合物ま
たはそれ自体腐食抑制能を有する化合物あるい
はその両者からなる腐食阻止微粒子をSiO2
Al2O3、ZrO2、TiO2のいずれか1種又はそれ
以上からなる極薄皮膜で被覆したカプセル、ま
たは皮膜形成能を有する有機高分子からなる極
薄皮膜で被覆したカプセルと、SiO2、TiO2
Cr2O3、Al2O3、ZrO2、SnO2、Sb2O5の微粒子
あるいはそのコロイド粒子の1種又は2種以上
を混合して含有する、Zn−Fe合金層あるいは
Mn、Cr、Sn、Sb、Pb、Moの1種又は2種以
上を含有したZn−Fe系合金めつき層を有し、
その上に夫々有機樹脂皮膜、クロメート処理後
に有機樹脂皮膜、クロムイオンを含有した有機
樹脂皮膜のいずれか形成せしめた複層を鋼板の
片面又は両面に有してなることを特徴とする高
耐食性電気複合めつき鋼板。 (4) めつき層中で防食作用を有するイオンを放出
することにより腐食生成物を形成する化合物ま
たはそれ自体腐食抑制能を有する化合物あるい
はその両者からなる腐食阻止微粒子をSiO2
Al2O3、ZrO2、TiO2のいずれか1種又はそれ
以上からなる極薄皮膜で被覆したカプセル、ま
たは皮膜形成能を有する有機高分子からなる極
薄皮膜で被覆したカプセルと、SiO2、TiO2
Cr2O3、Al2O3、ZrO2、SnO2、Sb2O5の微粒子
あるいはそのコロイド粒子の1種又は2種以上
を混合して含有する、Zn−Fe合金層あるいは
Mn、Cr、Sn、Sb、Pb、Moの1種又は2種以
上を含有したZn−Fe系合金めつき層を有し、
その上に夫々Zn、Fe、Co、Ni、Mn、Crの1
種又は2種以上からなる電気めつき層1〜5
g/m2を有し、更にその上に有機樹脂皮膜、ク
ロメート処理後に有機樹脂皮膜、クロムイオン
を含有した有機樹脂皮膜のいずれかを積層した
ものを鋼板の片面又は両面あることを特徴とす
る高耐食性電気複合めつき鋼板である。 (作用) 本発明の複合めつき鋼板の構造について詳細に
説明する。第2図a,b,c,dは本発明複合め
つき鋼板モデルの断面図を示したものである。第
2図aにおいて、 1は鋼板で、通常の表面処理用鋼板製造工程を
経て表面清浄された薄鋼板である。 2は、Zn−Fe合金めつきあるいはZn−Feに
Mn、Cr、Sn、Sb、Pb、Moの1種又は2種以上
を混合して含有するめつき層で、鋼板1の片面又
は両面に付着される。 3は、マイクロカプセル化された各種微粒子で
ある。 4はZn−Fe合金めつき層などに分散しある
いはマイクロカプセル微粒子に付着したSiO2
TiO2、Cr2O3、Al2O3、ZrO2、SnO2、Sb2O5の1
種又は2種以上の微粒子またはそのコロイド粒子
である。 マイクロカプセル化された腐食阻止微粒子は、
難溶性クロム酸塩微粒子(PbCrO4、SrCrO4
BaCrO4、ZnCrO4等)、易溶性クロム酸塩
(CrO3、Na2CrO4、K2CrO4、K2O・4ZnO・
4CrO3等)、アルミ化合物(Zn、Al合金粉末、
Al2O3・2SiO2・2H2O等)、リン酸塩(Zn3
(PO42・2H2O等)、モリブデン化合物(ZnO・
ZnMoO4、CaOMoO4・ZnOMoO4、PbCrO4
PbMoO4・PbSO4等)、チタン化合物(TiO2
NiO・Sb2O3等)をはじめとした無機物粒子、又
は弗素樹脂、ポリエチレン樹脂等の有機物粒子の
いずれでもよい。 上記のような微粒子をマイクロカプセル化する
極薄膜は、SiO2、TiO2、AL2O3、ZrO2等の1種
又は2種以上の無機物やエチルセルロース、アミ
ノ樹脂、塩化ビニリデン樹脂、ポリエチレン、ポ
リスチレン等の有機物質から成る。その膜厚は、
10Å〜1μ(望ましくは10Å〜500Å)がよい。膜
厚が1μを超えると薄膜材質の性質が顕著に現れ
(例えばSiO2では粒子の凝集が起こりやすい)る
ため、めつき性がやや劣化し、また逆に10Åより
薄くなると、被覆性が劣化するため、粒子の溶解
を抑制する効果が低下する傾向にある。粒子をマ
イクロカプセル化することにより、次の作用が発
生する。上記微粒子自体は、めつき浴中で表面電
位がゼロあるいはわずかに帯電しているにすぎな
いため電気泳動作用を利用する電気めつき法にお
いては、めつき層への充分な分散共析を確保でき
ない。しかし、SiO2、TiO2、Al2O3、ZrO2等の
微粒子又はコロイド粒子は、それ自体電位を持つ
ており、この性質は、微粒子表面に被覆処理され
た場合でも変化することがないため、マイクロカ
プセル化することにより微粒子に電位を持たせる
ことが可能である。このため、微粒子のめつき層
への分散共析量を向上させることできる。 マイクロカプセル化の2つ目の利点は、めつき
浴中で微粒子の溶解を抑制することである。例え
ば、難溶性クロム酸塩微粒子は、微量ではあるが
めつき浴に溶解し、Cr6+イオンを放出する。この
Cr6+イオンが一定濃度以上になると、微粒子の析
出量が低下したり、めつき外観が黒く粉体状を呈
し、めつき密着性も劣化する。そこでマイクロカ
プセル化によつて、微粒子の溶解を抑制し、長時
間安定しためつき鋼板を得ることが可能になる。 マイクロカプセル化の3つ目の利点は、微粒子
のみの分散共析よりも耐食性を向上する。その理
由は、微粒子の持つ腐食阻止性質がそのままマイ
クロカプセル化後も有効に働いているためと思わ
れる。 分散微粒子およびマイクロカプセル化微粒子の
腐食阻止作用について詳細に述べる。 微粒子をめつき層に分散共析させることによ
り、めつき層の耐食性が向上する理由は、次のよ
うに考えられる。難溶性クロム酸塩微粒子を分散
共析させた場合は、腐食環境において、めつき層
の腐食進行に伴い分解し、Cr6+イオンを放出す
る。このCr6+イオンがめつき層金属と反応して、
耐食性にすぐれたクロム化合物やクロム酸化物又
は水酸化物を形成する。これにより高耐食性が向
上する。さらに、このクロム化合物層が破壊され
てもめつき層全体に微粒子が均一分散しているこ
とから、再び上記形成反応が繰り返えされ、耐食
性が維持される。 次に、マイクロカプセル化微粒子を使用した場
合耐食性が一層向上する。マイクロカプセル化に
よるSiO2等の皮膜は完全密閉型ではなく、多孔
質となつているため、Cr6+イオンが少量ずつ溶出
して、クロム化合物による防錆皮膜を形成して耐
食性を向上させることはカプセル化しない微粒子
の作用と同じである。しかしながら、マイクロカ
プセル化した難溶性クロム酸塩微粒子の場合、カ
プセル化しない難溶性クロム酸塩微粒子に比べ
Cr6+イオンの溶出速度が抑えられることにより
(発明者らの実験によると1/3〜1/10の速度とな
る)、防錆皮膜形成寿命がそれだけ延長する大き
な特徴がある。自動車向防錆鋼板の耐孔あき寿命
は前述の如く10年という長期を目標としたもので
あり、実験で実施する腐食促進試験も1〜3ケ月
の長期にわたるものである。 従つて、めつき層中の分散粒子が一時的にCr6+
イオンを放出してクロム化合物による厚い防錆皮
膜を形成するよりも、徐々にCr6+イオンを放出し
て薄い防錆皮膜を繰り返して生成する方が、長期
の防食性を発揮する。 なお、代表例として難溶性クロム酸塩微粒子か
ら溶出するCr6+イオの防食作用について述べた
が、リン酸塩化物から溶出するPO4 3-イオン、モ
リブデン化合物から溶出するMoO4 2-イオンにつ
いても作用は同じである。つまりこれらは防食作
用を有するイオンを放出する。またアルミ化合
物、チタン化合物およびフツ素樹脂等の有機物粒
子は、それ自体に防食作用があり、腐食因子に対
してバリアー効果を発揮する腐食抑制層として作
用する効果がある。マイクロカプセル化された微
粒子の含有量は、発明者らの実験によると、めつ
き付着量の0.1〜30wt%がよい(望ましくは0.5〜
20wt%がよい)。0.1%より低ければ、耐食性向上
に効果が小さく、また30%を超えるとめつき加工
密着性が劣化する傾向にある。 さらに、マイクロカプセル化された微粒子と同
時にめつき層に分散共析されるSiO2、TiO2
Cr2O3、Al2O3、ZrO2、SnO2、Sb2O5の微粒子
は、難溶性クロム酸塩微粒子と違つて、腐食阻止
作用は小さい。しかし、マイクロカプセル化され
た粒子が析出しない部分に析出することで、部分
めつき層の腐食進行を抑制する。つまり、めつき
層に対して、腐食因子の攻撃に対するバリアー効
果を有するものである。SiO2等微粒子の含有量
はめつき付着量の0.1〜30wt%がよい(望ましく
は、0.5〜20wt%がよい)。0.1%より低ければ耐
食性の向上効果がなく、30%を越えるとめつき加
工密着性が劣化する傾向にある。但し、マイクロ
カプセル化微粒子とSiO2等微粒子の加算含有量
は、めつき付着量の30%を越えない方がよい。次
に、マイクロカプセル化された微粒子やSiO2
の微粒子のめつき層への分散共析量を促進するた
めの添加剤としてもTiO2コロイド、Al2O3コロイ
ド、SiO2コロイド、ZrO2コロイド、SnO2コロイ
ド、Sb2O5コロイド等の添加が有効である。 マイクロカプセル化により、微粒子の表面電位
コントロールが可能なことは前述したが、SiO2
薄膜の場合は、微粒子は“負”の電位を有するこ
とになる。鋼板と陰極として電解処理する電気め
つき法においては、SiO2薄膜カプセル化微粒子
はめつき層へ析出し難い。そのため上記添加剤に
より、めつき層への分散共析量を増大させる必要
がある。例えば、Al2O3コロイドは、正の電荷を
有し、何らかの作用(明確ではない)により、
SiO2薄膜でカプセル化された微粒子の表面に吸
着を起こす。これにより、微粒子は正の電荷(電
位)を有することになり、電解時に容易に陰極へ
引きつけられる。すなわち、めつき層への充分な
析出が可能となる。他のコロイド粒子についても
同様な反応が起つていると考えられる。 こうして得られた複合めつき層は、前述したよ
うに耐錆性、耐孔あき性については充分な性能を
示すが、塗装前処理として実施する化成処理の皮
膜結晶を阻害する場合がある。例えば、マイクロ
カプセル化された難溶性クロム酸塩微粒子を含有
した複合めつき層は、カプセル化されても、皮膜
は完全な密閉型でなく多孔質のため微粒子の性質
を保持している。化成処理として行なわれるリン
酸塩処理はクロム上では反応しないため皮膜結晶
が粗大化したり、スケ(結晶が形成されない)を
発生し、塗装後の塗料密着性や塗装後の耐孔あき
にバラツキを生ずる要因となる。そのため、自動
車外板等の塗装を施こすような場合には、第2図
bで示すように複合めつき層上にZn、Fe、Co、
Ni、Mn、Crの1種又は2種以上からなる電気薄
めつき層を1〜5g/m2施こす。この電気めつ
き層は1g/m2より少ない場合は複合めつき層
を完全にカバーすることが難しくなり、また5
g/m2を越えると、めつき加工密着性がやや劣化
傾向にあるため、上記範囲でコントロールする方
がよい。この電気めつき層は、Zn、Fe、Co、
Mn、Crの1種又は2種以上から成るめつき層を
多層処理してもよい。但しその場合の全付着量
は、1〜5g/m2でコントロールするのは前記理
由と同じである。 また化成処理を行なわない場合は、第2図cお
よびdで示すように有機樹脂やクロメート処理後
に有機樹脂皮膜、クロムイオンを含有した有機樹
脂皮膜のいずれかの皮膜を複合めつき層あるい
は電気薄めつき層の上に施こすことにより、塗
装後の塗料密着性や耐孔あき性を確保することが
できる。この作用は、腐食阻止微粒子を包みこん
でいるカプセルの材質がSiO2、TiO2等の無機物
や有機物であるため、それらを含有した複合めつ
き層上に処理される樹脂との結合性(−O…H等
の化学結合が発生すると考えられる)が強くな
る。樹脂皮膜と塗料との密着性は良好であり、樹
脂塗装を施された複合めつき鋼板の塗料密着性も
良好である。 あるいはさらに耐食性を向上させるために、複
合めつき層上にクロムメート処理を行なうことも
よい。しかし、クロメート処理のみでは自動車生
産工程での脱脂、化成処理工程においてクロメー
ト皮膜中のクロム(特にCr6+イオン)の溶出が懸
念される。クロムの溶出は、公害衛生的に大きな
社会問題となるため、溶出はほぼゼロに抑えなけ
ればならない。クロメートの手法によつてクロム
の溶出に差が生ずることが知られている(溶出大
←塗布型クロメート>反応型クロメート>電解ク
ロメート→溶出小)が、耐食性能は溶出性の逆の
順になる。このため要求されるため耐食性能等に
応じて使い分けが必要となる。しかし、いずれの
クロメート処理においてもクロムの溶出が起こる
ため、クロメート処理後には樹脂塗装によつて被
覆することが必要となる。またクロムを樹脂塗料
の中に含有させておいてその塗料を鋼板上に塗装
し焼き付けることでクロムを樹脂中に固定化する
ことで溶出防止を行なうこともできる。 ここで言う有機樹脂とは、エポキシ系、エポキ
シフエノール系、水溶性アクリルエマルジヨン系
樹脂等であり、その塗装処理法は、ロールコート
法、静電霧化法、カーテンフロー法等のいずれで
もよい。その時の樹脂液組成は樹脂分が5〜50重
量%であり、またクロムを含有する場合はその樹
脂分の1〜20重量%のクロムイオンを含有したも
のが使用される。しかし、その皮膜厚が0.1μより
少ないとクロメート中のクロムの溶出防止能が著
しく低下し、また2μを越えると溶接が難しくな
るため、0.1〜2μの範囲でコントロールすること
が望ましい。 次に本発明を実施例に基づいて説明する。 冷延鋼板をアルカリ脱脂し、10%硫酸で酸洗し
た後、水洗し、以下の条件により電気複合めつき
を実施した。 めつきは卓上ポンプで液循環を行ないながら、
各種微粒子のめつき浴中添加量を変化させて、浴
中PH=2の硫酸酸性Zn−Fe合金めつき浴中にて、
鋼板を陰極として電解処理することにより行なつ
た。例えば Zn−Fe−BaCrO4(SiO2薄膜コート粒子)
Al2O3複合めつきの場合には、 ZnSO4・7H2O 180g/ FeSO4・7H2O 10〜450g/ BaCrO4 5〜60g/ (SiO2薄膜にてマイクロカプセル化された
粒子) Al2O3 0.5〜60g/ PH=2.0、浴温度=50℃ 電流密度 40A/dm2 電解時間 22sec 全付着量(目標) 22g/m2 (ここで、微粒子の被覆材質(例えばSiO2)の
膜厚は10Å〜1μのものを適宜用いた) 次に、複合めつきの上に行なう薄電気めつきに
ついては、硫酸酸性浴系で、Zn、Fe、Co、Ni、
Mn、Crの硫酸塩を適当量添加しためつき浴を用
いて、全付着量が1〜5g/m2の範囲で実施し
た。 また、樹脂塗装およびクロムを含有した樹脂塗
装は、樹脂として水溶性アクリルエマルジヨン系
を用い、ロールコート法により実施した。また、
クロメート処理樹脂塗装については、ロールコー
ト法にて樹脂塗装を行ない、クロメートについて
は塗布、反応および電解のいずれのタイプでも行
なつた。 このようにして製造した種々の本発明複合めつ
き鋼板については、以下の性能評価試験を行なつ
た。 (1) 耐食性 処理:無塗装および塗装材(Full−dip型
化成処理→カチオン電着塗装→スクラツチ
傷) 評価:複合腐食試験(CCT)30サイクル
後の赤錆発生率と腐食深さ測定 (注)CCT:塩水噴霧(35℃×6Hr)、乾燥
(70℃、60%×4Hr)、湿潤(49℃、>95%
×4Hr)、冷凍(−20℃×4Hr)の順に行
い、これを1サイクルとする複合腐食試験 (2) 塗料密着性 処理:Full−dip型化成処理→3コート塗
装→温水浸漬(40℃×10日間) 評価:試験後2mmのゴバン目×100マスを
入れ、テーピングにより塗膜剥離率を測定 (3) 赤錆発生率の評価は、次のように行なつた。 ◎…赤錆発生率 0% ○…赤錆発生率 5%以下 △…赤錆発生率 5〜20% ×…赤錆発生率 20〜50% ××…赤錆発生率 50%以上 (4) 腐食深さの評価は次のようである。 ◎…腐食深さ 0mm ○…腐食深さ 0.1mm以下 △…腐食深さ 0.1〜0.3mm ×…腐食深さ 0.3〜0.5mm ××…腐食深さ 0.5mm以上 (5) 塗料密着性の評価は次のようである。 ◎…塗膜剥離率 0% ○…塗膜剥離率 5%以下 △…塗膜剥離率 5〜20% ×…塗膜剥離率 20〜50% ××…塗膜剥離率 50%以上 第1表に評価結果を示す。これから明らかなよ
うに、本発明の複合めつき鋼板は比較材に比べて
諸性能にすぐれた高耐食性複合めつき鋼板である
ことがよくわかる。
[Table] Note Evaluation sample 1: Zn-0.3%BaCrO 4 composite plated steel plate (JP-A-Sho
60-96786 publication conditions) 2: Zn-1%Ni-1%Cr-1%Al 2 O 3 composite plated steel plate (plated under the conditions of JP-A-60-211095 publication) 3: Zn - 8% FE - 7% BaCrO 4 (SiO 2 thin film coating) - 2% AlO 3 (composite plating according to the present invention) 4: Hot-dip zinc thick plating (90 g/m 2 ) (Means for solving the problem ) Therefore, the present inventors were acutely aware of the need to develop a composite galvanized steel sheet with higher corrosion resistance, and as a result of intensive study, the present inventors developed a composite galvanized steel sheet that was microencapsulated by coating the surface with an ultra-thin film, as shown in Figure 1. fine particles and SiO 2 , TiO 2 , Cr 2 O 3 , Al 2 O 3 , ZrO 2 , SnO 2 ,
A laminated steel sheet with a laminated layer made of dispersed eutectoid particles or colloidal particles of Sb 2 O 5 has excellent properties as a rust-preventing steel sheet for automobiles.
It was found that it has excellent puncture resistance. That is, the gist of the present invention is as follows: (1) Corrosion-inhibiting fine particles consisting of a compound that forms corrosion products by releasing ions having an anticorrosion effect in a plating layer, a compound that itself has corrosion-inhibiting ability, or both. SiO2 ,
Capsules coated with an ultra-thin film made of one or more of Al 2 O 3 , ZrO 2 , TiO 2 or capsules coated with an ultra-thin film made of an organic polymer with film-forming ability, and SiO 2 , TiO 2 ,
A Zn- Fe alloy layer or a Zn-Fe alloy layer containing one or a mixture of two or more of fine particles of Cr 2 O 3 , Al 2 O 3 , ZrO 2 , SnO 2 , Sb 2 O 5 or colloidal particles thereof.
A highly corrosion-resistant electrically composite plated steel sheet having a Zn-Fe alloy plating layer containing one or more of Mn, Cr, Sn, Sb, and Mo on one or both sides of the steel sheet. . (2) Corrosion inhibiting fine particles consisting of a compound that forms corrosion products by releasing ions having an anticorrosion effect in the plating layer, a compound that itself has corrosion inhibiting ability, or both, are used as SiO 2 ,
Capsules coated with an ultra-thin film made of one or more of Al 2 O 3 , ZrO 2 , TiO 2 or capsules coated with an ultra-thin film made of an organic polymer with film-forming ability, and SiO 2 , TiO 2 ,
A Zn- Fe alloy layer or a Zn-Fe alloy layer containing one or a mixture of two or more of fine particles of Cr 2 O 3 , Al 2 O 3 , ZrO 2 , SnO 2 , Sb 2 O 5 or colloidal particles thereof.
It has a Zn-Fe alloy plating layer containing one or more of Mn, Cr, Sn, Sb, Pb, and Mo,
On top of that, 1 of Zn, Fe, Co, Ni, Mn, and Cr respectively.
1 to 5 electroplated layers consisting of a species or two or more species
1. A highly corrosion-resistant electrically composite plated steel sheet, characterized in that it has a multi-layered plating layer formed on one or both sides of the steel sheet, forming a g/m 2 layer. (3) Corrosion-inhibiting particles made of SiO 2 , a compound that forms corrosion products by releasing ions that have an anticorrosion effect in the plating layer, a compound that itself has a corrosion-inhibiting ability, or both.
Capsules coated with an ultra-thin film made of one or more of Al 2 O 3 , ZrO 2 , TiO 2 or capsules coated with an ultra-thin film made of an organic polymer with film-forming ability, and SiO 2 , TiO 2 ,
A Zn- Fe alloy layer or a Zn-Fe alloy layer containing one or a mixture of two or more of fine particles of Cr 2 O 3 , Al 2 O 3 , ZrO 2 , SnO 2 , Sb 2 O 5 or colloidal particles thereof.
It has a Zn-Fe alloy plating layer containing one or more of Mn, Cr, Sn, Sb, Pb, and Mo,
A highly corrosion-resistant electrical steel plate characterized by having a multilayer on one or both sides of the steel plate, each of which is formed with an organic resin film, an organic resin film after chromate treatment, or an organic resin film containing chromium ions, respectively. Composite plated steel plate. (4) Corrosion inhibiting fine particles consisting of a compound that forms corrosion products by releasing ions having an anticorrosion effect in the plating layer, or a compound that itself has corrosion inhibiting ability, or both, are mixed with SiO 2 ,
Capsules coated with an ultra-thin film made of one or more of Al 2 O 3 , ZrO 2 , TiO 2 or capsules coated with an ultra-thin film made of an organic polymer with film-forming ability, and SiO 2 , TiO 2 ,
A Zn- Fe alloy layer or a Zn-Fe alloy layer containing one or a mixture of two or more of fine particles of Cr 2 O 3 , Al 2 O 3 , ZrO 2 , SnO 2 , Sb 2 O 5 or colloidal particles thereof.
It has a Zn-Fe alloy plating layer containing one or more of Mn, Cr, Sn, Sb, Pb, and Mo,
On top of that, 1 of Zn, Fe, Co, Ni, Mn, and Cr respectively.
Electroplated layers 1 to 5 consisting of a species or two or more species
g/m 2 and further laminated with an organic resin film, an organic resin film after chromate treatment, or an organic resin film containing chromium ions on one or both sides of the steel plate. This is a highly corrosion-resistant electrically composite plated steel sheet. (Function) The structure of the composite plated steel sheet of the present invention will be explained in detail. Figures 2a, b, c, and d show cross-sectional views of the composite plated steel plate model of the present invention. In FIG. 2a, 1 is a steel plate, which is a thin steel plate whose surface has been cleaned through a normal surface treatment steel plate manufacturing process. 2 is Zn-Fe alloy plating or Zn-Fe
A plating layer containing one or a mixture of two or more of Mn, Cr, Sn, Sb, Pb, and Mo, and is attached to one or both sides of the steel plate 1. 3 is various micro-encapsulated fine particles. 4 is SiO 2 dispersed in a Zn-Fe alloy plating layer or attached to microcapsule particles;
1 of TiO 2 , Cr 2 O 3 , Al 2 O 3 , ZrO 2 , SnO 2 , Sb 2 O 5
They are seeds, two or more types of fine particles, or colloidal particles thereof. Microencapsulated corrosion inhibiting particulates are
Slightly soluble chromate fine particles (PbCrO 4 , SrCrO 4 ,
BaCrO 4 , ZnCrO 4 etc.), easily soluble chromates (CrO 3 , Na 2 CrO 4 , K 2 CrO 4 , K 2 O・4ZnO・
4CrO 3 , etc.), aluminum compounds (Zn, Al alloy powder,
Al 2 O 3・2SiO 2・2H 2 O, etc.), phosphates (Zn 3
(PO 4 ) 2・2H 2 O, etc.), molybdenum compounds (ZnO・
ZnMoO 4 , CaOMoO 4・ZnOMoO 4 , PbCrO 4
PbMoO 4 , PbSO 4, etc.), titanium compounds (TiO 2 ,
Either inorganic particles such as NiO/Sb 2 O 3 or organic particles such as fluororesin or polyethylene resin may be used. The ultrathin film that microcapsulates the fine particles described above is made of one or more inorganic substances such as SiO 2 , TiO 2 , AL 2 O 3 , ZrO 2 , ethyl cellulose, amino resin, vinylidene chloride resin, polyethylene, polystyrene, etc. It consists of organic substances such as The film thickness is
The thickness is preferably 10 Å to 1 μ (preferably 10 Å to 500 Å). When the film thickness exceeds 1μ, the properties of the thin film material become noticeable (for example, SiO 2 tends to cause particle agglomeration), resulting in a slight deterioration in plating performance, and conversely, when it becomes thinner than 10Å, coverage deteriorates. Therefore, the effect of suppressing particle dissolution tends to decrease. By microencapsulating particles, the following effects occur. The fine particles themselves have zero surface potential or are only slightly charged in the plating bath, so in electroplating methods that use electrophoresis, sufficient dispersion and co-deposition into the plating layer is ensured. Can not. However, fine particles or colloidal particles such as SiO 2 , TiO 2 , Al 2 O 3 , ZrO 2 , etc. have a potential themselves, and this property does not change even if the surface of the fine particles is coated. , it is possible to impart a potential to fine particles by microencapsulating them. Therefore, the amount of dispersion and eutectoid dispersion of fine particles into the plating layer can be improved. A second advantage of microencapsulation is that it inhibits dissolution of microparticles in the plating bath. For example, poorly soluble chromate fine particles dissolve in a plating bath, albeit in a small amount, and release Cr 6+ ions. this
When the concentration of Cr 6+ ions exceeds a certain level, the amount of precipitated fine particles decreases, the appearance of the plating becomes black and powdery, and the adhesion of the plating deteriorates. Therefore, microencapsulation suppresses the dissolution of fine particles and makes it possible to obtain a laminated steel sheet that is stable for a long time. The third advantage of microencapsulation is that it improves corrosion resistance compared to dispersion eutectoid of only fine particles. The reason for this is thought to be that the corrosion inhibiting properties of the fine particles remain effective even after microencapsulation. The corrosion inhibiting effect of dispersed fine particles and microencapsulated fine particles will be described in detail. The reason why the corrosion resistance of the plating layer is improved by dispersing and eutectoiding the fine particles in the plating layer is considered to be as follows. When poorly soluble chromate fine particles are dispersed and eutectoid, they decompose in a corrosive environment as the corrosion of the plating layer progresses, releasing Cr 6+ ions. This Cr 6+ ion reacts with the plating layer metal,
Forms chromium compounds, chromium oxides, or hydroxides with excellent corrosion resistance. This improves high corrosion resistance. Furthermore, even if this chromium compound layer is destroyed, since the fine particles are uniformly dispersed throughout the plating layer, the above formation reaction is repeated again, and corrosion resistance is maintained. Next, when microencapsulated fine particles are used, corrosion resistance is further improved. The film of SiO 2 etc. produced by micro-encapsulation is not completely sealed but porous, so Cr 6+ ions are eluted little by little, forming a rust-preventing film of chromium compounds and improving corrosion resistance. is the same as that of non-encapsulated particles. However, in the case of microencapsulated sparingly soluble chromate particles, compared to non-encapsulated sparingly soluble chromate particles,
By suppressing the elution rate of Cr 6+ ions (according to experiments conducted by the inventors, the rate is 1/3 to 1/10), a major feature is that the lifespan of rust-preventing film formation is extended accordingly. As mentioned above, the long-term perforation-resistant life of anticorrosive steel sheets for automobiles is targeted at 10 years, and the accelerated corrosion tests carried out in experiments also last for 1 to 3 months. Therefore, the dispersed particles in the plating layer temporarily become Cr 6+
Rather than releasing ions to form a thick anti-corrosion film made of chromium compounds, gradually releasing Cr 6+ ions to repeatedly form thin anti-rust films provides longer-term corrosion protection. As a representative example, we have described the anticorrosion effect of Cr 6+ ions eluted from poorly soluble chromate fine particles, but we have also discussed PO 4 3- ions eluted from phosphate chlorides and MoO 4 2- ions eluted from molybdenum compounds. The effect is the same. In other words, they release ions that have an anticorrosion effect. In addition, organic particles such as aluminum compounds, titanium compounds, and fluororesins have anticorrosion properties in themselves, and have the effect of acting as a corrosion inhibiting layer that exhibits a barrier effect against corrosion factors. According to experiments conducted by the inventors, the content of microencapsulated fine particles is preferably 0.1 to 30 wt% of the plating amount (preferably 0.5 to 30 wt%).
20wt% is good). If it is less than 0.1%, the effect on improving corrosion resistance is small, and if it exceeds 30%, the plating adhesion tends to deteriorate. Furthermore, SiO 2 , TiO 2 ,
Fine particles of Cr 2 O 3 , Al 2 O 3 , ZrO 2 , SnO 2 , and Sb 2 O 5 have a small corrosion inhibiting effect, unlike sparingly soluble chromate particles. However, the microencapsulated particles precipitate in areas where they do not precipitate, thereby suppressing the progress of corrosion in the partially plated layer. In other words, it has a barrier effect on the plating layer against attack by corrosive factors. The content of fine particles such as SiO 2 is preferably 0.1 to 30 wt% (preferably 0.5 to 20 wt%) of the amount of plating deposited. If it is less than 0.1%, there is no effect of improving corrosion resistance, and if it exceeds 30%, plating adhesion tends to deteriorate. However, the added content of microencapsulated fine particles and fine particles such as SiO 2 should not exceed 30% of the plating amount. Next, TiO 2 colloid, Al 2 O 3 colloid, SiO 2 colloid, and ZrO 2 are used as additives to promote the dispersion and eutectoid amount of microencapsulated particles and SiO 2 particles into the plating layer. Addition of colloid, SnO 2 colloid, Sb 2 O 5 colloid, etc. is effective. As mentioned above, it is possible to control the surface potential of fine particles by microencapsulation, but SiO 2
In the case of a thin film, the particles will have a "negative" potential. In the electroplating method in which a steel plate is electrolytically treated as a cathode, fine particles encapsulated in a thin SiO 2 film are difficult to deposit onto the plating layer. Therefore, it is necessary to increase the amount of dispersed eutectoid dispersion into the plated layer by using the above-mentioned additives. For example, Al 2 O 3 colloid has a positive charge and by some action (not clear),
Adsorption occurs on the surface of fine particles encapsulated with SiO 2 thin film. As a result, the fine particles have a positive charge (potential) and are easily attracted to the cathode during electrolysis. That is, sufficient precipitation onto the plating layer becomes possible. It is thought that similar reactions occur with other colloidal particles. Although the composite plated layer thus obtained exhibits sufficient rust resistance and porosity resistance as described above, it may inhibit the film crystallization of the chemical conversion treatment performed as a pre-painting treatment. For example, even if a composite plated layer containing microencapsulated poorly soluble chromate particles is encapsulated, the film is not completely sealed and is porous, so it retains the properties of the particles. Phosphate treatment, which is carried out as a chemical conversion treatment, does not react on chromium, so it may cause the film crystals to become coarser or cause sagging (crystals are not formed), which may cause variations in paint adhesion after painting and porosity resistance after painting. It becomes a factor that occurs. Therefore, when painting automobile exterior panels, etc., Zn, Fe, Co, etc. are added to the composite plating layer as shown in Figure 2b.
An electrical thinning layer consisting of one or more of Ni, Mn, and Cr is applied at 1 to 5 g/m 2 . If this electroplated layer is less than 1g/ m2 , it will be difficult to completely cover the composite plating layer, and
If it exceeds g/m 2 , the plating adhesion tends to deteriorate slightly, so it is better to control within the above range. This electroplated layer consists of Zn, Fe, Co,
A multilayer plating layer consisting of one or more of Mn and Cr may be used. However, in that case, the total adhesion amount is controlled at 1 to 5 g/m 2 for the same reason as above. In addition, if chemical conversion treatment is not performed, as shown in Figure 2 c and d, either an organic resin film or an organic resin film containing chromium ions is applied as a composite plating layer or an electrically thin layer after organic resin or chromate treatment. By applying it on top of the coating layer, it is possible to ensure paint adhesion and puncture resistance after painting. This effect is due to the fact that the material of the capsule enclosing the corrosion-inhibiting particles is inorganic or organic, such as SiO 2 or TiO 2 , so the bonding property (- It is thought that chemical bonds such as O...H are generated) become stronger. The adhesion between the resin film and the paint is good, and the adhesion of the resin-coated composite plated steel sheet to the paint is also good. Alternatively, in order to further improve corrosion resistance, chromate treatment may be performed on the composite plating layer. However, with only chromate treatment, there is a concern that chromium (particularly Cr 6+ ions) in the chromate film may be leached out during the degreasing and chemical conversion treatment steps in the automobile production process. Since the elution of chromium is a major social problem in terms of pollution and hygiene, it is necessary to suppress the elution to almost zero. It is known that the elution of chromium differs depending on the chromate method (large elution ← coated chromate > reactive chromate > electrolytic chromate → small elution), but corrosion resistance is in the opposite order of elution. For this reason, it is necessary to use them properly depending on the corrosion resistance performance, etc. However, in any chromate treatment, chromium elution occurs, so it is necessary to cover with resin coating after the chromate treatment. It is also possible to prevent chromium from elution by incorporating chromium into a resin paint and applying the paint onto a steel plate and baking it to fix the chromium in the resin. The organic resins mentioned here include epoxy resins, epoxyphenol resins, water-soluble acrylic emulsion resins, etc., and the coating treatment method may be any of the roll coating method, electrostatic atomization method, curtain flow method, etc. . The resin liquid composition at this time has a resin content of 5 to 50% by weight, and when chromium is contained, a resin containing 1 to 20% by weight of chromium ions is used. However, if the film thickness is less than 0.1μ, the ability to prevent the elution of chromium in chromate will be significantly reduced, and if it exceeds 2μ, welding becomes difficult, so it is desirable to control it within the range of 0.1 to 2μ. Next, the present invention will be explained based on examples. A cold-rolled steel sheet was degreased with alkali, pickled with 10% sulfuric acid, washed with water, and subjected to electric composite plating under the following conditions. The plating is done while circulating the liquid using a tabletop pump.
By changing the amount of various fine particles added in the plating bath,
This was carried out by electrolytic treatment using a steel plate as a cathode. For example, Zn−Fe−BaCrO 4 (SiO 2 thin film coated particles)
In the case of Al 2 O 3 composite plating, ZnSO 4 7H 2 O 180 g / FeSO 4 7H 2 O 10-450 g / BaCrO 4 5-60 g / (particles microencapsulated with SiO 2 thin film) Al 2 O 3 0.5 to 60g/PH=2.0, bath temperature=50℃ Current density 40A/dm 2 Electrolysis time 22sec Total deposition amount (target) 22g/m 2 (Here, the film thickness of the coating material of the fine particles (e.g. SiO 2 ) Next, for thin electroplating on composite plating, Zn, Fe, Co, Ni,
Using a toughening bath to which appropriate amounts of Mn and Cr sulfates were added, the test was carried out so that the total deposition amount was in the range of 1 to 5 g/m 2 . Further, the resin coating and the resin coating containing chromium were performed by a roll coating method using a water-soluble acrylic emulsion system as the resin. Also,
Chromate-treated resin coating was performed by roll coating, and chromate was applied by coating, reaction, or electrolysis. The following performance evaluation tests were conducted on various composite plated steel sheets of the present invention manufactured in this manner. (1) Corrosion resistance Treatment: Unpainted and painted materials (Full-dip chemical conversion treatment → cationic electrodeposition coating → scratch damage) Evaluation: Measurement of red rust incidence and corrosion depth after 30 cycles of combined corrosion test (CCT) (Note) CCT: Salt spray (35℃ x 6Hr), dry (70℃, 60% x 4Hr), wet (49℃, >95%
Composite corrosion test (2) Paint adhesion Treatment: Full-dip chemical conversion treatment → 3-coat painting → Hot water immersion (40℃× (10 days) Evaluation: After the test, 100 squares of 2 mm squares were placed and the rate of paint film peeling was measured by taping (3) The rate of occurrence of red rust was evaluated as follows. ◎...Red rust occurrence rate 0% ○...Red rust occurrence rate 5% or less △...Red rust occurrence rate 5-20% ×...Red rust occurrence rate 20-50% ××...Red rust occurrence rate 50% or more (4) Evaluation of corrosion depth is as follows. ◎...Corrosion depth 0mm ○...Corrosion depth 0.1mm or less△...Corrosion depth 0.1~0.3mm ×...Corrosion depth 0.3~0.5mm ××...Corrosion depth 0.5mm or more (5) Evaluation of paint adhesion It looks like this: ◎... Paint film peeling rate 0% ○... Paint film peeling rate 5% or less △... Paint film peeling rate 5-20% ×... Paint film peeling rate 20-50% ××... Paint film peeling rate 50% or more Table 1 shows the evaluation results. As is clear from this, it is clearly seen that the composite plated steel sheet of the present invention is a highly corrosion-resistant composite plated steel sheet with excellent performance compared to comparative materials.

【表】【table】

【表】【table】

【表】 (発明の効果) 本発明はSiO2等の極薄膜で表面被覆された腐
食阻止微粒子とSiO2、TiO2等の微粒子あるいは
コロイド粒子を合わせて分散共析させたZn−Fe
系電気めつき複合鋼板は、従来のZn−Fe合金め
つきに比し耐赤錆性や耐孔あき性にすぐれ、さら
に薄電気めつきや樹脂塗装を施こすことで、塗装
後耐食性や塗料密着性をも格段に向上する。
[Table] (Effects of the invention) The present invention is a Zn-Fe film in which corrosion-inhibiting fine particles whose surface is coated with an ultra-thin film such as SiO 2 and fine particles or colloidal particles such as SiO 2 and TiO 2 are dispersed and co-deposited.
Electroplated composite steel sheets have superior red rust resistance and pitting resistance compared to conventional Zn-Fe alloy plating, and by applying thin electroplating and resin coating, they have improved corrosion resistance and paint adhesion after painting. It also significantly improves sex.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明複合めつき鋼板および比較材の
腐食深さ結果、第2図は本発明の複合めつき鋼板
モデルの断面図を示す。
FIG. 1 shows the corrosion depth results of the composite plated steel plate of the present invention and a comparative material, and FIG. 2 shows a cross-sectional view of the composite plated steel plate model of the present invention.

Claims (1)

【特許請求の範囲】 1 めつき層中で防食作用を有するイオンを放出
することにより腐食生成物を形成する化合物また
はそれ自体腐食抑制能を有する化合物あるいはそ
の両者からなる腐食阻止微粒子をSiO2、Al2O3
ZrO2、TiO2のいずれか1種又はそれ以上からな
る極薄皮膜で被覆したカプセル、または皮膜形成
能を有する有機高分子からなる極薄皮膜で被覆し
たカプセルと、SiO2、TiO2、Cr2O3、Al2O3
ZrO2、SnO2、Sb2O5の微粒子あるいはそのコロ
イド粒子の1種又は2種以上を混合して含有す
る、Zn−Fe合金層あるいはMn、Cr、Sn、Sb、
Moの1種又は2種以上を含有したZn−Fe系合金
めつき層を鋼板の片面又は両面に有してなること
を特徴とする高耐食性電気複合めつき鋼板。 2 めつき層中で防食作用を有するイオンを放出
することにより腐食生成物を形成する化合物また
はそれ自体腐食抑制能を有する化合物あるいはそ
の両者からなる腐食阻止微粒子をSiO2、Al2O3
ZrO2、TiO2のいずれか1種又はそれ以上からな
る極薄皮膜で被覆したカプセル、または皮膜形成
能を有する有機高分子からなる極薄皮膜で被覆し
たカプセルと、SiO2、TiO2、Cr2O3、Al2O3
ZrO2、SnO2、Sb2O5の微粒子あるいはそのコロ
イド粒子の1種又は2種以上を混合して含有す
る、Zn−Fe合金層あるいはMn、Cr、Sn、Sb、
Pb、Moの1種又は2種以上を含有したZn−Fe
系合金めつき層を有し、その上に夫々Zn、Fe、
Co、Ni、Mn、Crの1種又は2種以上からなる
電気めつき層1〜5g/m2を形成せしめた複層め
つき層を鋼板の片面又は両面に有してなることを
特徴とする高耐食性電気複合めつき鋼板。 3 めつき層中で防食作用を有するイオンを放出
することにより腐食生成物を形成する化合物また
はそれ自体腐食抑制能を有する化合物あるいはそ
の両者からなる腐食阻止微粒子をSiO2、Al2O3
ZrO2、TiO2のいずれか1種又はそれ以上からな
る極薄皮膜で被覆したカプセル、または皮膜形成
能を有する有機高分子からなる極薄皮膜で被覆し
たカプセルと、SiO2、TiO2、Cr2O3、Al2O3
ZrO2、SnO2、Sb2O5の微粒子あるいはそのコロ
イド粒子の1種又は2種以上を混合して含有す
る、Zn−Fe合金層あるいはMn、Cr、Sn、Sb、
Pb、Moの1種又は2種以上を含有したZn−Fe
系合金めつき層を有し、その上に夫々有機樹脂皮
膜、クロメート処理後に有機樹脂皮膜、クロムイ
オンを含有した有機樹脂皮膜のいずれか形成せし
めた複層を鋼板の片面又は両面に有してなること
を特徴とする高耐食性電気複合めつき鋼板。 4 めつき層中で防食作用を有するイオンを放出
することにより腐食生成物を形成する化合物また
はそれ自体腐食抑制能を有する化合物あるいはそ
の両者からなる腐食阻止微粒子をSiO2、Al2O3
ZrO2、TiO2のいずれか1種又はそれ以上からな
る極薄皮膜で被覆したカプセル、または皮膜形成
能を有する有機高分子からなる極薄皮膜で被覆し
たカプセルと、SiO2、TiO2、Cr2O3、Al2O3
ZrO2、SnO2、Sb2O5の微粒子あるいはそのコロ
イド粒子の1種又は2種以上を混合して含有す
る、Zn−Fe合金層あるいはMn、Cr、Sn、Sb、
Pb、Moの1種又は2種以上を含有したZn−Fe
系合金めつき層を有し、その上に夫々Zn、Fe、
Co、Ni、Mn、Crの1種又は2種以上からなる
電気めつき層1〜5g/m2を有し、更にその上に
有機樹脂皮膜、クロメート処理後に有機樹脂皮
膜、クロムイオンを含有した有機樹脂皮膜のいず
れかを積層したものを鋼板の片面又は両面ること
を特徴とする高耐食性電気複合めつき鋼板。
[Scope of Claims] 1. Corrosion inhibiting fine particles consisting of a compound that forms corrosion products by releasing ions having an anticorrosion effect in the plating layer, a compound that itself has corrosion inhibiting ability, or both, are made of SiO 2 , Al 2 O 3 ,
Capsules coated with an ultra-thin film made of one or more of ZrO 2 and TiO 2 , or capsules coated with an ultra-thin film made of an organic polymer with film-forming ability, and SiO 2 , TiO 2 , Cr 2O3 , Al2O3 ,
A Zn-Fe alloy layer containing fine particles of ZrO 2 , SnO 2 , Sb 2 O 5 or colloidal particles thereof or a mixture of two or more thereof, or Mn, Cr, Sn, Sb,
A highly corrosion-resistant electrically composite plated steel sheet, characterized in that it has a Zn-Fe alloy plating layer containing one or more types of Mo on one or both sides of the steel sheet. 2 Corrosion-inhibiting fine particles consisting of a compound that forms corrosion products by releasing ions having an anticorrosion effect in the plating layer, a compound that itself has corrosion-inhibiting ability, or both, are mixed with SiO 2 , Al 2 O 3 ,
Capsules coated with an ultra-thin film made of one or more of ZrO 2 and TiO 2 , or capsules coated with an ultra-thin film made of an organic polymer with film-forming ability, and SiO 2 , TiO 2 , Cr 2O3 , Al2O3 ,
A Zn-Fe alloy layer containing fine particles of ZrO 2 , SnO 2 , Sb 2 O 5 or colloidal particles thereof or a mixture of two or more thereof, or Mn, Cr, Sn, Sb,
Zn-Fe containing one or more of Pb and Mo
Zn, Fe,
The steel sheet is characterized by having a multi-layer plating layer on one or both sides of the steel plate, which has an electroplated layer of 1 to 5 g/m 2 made of one or more of Co, Ni, Mn, and Cr. Highly corrosion resistant electrical composite galvanized steel sheet. 3 Corrosion inhibiting fine particles consisting of a compound that forms corrosion products by releasing ions having an anticorrosion effect in the plating layer, a compound that itself has corrosion inhibiting ability, or both, are mixed with SiO 2 , Al 2 O 3 ,
Capsules coated with an ultra-thin film made of one or more of ZrO 2 and TiO 2 , or capsules coated with an ultra-thin film made of an organic polymer with film-forming ability, and SiO 2 , TiO 2 , Cr 2O3 , Al2O3 ,
A Zn-Fe alloy layer containing fine particles of ZrO 2 , SnO 2 , Sb 2 O 5 or colloidal particles thereof or a mixture of two or more thereof, or Mn, Cr, Sn, Sb,
Zn-Fe containing one or more of Pb and Mo
A steel plate has a plating layer on one or both sides of the steel plate, and has a multi-layer on one or both sides of the plated layer, on which either an organic resin film, an organic resin film after chromate treatment, or an organic resin film containing chromium ions is formed. A highly corrosion-resistant electrically composite galvanized steel sheet. 4 Corrosion-inhibiting fine particles consisting of a compound that forms corrosion products by releasing ions that have an anticorrosion effect in the plating layer, a compound that itself has corrosion-inhibiting ability, or both, are mixed with SiO 2 , Al 2 O 3 ,
Capsules coated with an ultra-thin film made of one or more of ZrO 2 and TiO 2 , or capsules coated with an ultra-thin film made of an organic polymer with film-forming ability, and SiO 2 , TiO 2 , Cr 2O3 , Al2O3 ,
A Zn-Fe alloy layer containing fine particles of ZrO 2 , SnO 2 , Sb 2 O 5 or colloidal particles thereof or a mixture of two or more thereof, or Mn, Cr, Sn, Sb,
Zn-Fe containing one or more of Pb and Mo
Zn, Fe,
It has an electroplated layer of 1 to 5 g/m 2 consisting of one or more of Co, Ni, Mn, and Cr, and further contains an organic resin film, an organic resin film after chromate treatment, and chromium ions thereon. A highly corrosion-resistant electrically composite galvanized steel sheet, characterized in that one or both sides of the steel sheet are laminated with an organic resin film.
JP33405887A 1987-12-29 1987-12-29 Composite electroplated steel sheet having high corrosion resistance Granted JPH01176099A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP33405887A JPH01176099A (en) 1987-12-29 1987-12-29 Composite electroplated steel sheet having high corrosion resistance
US07/284,120 US4910095A (en) 1987-12-29 1988-12-14 High corrosion resistant plated composite steel strip
CA000586933A CA1334018C (en) 1987-12-29 1988-12-22 High corrosion resistant plated composite steel strip and method of producing same
AU27516/88A AU601094B2 (en) 1987-12-29 1988-12-22 High corrosion resistant plated composite steel strip and method of producing same
EP88312413A EP0323756B1 (en) 1987-12-29 1988-12-29 Corrosion-resistant plated composite steel strip and method of producing same
DE3851425T DE3851425T2 (en) 1987-12-29 1988-12-29 Steel sheet clad with corrosion-resistant composite material and process for its manufacture.
KR1019880017830A KR910007162B1 (en) 1987-12-29 1988-12-29 High corrosion resistant plated composite steel strip and method therefor
US07/437,439 US5082536A (en) 1987-12-29 1989-11-16 Method of producing a high corrosion resistant plated composite steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33405887A JPH01176099A (en) 1987-12-29 1987-12-29 Composite electroplated steel sheet having high corrosion resistance

Publications (2)

Publication Number Publication Date
JPH01176099A JPH01176099A (en) 1989-07-12
JPH0433878B2 true JPH0433878B2 (en) 1992-06-04

Family

ID=18273036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33405887A Granted JPH01176099A (en) 1987-12-29 1987-12-29 Composite electroplated steel sheet having high corrosion resistance

Country Status (1)

Country Link
JP (1) JPH01176099A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2714470B2 (en) * 1990-03-02 1998-02-16 三菱電機株式会社 Graphite particle dispersion silver plating method
JP2004263252A (en) * 2003-03-03 2004-09-24 Jfe Steel Kk Chromium-free chemically treated steel sheet excellent in resistance to white rust
DE102005057384A1 (en) * 2005-11-30 2007-05-31 Nanogate Ag Electrolytically deposited metal layer for coating engine parts comprises embedded particles having a silicon dioxide coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159342A (en) * 1978-06-08 1979-12-17 Nippon Steel Corp Manufacture of corrosion resistant zinc composite- electroplated steel products
JPS60141898A (en) * 1983-12-29 1985-07-26 Nippon Steel Corp Composite electroplated steel sheet and its production
JPS61127900A (en) * 1984-11-22 1986-06-16 Kawasaki Steel Corp Composite plating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159342A (en) * 1978-06-08 1979-12-17 Nippon Steel Corp Manufacture of corrosion resistant zinc composite- electroplated steel products
JPS60141898A (en) * 1983-12-29 1985-07-26 Nippon Steel Corp Composite electroplated steel sheet and its production
JPS61127900A (en) * 1984-11-22 1986-06-16 Kawasaki Steel Corp Composite plating method

Also Published As

Publication number Publication date
JPH01176099A (en) 1989-07-12

Similar Documents

Publication Publication Date Title
KR910007162B1 (en) High corrosion resistant plated composite steel strip and method therefor
JP3851482B2 (en) Galvanized steel sheet with excellent white rust resistance and coating adhesion
JP4615807B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet
US4800134A (en) High corrosion resistant plated composite steel strip
JPS5815554B2 (en) Plated steel materials for cationic electrodeposition coating
JPH0433878B2 (en)
JPH0129873B2 (en)
JPH0433875B2 (en)
JPH0433877B2 (en)
JPH0433876B2 (en)
JPH01176551A (en) Highly corrosion resistant organic composite plated steel plate
JPS6213590A (en) Surface-treated steel sheet having excellent coating property, adhesion after coating and corrosion resistance and its production
JPH0359154B2 (en)
JPH0359155B2 (en)
JPH025839B2 (en)
JPH0322479B2 (en)
JPS63143294A (en) Double-layer electroplated steel sheet having excellent corrosion resistance
JPH02159398A (en) Production of composite plated steel sheet having high corrosion resistance
JPS6350499A (en) Colored zinc composite plated steel sheet and its production
JPS6075584A (en) Method for modifying surface of zinc alloy plated steel sheet
JP2836771B2 (en) Undercoat chromate treatment method for painted steel sheet
JPH0211799A (en) Zn-based surface-treated steel sheet having excellent corrosion resistance after coating
JPH08302489A (en) Highly corrosion-resistant surface-treated steel sheet and its production
JPH0788584B2 (en) Resin coated zinc-chromium electroplated steel sheet
JPH0610359B2 (en) High corrosion resistant Zn-based multi-layer electric steel sheet