JPH04338192A - Device for producing silicon single crystal - Google Patents

Device for producing silicon single crystal

Info

Publication number
JPH04338192A
JPH04338192A JP10602691A JP10602691A JPH04338192A JP H04338192 A JPH04338192 A JP H04338192A JP 10602691 A JP10602691 A JP 10602691A JP 10602691 A JP10602691 A JP 10602691A JP H04338192 A JPH04338192 A JP H04338192A
Authority
JP
Japan
Prior art keywords
single crystal
silicon
quartz
silicon single
heat shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10602691A
Other languages
Japanese (ja)
Inventor
Takeshi Suzuki
威 鈴木
Yoshinobu Shima
島 芳延
Teruo Fujibayashi
晃夫 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10602691A priority Critical patent/JPH04338192A/en
Publication of JPH04338192A publication Critical patent/JPH04338192A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent contamination of silicon single crystal based on impurity of heavy metal by providing a cylindrical partition made of quartz to the space between a heat shielding body made of metal and single crystal being grown in a device equipped with the metal heat shielding body wherein silicon single crystal having a large caliber is produced by a CZ process. CONSTITUTION:A partition member 2 made of quartz is provided to the inside of a crucible 1 made of the same. Moreover a heat shielding body 8 made of metal is provided which covers both the partition member 2 and the dissolving part of a raw material. Silicon melt 5 is thermally insulated to prevent generation of coagulation. Furthermore a cylindrical partition 10 made of quartz is provided to the space between this heat shielding body 8 and single crystal 11 being grown. Single crystal 11 is prevented from being contaminated by impurities based on heavy metal constituting the heat shielding body 8. Silicon for a raw material is continuously supplied to the outside of the partition member 2 from a feeder 3 and melted. This melt is introduced to the inside of the partition member 2 via a small hole 6 provided thereto. Single crystal 11 is grown by a Czochralski process. Thereby silicon single crystal having a large caliber is grown and density of generating a laminate flaw inducing oxidation is reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、チョクラルスキー法(
以下CZ法と言う)による大口径のシリコン単結晶の製
造装置に関するものである。
[Industrial Application Field] The present invention is based on the Czochralski method (
This invention relates to an apparatus for manufacturing large-diameter silicon single crystals using the CZ method (hereinafter referred to as the CZ method).

【0002】0002

【従来の技術】従来、LSI分野で用いられるシリコン
単結晶は、通常CZ法によって製造されている。例えば
特公昭40−10184号公報(1頁左欄20行〜35
行)には、このCZ法において、シリコン溶融液を内蔵
する石英るつぼの内側に、シリコン溶融液の流通孔を有
する円筒状の石英製仕切を設置してシリコン溶融液を内
外に仕切り、仕切の外側に原料シリコンを供給しながら
、仕切の内側で連続的にシリコン単結晶を育成する方法
が開示されている。
2. Description of the Related Art Conventionally, silicon single crystals used in the LSI field are usually manufactured by the CZ method. For example, Japanese Patent Publication No. 40-10184 (page 1, left column, lines 20 to 35)
In this CZ method, a cylindrical quartz partition with a circulation hole for the silicon melt is installed inside the quartz crucible containing the silicon melt to partition the silicon melt inside and outside, and the partition A method is disclosed in which silicon single crystals are continuously grown inside a partition while supplying raw material silicon to the outside.

【0003】既に、特開昭62−241889号公報(
2頁左下欄2行〜6行)に指摘されているように、この
方法では、仕切の内側で仕切部材を起点として、シリコ
ン溶融液の凝固が発生し易く、シリコン単結晶の育成を
阻害するという問題点を有し、特にシリコン単結晶の直
径を6〜10インチと大きくするに従い、この問題点は
顕在化する。
[0003] Japanese Patent Application Laid-Open No. 62-241889 (
As pointed out in the lower left column of page 2, lines 2 to 6), in this method, the silicon melt tends to solidify starting from the partition member inside the partition, which inhibits the growth of silicon single crystals. This problem becomes more apparent as the diameter of the silicon single crystal increases from 6 to 10 inches.

【0004】この問題点を解決するために、仕切り部材
を保温カバー(熱遮蔽体)で覆い凝固の発生を防止する
方法が、例えば特開平1−153589号公報には、仕
切り部材及び原料溶解部の上方を保温カバーで覆い、保
温カバーによって、熱がるつぼ上方の水平にされた炉壁
等へ放散するのを抑え、仕切り部材周辺及び原料溶解部
のシリコン溶融液を保温することが開示されている。
In order to solve this problem, a method of covering the partition member with a heat insulating cover (thermal shield) to prevent the occurrence of solidification is proposed, for example, in JP-A-1-153589. It is disclosed that the upper part is covered with a heat insulating cover, and the heat insulating cover suppresses the dissipation of heat to the horizontal furnace wall, etc. above the crucible, and keeps the silicon melt around the partition member and the raw material melting part warm. There is.

【0005】熱遮蔽体の材料としては、黒鉛、金属など
いろいろ考えられるが、発明者らの検討では、シリコン
単結晶の製造装置の炉内構成部品の材料として一般的に
用いられる黒鉛は、輻射率が大きいため、保温効果が必
ずしも十分ではない。一方、輻射率の小さい金属は、熱
の上方への放散をよく遮蔽できるため、保温効果が大き
く、熱遮蔽体の使用目的によく合致している。
Various materials such as graphite and metals can be considered for the heat shield, but the inventors have found that graphite, which is commonly used as a material for the furnace components of silicon single crystal production equipment, has a high radiation Since the ratio is large, the heat retention effect is not necessarily sufficient. On the other hand, metals with low emissivity can effectively block upward dissipation of heat, so they have a large heat retention effect and are well suited to the purpose of use as a heat shield.

【0006】この熱遮蔽体を金属板で構成することによ
り、大口径のシリコン単結晶を高速で引き上げる場合に
おいても、仕切り部材からの凝固や原料溶解部での供給
原料の溶け残りを生じることなく、安定した単結晶引き
上げ操業が可能になる。
[0006] By constructing this heat shielding body with a metal plate, even when pulling a large diameter silicon single crystal at high speed, there is no solidification from the partition member or unmelted raw material remains in the raw material melting section. , stable single crystal pulling operation becomes possible.

【0007】ただし、熱遮蔽体は、単結晶引き上げ炉内
の高温環境下で使用するものであり、タンタル、モリブ
デン、タングステンといった高融点金属を用いることが
必要である。殊に、タンタルは、きわめて展延性に富む
金属であり、種々の細工がしやすく、使用しやすい。
However, the heat shield is used in a high temperature environment inside a single crystal pulling furnace, and it is necessary to use a high melting point metal such as tantalum, molybdenum, or tungsten. In particular, tantalum is an extremely malleable metal and is easy to work with in various ways, making it easy to use.

【0008】[0008]

【発明が解決しようとする課題】上記のように、仕切り
部材を高純度の、タンタル板,モリブデン板又はタング
ステン板から選ばれた1種から成る熱遮蔽材で覆うこと
により、仕切り部材からのシリコン溶融液の凝固及び原
料溶解部での供給原料の溶け残りを防止でき、連続引き
上げ法によるシリコン単結晶の安定育成が可能になった
[Problems to be Solved by the Invention] As described above, by covering the partition member with a high-purity heat shielding material made of one selected from tantalum plate, molybdenum plate, or tungsten plate, silicon from the partition member can be removed. It is possible to prevent the solidification of the melt and the undissolved supply of raw materials in the raw material melting section, making it possible to stably grow silicon single crystals using the continuous pulling method.

【0009】しかしながら、この保温性の大きなカ−ボ
ン或いはタンタル、モリブデンの様な高融点金属を熱遮
蔽体として用いて育成したシリコン単結晶は、シリコン
ウェハ−に加工した際に、酸化誘起積層欠陥(以下OS
Fという)の発生密度が大きくなる傾向があり、熱遮蔽
体の材料にタンタルやモリブデンの様な金属を用いた場
合、特に顕著(OSF密度約103 個/cm2)にな
ることがわかった。
However, silicon single crystals grown using carbon with high heat retention properties or high melting point metals such as tantalum and molybdenum as heat shields suffer from oxidation-induced stacking faults when processed into silicon wafers. (hereinafter OS
It was found that the generation density of OSF (OSF) tends to increase, and is particularly noticeable (OSF density of about 103 pieces/cm2) when metals such as tantalum and molybdenum are used as the material for the heat shield.

【0010】本発明は、かかる事情を鑑みてなされたも
のであって、金属製熱遮蔽体を用いて育成速度を速く保
ったまま、重金属の不純物による汚染を防止し、OSF
が無い、もしくはOSF発生密度がごく低い、シリコン
単結晶の製造装置を提供することを目的とする。
The present invention was made in view of the above circumstances, and uses a metal heat shield to maintain a high growth rate while preventing contamination by heavy metal impurities.
It is an object of the present invention to provide a silicon single crystal manufacturing apparatus in which there is no OSF generation density or the OSF generation density is extremely low.

【0011】[0011]

【課題を解決するための手段】本発明は、前記の問題点
を解決し、上記の目的を達成するためになされたもので
ある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems and achieve the above-mentioned objects.

【0012】本発明は、シリコン溶融液を内蔵する自転
型石英るつぼと、その石英るつぼを側面から加熱する電
気抵抗加熱体と、石英るつぼ内でシリコン溶融液を単結
晶育成部と原料溶解部とに分割しかつシリコン溶融液が
流通できる小孔を有する石英製仕切り部材と、その石英
製仕切り部材と原料溶解部を覆う熱遮蔽体と、前記各構
成物を収容する炉内部を減圧するための減圧装置と、前
記原料溶解部に原料シリコンを連続供給する原料供給装
置とを有するシリコン単結晶製造装置において、  前
記熱遮蔽体と育成中の単結晶の間の空間に円筒状の石英
製隔壁を設けることを特徴とするシリコン単結晶の製造
装置である。
The present invention provides a self-rotating quartz crucible containing molten silicon, an electric resistance heating element that heats the quartz crucible from the side, and a quartz crucible that supplies the molten silicon to a single crystal growth section and a raw material melting section. a quartz partition member that is divided into two parts and has small holes through which the silicon melt can flow; a heat shield that covers the quartz partition member and the raw material melting section; In a silicon single crystal production apparatus having a pressure reduction device and a raw material supply device that continuously supplies raw silicon to the raw material melting section, a cylindrical quartz partition wall is provided in a space between the heat shield and the growing single crystal. 1 is a silicon single crystal manufacturing apparatus characterized in that:

【0013】更に、前記円筒状の石英製隔壁の直径の最
適値を、シリコン単結晶の直径をX(mm),熱遮蔽体
の最小内径をY(mm)とした時,内径並びに外径の夫
々をX+10(mm)以上、Y−20(mm)以下とす
ることを特徴とする上記のシリコン単結晶の製造装置で
ある。
Furthermore, the optimum value of the diameter of the cylindrical quartz partition wall is determined by the inner and outer diameters, where the diameter of the silicon single crystal is X (mm) and the minimum inner diameter of the heat shield is Y (mm). The above-mentioned silicon single crystal manufacturing apparatus is characterized in that each of the crystals is X+10 (mm) or more and Y-20 (mm) or less.

【0014】[0014]

【作用】本発明者らは、タンタルなどの金属板の熱遮蔽
体を使用して、連続引き上げ法によって育成した、シリ
コン単結晶から得られたシリコンウェハ−のOSFが多
い原因について、次のように検討した。
[Operation] The present inventors have found the following reason for the large number of OSFs in silicon wafers obtained from silicon single crystals grown by the continuous pulling method using a heat shield made of a metal plate such as tantalum. We considered this.

【0015】先ず、同一形状で材質の異なる熱遮蔽体を
用いて、シリコン単結晶を育成した場合のOSF発生密
度を調べた。その結果を図6に示す。
First, the OSF generation density was investigated when a silicon single crystal was grown using heat shields of the same shape but different materials. The results are shown in FIG.

【0016】図6は、熱遮蔽体としての保温カバーの材
質をMo,Ta及びCに変えて、育成したシリコン単結
晶から、加工したシリコンウェハ−の中心からの距離毎
のOSF発生密度を示したグラフである。
FIG. 6 shows the OSF generation density for each distance from the center of the processed silicon wafer from the grown silicon single crystal by changing the material of the heat insulating cover as a heat shield to Mo, Ta, and C. This is a graph.

【0017】図6から明らかなように、モリブデン製や
タンタル製の熱遮蔽体を用いた場合の方が、カ−ボン製
熱遮蔽体を用いた場合に比べてOSF発生密度が大きい
As is clear from FIG. 6, the OSF generation density is higher when a heat shield made of molybdenum or tantalum is used than when a heat shield made of carbon is used.

【0018】金属とカ−ボンでは輻射率が異なるため、
保温能力が異なり結晶の受ける熱履歴も変化する。
[0018] Since the emissivity of metal and carbon is different,
The heat retention ability differs, and the heat history that the crystal receives also changes.

【0019】OSF発生密度の差が熱履歴の影響を受け
たものかどうかを検討すべく熱遮蔽体の形状を図7に示
すように、(a)は熱遮蔽体の上方に広がりを持たせ、
結晶の冷却面を見る角度を大きくし、結晶の冷却を促進
した例、(b)は熱遮蔽体を結晶に近接し、結晶の保温
を強化した例、(c)は熱遮蔽体の胴部を無くし、結晶
の側面からの加熱を促進した例、のごとく形状を様々に
変化させ、シリコン単結晶の受ける熱履歴を色々に変化
させて単結晶を育成しOSF発生密度を測定したが、熱
遮蔽体に金属材料を用いている限りOSF発生密度に大
きな変化は見られなかった。
In order to examine whether the difference in the OSF generation density was influenced by thermal history, the shape of the heat shield was designed as shown in FIG. 7. ,
An example in which the angle at which the cooling surface of the crystal is viewed is increased to promote cooling of the crystal. (b) is an example in which the heat shield is placed close to the crystal to strengthen the heat retention of the crystal. (c) is the body of the heat shield. As shown in the example in which heating from the sides of the crystal is promoted, single crystals were grown by changing the shape and the thermal history received by the silicon single crystal in various ways, and the OSF generation density was measured. As long as a metal material was used for the shield, no significant change was observed in the OSF generation density.

【0020】一方、金属及びカ−ボン中に含まれる鉄や
銅等の重金属不純物の量を比較すると、金属中の不純物
は総じてカ−ボン中の不純物よりも1オ−ダ−以上多く
含まれており、例えば鉄の場合、モリブデン中で50p
pm、タンタル中で30ppm、カ−ボン中で2ppm
、銅の場合、モリブデン中で5ppm、タンタル中で1
0ppm、カ−ボン中で1ppm、不純物全量では、モ
リブデン中で290ppm以上、タンタル中で250p
pm以上、カ−ボン中で20ppm以下含有され、材料
中の不純物の量がOSF発生密度の大小と対応を見せて
いる。
On the other hand, when comparing the amounts of heavy metal impurities such as iron and copper contained in metals and carbon, it is found that impurities in metals are generally more than one order of magnitude higher than impurities in carbon. For example, in the case of iron, 50p in molybdenum
pm, 30 ppm in tantalum, 2 ppm in carbon
, for copper, 5 ppm in molybdenum and 1 in tantalum.
0ppm, 1ppm in carbon, total amount of impurities, more than 290ppm in molybdenum, 250ppm in tantalum
pm or more and 20 ppm or less in carbon, and the amount of impurities in the material corresponds to the size of the OSF generation density.

【0021】また、熱遮蔽体を用いずに、不純物混入の
ない雰囲気でCZ法により育成した単結晶から得られた
シリコンウェハ−からはOSFは殆ど検出されなかった
Furthermore, almost no OSF was detected in a silicon wafer obtained from a single crystal grown by the CZ method in an atmosphere free of impurities without using a heat shield.

【0022】上記の検討結果、金属製の熱遮蔽体を用い
て育成したシリコン単結晶からのシリコンウェハ−のO
SF多発は、シリコン単結晶の受ける熱履歴によるもの
である以上に、主たる原因は次のようなものであること
が考えられる。
As a result of the above study, the O
The main cause of the frequent occurrence of SF is thought to be as follows, in addition to the thermal history experienced by the silicon single crystal.

【0023】即ち、熱遮蔽体はシリコン溶融液直上とい
う高温環境に保持されており、そのため熱遮蔽体の構成
部材中に含まれ同熱遮蔽体から蒸発する重金属不純物例
えば鉄,銅等の重金属不純物分子が、気相拡散して育成
中のシリコン単結晶表面に付着し、固相拡散により表面
から内部に浸透して単結晶の重金属汚染が起こることに
よるものである。
That is, the heat shield is maintained in a high-temperature environment directly above the silicon melt, and therefore heavy metal impurities such as iron and copper, which are contained in the constituent members of the heat shield and evaporate from the heat shield, are removed. This is because molecules adhere to the surface of the growing silicon single crystal through vapor phase diffusion, and penetrate from the surface into the interior through solid phase diffusion, resulting in heavy metal contamination of the single crystal.

【0024】この考え方によれば、熱遮蔽体にカ−ボン
を使用する方がシリココンウェハ面内のOSF密度の少
ない単結晶の育成に対して有利であることが判り、図6
の結果もこれを支持している。
According to this idea, it has been found that using carbon for the heat shield is advantageous for growing single crystals with low OSF density within the silicon wafer surface, and as shown in FIG.
The results also support this.

【0025】しかしながら、輻射率の違いから結晶の冷
却効率が低くなり、カ−ボン製熱遮蔽体を用いた場合、
金属の場合と比較して、シリコン単結晶の育成速度が約
半分の0.6〜0.7mm/分と遅いため生産性の点で
劣る。そこで、金属製熱遮蔽体を用いて育成速度を速く
保ったまま、重金属汚染を防ぐ工夫が必要となり、本発
明が成されたものである。
However, the cooling efficiency of the crystal becomes low due to the difference in emissivity, and when a carbon heat shield is used,
Compared to the case of metals, the growth rate of silicon single crystals is about half, 0.6 to 0.7 mm/min, which is slow, resulting in poor productivity. Therefore, it became necessary to devise a method to prevent heavy metal contamination while maintaining a high growth rate by using a metal heat shield, and the present invention was created.

【0026】本発明は、熱遮蔽体から蒸発した重金属不
純物分子がシリコン単結晶に付着するのを防止するため
に、熱遮蔽体とシリコン単結晶との間に円筒状の石英製
隔壁を接置したものである。この石英製隔壁を設ける、
その第1の作用として、重金属不純物分子が熱遮蔽体よ
り蒸発し、単結晶の方へ気相拡散してきても石英製隔壁
によって遮蔽され、単結晶の汚染を防ぐことができる。 かくして拡散してきた重金属不純物分子はその大部分が
石英表面に付着し、シリコン単結晶に到達する分子数は
激減する。
In the present invention, a cylindrical quartz partition wall is placed between the heat shield and the silicon single crystal in order to prevent heavy metal impurity molecules evaporated from the heat shield from adhering to the silicon single crystal. This is what I did. Providing this quartz partition wall,
The first effect is that even if heavy metal impurity molecules evaporate from the heat shield and diffuse into the single crystal in a vapor phase, they are blocked by the quartz partition wall and can prevent contamination of the single crystal. Most of the heavy metal impurity molecules thus diffused adhere to the quartz surface, and the number of molecules that reach the silicon single crystal is drastically reduced.

【0027】第2の作用として、隔壁の材質に熱伝導が
極めて良好で殆ど熱的に透過性のある石英を用いるため
、シリコン単結晶の育成条件を大きく左右する熱環境を
隔壁設置の前後で大きく変えること無く、後述する実施
例に示すように、設置前の育成条件をほぼ継続してシリ
コン単結晶の育成が行える点が挙げられる。
The second effect is that since quartz, which has extremely good thermal conductivity and is almost thermally transparent, is used as the material for the partition walls, the thermal environment, which greatly influences the growth conditions of silicon single crystals, can be changed before and after installing the partition walls. One advantage is that silicon single crystals can be grown under almost the same growth conditions as before installation, as shown in the examples described later, without making any major changes.

【0028】このように、熱環境の変化が単結晶の安定
育成や結晶品質に大いに影響を与える事実を鑑みた場合
、熱環境に変化を与えないという特徴は本発明の実施上
非常に有利である。
In view of the fact that changes in the thermal environment greatly affect the stable growth of single crystals and crystal quality, the feature of not causing changes in the thermal environment is extremely advantageous in implementing the present invention. be.

【0029】また、後述する実施例において、石英製隔
壁の管径と得られたシリコン単結晶からのウェハ−のエ
ッジ部におけるOSF発生密度との関係を求めた結果、
6インチ径単結晶を引き上げる場合、石英製隔壁の管径
の外径が200mmを越えるあたりからOSF発生密度
が緩やかに増大する結果が得られ、また、石英製隔壁の
管径の直径の最小値は、シリコン単結晶を育成中に揺れ
たシリコン単結晶と接触を起こさないような範囲の下限
で決定されることを知見した。
In addition, in the Examples described later, the relationship between the diameter of the quartz partition wall and the OSF generation density at the edge of the wafer made from the obtained silicon single crystal was determined.
When pulling a 6-inch diameter single crystal, we found that the OSF generation density gradually increases when the outer diameter of the quartz partition wall exceeds 200 mm, and the minimum value of the quartz partition wall diameter exceeds 200 mm. It has been found that the temperature is determined at the lower limit of a range that does not cause contact with the silicon single crystal that is shaken during the growth of the silicon single crystal.

【0030】さらに、石英製隔壁外径と熱遮蔽体の最小
内径の差が20mm以下になるとOSF発生密度は増大
することを知見した。
Furthermore, it has been found that when the difference between the outer diameter of the quartz partition wall and the minimum inner diameter of the heat shield becomes 20 mm or less, the OSF generation density increases.

【0031】これらの知見から、シリコン単結晶11の
直径をX(mm),熱遮蔽体8の最小内径をY(mm)
としたとき、石英製隔壁10の直径の最適値は、内径が
X+10(mm)以上、外径がY−20(mm)以下と
することが望ましいことが判った。
From these findings, the diameter of the silicon single crystal 11 is X (mm), and the minimum inner diameter of the heat shield 8 is Y (mm).
It has been found that the optimum diameter of the quartz partition wall 10 is preferably such that the inner diameter is X+10 (mm) or more and the outer diameter is Y-20 (mm) or less.

【0032】[0032]

【実施例】本発明の実施例を添付の図面を参照しながら
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described in detail with reference to the accompanying drawings.

【0033】図1は本発明の実施例において用いたシリ
コン単結晶の製造装置を模式的に示した縦断面図である
FIG. 1 is a longitudinal sectional view schematically showing a silicon single crystal manufacturing apparatus used in an embodiment of the present invention.

【0034】図1において、1はシリコン溶融液5を保
持する直径20インチの石英製のるつぼで、黒鉛るつぼ
4により支持されており、黒鉛るつぼ4はペディスタル
15上にモーターによって通常10rpmで回転される
In FIG. 1, reference numeral 1 denotes a 20-inch diameter quartz crucible holding a silicon melt 5, which is supported by a graphite crucible 4, which is rotated by a motor at a normal speed of 10 rpm on a pedestal 15. Ru.

【0035】2は石英るつぼ1と同心的に配置された直
径16インチの石英製仕切り部材であり、石英るつぼ1
内でシリコン溶融液5を単結晶育成部と原料溶解部に分
割している。
2 is a quartz partition member with a diameter of 16 inches arranged concentrically with the quartz crucible 1;
Inside, the silicon melt 5 is divided into a single crystal growth section and a raw material melting section.

【0036】3はシリコン原料の供給装置であり、この
シリコン原料供給装置3を通じて粒状ポリシリコンが石
英製仕切り部材2の外側の原料溶解部に供給される。原
料溶解部のシリコン溶融液5は融液流通孔6を通って石
英製仕切り部材2の内側の結晶育成部に流入する。
Reference numeral 3 denotes a silicon raw material supply device, through which granular polysilicon is supplied to the raw material melting section outside the quartz partition member 2. The silicon melt 5 in the raw material melting section passes through the melt flow hole 6 and flows into the crystal growth section inside the quartz partition member 2 .

【0037】7は仕切と融液表面との接触面であり、本
発明においては、この接触面7の部分からのシリコン溶
融液の凝固を防ぎかつ原料溶解部での粒状シリコン原料
の溶解を促進する目的で厚さ0.2mmのモリブデンあ
るいはタンタル製の熱遮蔽体8(保温カバ−)が設置さ
れている。
7 is a contact surface between the partition and the melt surface, and in the present invention, the silicon melt is prevented from solidifying from the contact surface 7 and the granular silicon raw material is promoted to dissolve in the raw material melting section. For this purpose, a heat shield 8 (thermal cover) made of molybdenum or tantalum and having a thickness of 0.2 mm is installed.

【0038】9は黒鉛るつぼ4を取り囲む電気抵抗加熱
体であり、10は本発明で提案する円筒状の高純度石英
製の隔壁であり、熱遮蔽体8とシリコン単結晶との間に
設けたものであり、この例では外径180mm、高さ1
85mm、厚さ5mmの円筒を用いた。
Reference numeral 9 denotes an electric resistance heating element surrounding the graphite crucible 4, and 10 denotes a cylindrical partition wall made of high-purity quartz proposed in the present invention, which is provided between the heat shield 8 and the silicon single crystal. In this example, the outer diameter is 180 mm and the height is 1.
A cylinder with a diameter of 85 mm and a thickness of 5 mm was used.

【0039】11はシリコン単結晶を示し、本実施例で
は6インチ径のシリコン単結晶を育成することを目的と
するものである。又、このシリコン単結晶は、図外に設
置されている結晶重量センサーにより、随時径変化に伴
う重量変化を検知し直径制御が行われる。
Reference numeral 11 indicates a silicon single crystal, and in this example, the purpose is to grow a silicon single crystal with a diameter of 6 inches. Further, the diameter of this silicon single crystal is controlled by detecting the weight change accompanying the diameter change from time to time by a crystal weight sensor installed outside the figure.

【0040】なお、12は引上げチャンバ−、13はメ
−ンチャンバ−上蓋、14はメ−ンチャンバ−胴部、1
6は上部保温筒、17は側部保温筒、18は排気孔を示
し、雰囲気ガス(アルゴンガス)は引上げチヤンバ−1
2上方に設けられたガス流入口(図示せず)から炉内に
導入され炉底部の排出孔18から排出され、単結晶育成
時の炉内の圧力は0.01〜0.03気圧に調節される
Note that 12 is a lifting chamber, 13 is a main chamber upper lid, 14 is a main chamber body, 1
6 is an upper heat insulating cylinder, 17 is a side heat insulating cylinder, 18 is an exhaust hole, and atmospheric gas (argon gas) is drawn into the pulling chamber 1.
2. The gas is introduced into the furnace through the gas inlet (not shown) provided above and discharged through the exhaust hole 18 at the bottom of the furnace, and the pressure inside the furnace during single crystal growth is adjusted to 0.01 to 0.03 atm. be done.

【0041】図2に熱遮蔽体8の詳細を模式的に示す。 熱遮蔽体8は図2に示すように筒部21と開口部22を
有する平板部23から成るものである。
FIG. 2 schematically shows details of the heat shield 8. The heat shield 8 is made up of a cylindrical portion 21 and a flat plate portion 23 having an opening 22, as shown in FIG.

【0042】この開口部22を設けることにより、シリ
コン単結晶の製造装置内のガス流動状態が適正化され、
シリコン単結晶11の有転位化の防止に役だつものであ
る。
By providing this opening 22, the gas flow state within the silicon single crystal manufacturing apparatus is optimized.
This is useful for preventing the formation of dislocations in the silicon single crystal 11.

【0043】図1に示したようなシリコン単結晶の製造
装置を用い、連続引き上げ法で、上記のように結晶育成
環境を設定して、シリコン単結晶を育成し製造した結果
、定径部で80cm以上の6インチ径のシリコン単結晶
が約90パーセント以上の確率で育成できた。この確率
は石英製隔壁10の設置前に比べ全く遜色のない値であ
る。
Using the silicon single crystal manufacturing apparatus shown in FIG. 1, using the continuous pulling method and setting the crystal growth environment as described above, a silicon single crystal was grown and manufactured. A silicon single crystal with a diameter of 6 inches or more of 80 cm or more could be grown with a probability of about 90% or more. This probability is completely comparable to that before the quartz partition wall 10 was installed.

【0044】そして得られたシリコン単結晶から、シリ
コンウエハを製造し、品質評価のため、1100℃にて
30〜120分、湿潤O2 雰囲気中で熱処理を施した
後、OSF発生密度を測定した。
Silicon wafers were manufactured from the silicon single crystals obtained, and for quality evaluation, they were heat-treated at 1100° C. for 30 to 120 minutes in a humid O 2 atmosphere, and then the OSF generation density was measured.

【0045】石英製隔壁10を設置する前後の育成条件
を比較すると、定径部育成中の電気抵抗加熱体9への投
入電力は 設置前…84.5〜85.5kw、 設置後…85.5〜85.7kw と殆ど変化が無く、またその時の結晶育成速度も1.0
〜1.2mm/分となり設置前後で変化は無かった。
Comparing the growth conditions before and after installing the quartz partition wall 10, the power input to the electric resistance heating element 9 during growth of the constant diameter section was 84.5 to 85.5 kW before installation, and 85.5 kw after installation. There is almost no change from 5 to 85.7kw, and the crystal growth rate at that time is also 1.0.
~1.2 mm/min, and there was no change before and after installation.

【0046】また、図3に石英製隔壁10を使用する前
後で育成したシリコン単結晶をウェーハに加工した際の
OSF発生密度の面内分布の変化を調べる。その結果を
図3に示す。
Further, FIG. 3 shows changes in the in-plane distribution of OSF generation density when silicon single crystals grown before and after using the quartz partition wall 10 are processed into wafers. The results are shown in FIG.

【0047】図3に示す様に、本発明の場合はOSF密
度は100 であり、従来の場合は101 〜103 
で、石英製隔壁10の設置前後で育成したシリコン単結
晶から得られたウェハ−のOSF発生密度はかなり低下
し、石英製隔壁10を設置した効果が明らかであること
がわかった。
As shown in FIG. 3, the OSF density is 100 in the case of the present invention, and 101 to 103 in the conventional case.
It was found that the OSF generation density of wafers obtained from silicon single crystals grown before and after the installation of the quartz partition walls 10 was considerably reduced, and the effect of installing the quartz partition walls 10 was clear.

【0048】熱遮蔽体8から蒸発した重金属不純物分子
は、石英製隔壁10の表面に吸着し、石英製隔壁10の
ごく表層に高濃度の不純物層を形成する。
The heavy metal impurity molecules evaporated from the heat shield 8 are adsorbed onto the surface of the quartz partition wall 10, forming a highly concentrated impurity layer on the very surface layer of the quartz partition wall 10.

【0049】シリコン単結晶の育成前後の石英製隔壁1
0の表層をフッ酸で洗浄し、洗浄液中の鉄および銅の濃
度を比較調査した。その結果を図4に示す。表層をフッ
酸で洗浄た際の不純物相対比率は明らかに育成後の濃度
が増加している。
Quartz partition wall 1 before and after growing silicon single crystal
The surface layer of No. 0 was cleaned with hydrofluoric acid, and the concentrations of iron and copper in the cleaning solution were compared and investigated. The results are shown in FIG. When cleaning the surface layer with hydrofluoric acid, the relative ratio of impurities clearly increases after growth.

【0050】図4は育成前の石英製隔壁10の洗浄液中
の不純物の鉄および銅の含有量をそれぞれ1とした場合
の、鉄および銅の育成後の含有量の相対比率を育成時間
別に示したグラフである。
FIG. 4 shows the relative ratios of the contents of iron and copper after growth, depending on the growth time, assuming that the content of impurities iron and copper in the cleaning solution for the quartz partition wall 10 before growth is 1, respectively. This is a graph.

【0051】図4に示すように、育成時間の増大に伴い
洗浄液中の鉄および銅の不純物は単調に増加し、育成時
間が約100時間を越えると洗浄液中の不純物量は飽和
する。  これは、長時間不純物雰囲気中に石英製隔壁
10を保持することにより、石英製隔壁10に吸着し得
る不純物量を越えたためであると思われる。
As shown in FIG. 4, the iron and copper impurities in the cleaning solution increase monotonically as the growth time increases, and when the growth time exceeds about 100 hours, the amount of impurities in the cleaning solution becomes saturated. This seems to be because the amount of impurities that could be adsorbed to the quartz partition wall 10 was exceeded by keeping the quartz partition wall 10 in an impurity atmosphere for a long time.

【0052】また結晶育成後、石英製隔壁10表面の不
純物層をフッ酸で洗い流すことにより石英製隔壁10は
再び清浄な表面が復元され、再使用することが出来た。
After the crystal growth, the impurity layer on the surface of the quartz partition wall 10 was washed away with hydrofluoric acid, so that the quartz partition wall 10 was restored to a clean surface and could be reused.

【0053】上記の効果を得る上で、石英製隔壁10の
直径に適正値が存在することを知見した。
It has been found that there is an appropriate value for the diameter of the quartz partition wall 10 in order to obtain the above effects.

【0054】即ち、最小内径が220mmの熱遮蔽体を
用いて6インチ径シリコン単結晶を育成する場合の、O
SF発生密度に及ぼす石英製隔壁10の外径の影響を調
べその結果を図5に示す。
That is, when growing a 6-inch diameter silicon single crystal using a heat shield with a minimum inner diameter of 220 mm, the O
The influence of the outer diameter of the quartz partition wall 10 on the SF generation density was investigated, and the results are shown in FIG.

【0055】図5は石英製隔壁10の管径とウェハ−の
エッジ部におけるOSF発生密度との関係グラフである
FIG. 5 is a graph showing the relationship between the tube diameter of the quartz partition wall 10 and the OSF generation density at the edge of the wafer.

【0056】図5に示すように、石英製隔壁10の管径
の外径が200mmを越えるあたりからOSF発生密度
が緩やかに増大する結果が得られる。
As shown in FIG. 5, the OSF generation density gradually increases when the outer diameter of the quartz partition wall 10 exceeds 200 mm.

【0057】また、円筒状の石英製隔壁10の管径の直
径の最小値は、シリコン単結晶を育成中に揺れたシリコ
ン単結晶と接触を起こさないような範囲の下限で決定さ
れ、石英製隔壁10の内径が165mm以上であればシ
リコン単結晶と接触することなく安定した結晶育成が可
能であった。
Further, the minimum value of the diameter of the cylindrical quartz partition wall 10 is determined at the lower limit of the range that does not cause contact with the silicon single crystal shaken during the growth of the silicon single crystal. If the inner diameter of the partition wall 10 was 165 mm or more, stable crystal growth was possible without contacting the silicon single crystal.

【0058】さらに、シリコン単結晶の径を5インチ以
上で種々変えて調べたところ、石英製隔壁10外径と熱
遮蔽体の最小内径の差が20mm以下になるとOSF発
生密度は増大することが判った。
Further, when the diameter of the silicon single crystal was varied to 5 inches or more, the OSF generation density increased when the difference between the outer diameter of the quartz partition wall 10 and the minimum inner diameter of the heat shield became 20 mm or less. understood.

【0059】この結果は、石英製隔壁10が熱遮蔽体8
に接近し過ぎると、石英製隔壁10の表面温度が上昇す
るため、重金属不純物分子の隔壁10表面への吸着能が
低下し、吸着しきれなかったか、或いは再脱離した重金
属不純物分子が再び気相拡散し、シリコン単結晶に付着
し汚染するものが生じたためであると考えられる。
This result shows that the quartz partition wall 10 is
If the surface temperature of the quartz partition wall 10 increases, the adsorption ability of heavy metal impurity molecules to the surface of the partition wall 10 decreases, and the heavy metal impurity molecules that could not be completely adsorbed or were desorbed again become gaseous. This is thought to be due to the phase diffusion, which caused some substances to adhere to and contaminate the silicon single crystal.

【0060】これらの結果から、シリコン単結晶11の
直径をX(mm),熱遮蔽体8の最小内径をY(mm)
としたとき、石英製隔壁10の直径の最適値は、内径が
X+10(mm)以上、外径がY−20(mm)以下と
することが望ましいことが判った。
From these results, the diameter of the silicon single crystal 11 is X (mm), and the minimum inner diameter of the heat shield 8 is Y (mm).
It has been found that the optimum diameter of the quartz partition wall 10 is preferably such that the inner diameter is X+10 (mm) or more and the outer diameter is Y-20 (mm) or less.

【0061】[0061]

【発明の効果】本発明によるシリコン単結晶の製造装置
は、石英製隔壁を熱遮蔽体とシリコン単結晶の間に設置
することにより、設置前後で育成条件を変えること無く
安定して大口径のシリコン単結晶を育成出来、設置前に
比べ、OSF発生密度を格段に低減することができる効
果を奏するものである。
Effects of the Invention The silicon single crystal production apparatus according to the present invention can stably produce large diameter crystals without changing the growth conditions before and after installation by installing a quartz partition wall between a heat shield and a silicon single crystal. This has the effect of being able to grow silicon single crystals and significantly reducing the OSF generation density compared to before installation.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明によるシリコン単結晶製造装置の一実施
例を模式的に示した縦断面図、
FIG. 1 is a vertical cross-sectional view schematically showing an embodiment of a silicon single crystal manufacturing apparatus according to the present invention;

【図2】本発明の実施例で使用した熱遮蔽体の模式図、
FIG. 2 is a schematic diagram of a heat shield used in an example of the present invention;

【図3】本発明の実施例における石英製隔壁の使用前後
で育成したシリコン単結晶をウェーハに加工した際のO
SF発生密度の面内分布の変化を示したグラフ、
[Fig. 3] O
A graph showing changes in the in-plane distribution of SF generation density,

【図4
】本発明の実施例における石英製隔壁の表層を洗浄した
際の洗浄液中に含まれる鉄及び銅の含有量と結晶育成時
間との関係を示したグラフ、
[Figure 4
] A graph showing the relationship between the content of iron and copper contained in the cleaning solution and crystal growth time when cleaning the surface layer of a quartz partition wall in an example of the present invention,

【図5】本発明の実施例におけるウェハ−エッジ部のO
SF発生密度に及ぼす石英製隔壁の外径の影響を示すグ
ラフ、
FIG. 5: O of the wafer edge portion in the embodiment of the present invention.
A graph showing the influence of the outer diameter of the quartz partition wall on the SF generation density,

【図6】モリブデン製、タンタル製、カーボン製それぞ
れの熱遮蔽体を用いて育成した単結晶をウェーハに加工
した際のOSF発生密度の面内分布を比較したグラフ、
FIG. 6 is a graph comparing the in-plane distribution of OSF generation density when single crystals grown using molybdenum, tantalum, and carbon heat shields are processed into wafers,

【図7】単結晶の熱履歴を変化させるために形状を変化
させた金属製熱遮蔽体の例を示した説明図である。ただ
し、(a)は結晶の冷却を促進した例、(b)は結晶の
保温を強化した例(c)は熱遮蔽体の胴部を無くし、結
晶の側面からの加熱を促進した例。
FIG. 7 is an explanatory diagram showing an example of a metal heat shield whose shape is changed in order to change the thermal history of a single crystal. However, (a) is an example in which the cooling of the crystal is accelerated, (b) is an example in which the heat retention of the crystal is strengthened, and (c) is an example in which the body of the heat shield is eliminated and heating from the side of the crystal is promoted.

【符号の説明】[Explanation of symbols]

1    石英るつぼ、 2    石英製仕切り部材、 3    シリコン原料供給装置、 4    黒鉛るつぼ、 5    シリコン溶融液、 6    融液流通孔、 7    仕切りと融液の接触面、 8    熱遮蔽体、 9    電気抵抗加熱体、 10  石英製隔壁、 11  シリコン単結晶、 12  引上げチャンバー、 13  メインチャンバー上蓋、 14  メインチャンバー胴部、 15  ペディスタル、 16  上部保温筒、 17  側部保温筒、 18  排気孔。 1. Quartz crucible, 2 Quartz partition member, 3. Silicon raw material supply device, 4 Graphite crucible, 5. Silicon melt, 6 Melt flow hole, 7 Contact surface between partition and melt, 8. Heat shield, 9 Electric resistance heating element, 10 Quartz bulkhead, 11 Silicon single crystal, 12 Pulling chamber, 13 Main chamber top lid, 14 Main chamber body, 15 Pedestal, 16 Upper heat insulation tube, 17 Side heat insulation tube, 18 Exhaust hole.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  シリコン溶融液を内蔵する自転型石英
るつぼと、該石英るつぼを側面から加熱する電気抵抗加
熱体と、石英るつぼ内でシリコン溶融液を単結晶育成部
と原料溶解部とに分割し、かつシリコン溶融液が流通で
きる小孔を有する石英製仕切り部材と、該石英製仕切り
部材と前記原料溶解部とを覆う熱遮蔽体と、前記各構成
物を収容する炉内部を減圧するための減圧装置と前記原
料溶解部に原料シリコンを連続的に供給する原料供給装
置とを有するシリコン単結晶の製造装置において、前記
熱遮蔽体と育成中の単結晶の間の空間に円筒状の石英製
隔壁を設けることを特徴とするシリコン単結晶の製造装
置。
Claim 1: A rotating quartz crucible containing a silicon melt, an electric resistance heating element that heats the quartz crucible from the side, and dividing the silicon melt into a single crystal growth section and a raw material melting section within the quartz crucible. and a quartz partition member having small holes through which the silicon melt can flow; a heat shield covering the quartz partition member and the raw material melting section; In the silicon single crystal production apparatus, which has a pressure reduction device and a raw material supply device that continuously supplies raw silicon to the raw material melting section, a cylindrical quartz is provided in a space between the heat shield and the growing single crystal. A silicon single crystal production device characterized by providing a silicon partition wall.
【請求項2】  前記円筒状の石英製隔壁の直径の最適
値を、シリコン単結晶の直径をX(mm),熱遮蔽体の
最小内径をY(mm)とした時,内径並びに外径の夫々
をX+10(mm)以上、Y−20(mm)以下とする
ことを特徴とする請求項1記載のシリコン単結晶の製造
装置。
2. The optimum value of the diameter of the cylindrical quartz partition wall is defined as the inner diameter and outer diameter, where the diameter of the silicon single crystal is X (mm) and the minimum inner diameter of the heat shield is Y (mm). 2. The silicon single crystal manufacturing apparatus according to claim 1, wherein each of the diameters is set to be not less than X+10 (mm) and not more than Y-20 (mm).
JP10602691A 1991-05-10 1991-05-10 Device for producing silicon single crystal Pending JPH04338192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10602691A JPH04338192A (en) 1991-05-10 1991-05-10 Device for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10602691A JPH04338192A (en) 1991-05-10 1991-05-10 Device for producing silicon single crystal

Publications (1)

Publication Number Publication Date
JPH04338192A true JPH04338192A (en) 1992-11-25

Family

ID=14423133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10602691A Pending JPH04338192A (en) 1991-05-10 1991-05-10 Device for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JPH04338192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143777A (en) * 2008-12-17 2010-07-01 Sumco Techxiv株式会社 Apparatus for pulling silicon single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143777A (en) * 2008-12-17 2010-07-01 Sumco Techxiv株式会社 Apparatus for pulling silicon single crystal

Similar Documents

Publication Publication Date Title
JP4147599B2 (en) Silicon single crystal and manufacturing method thereof
JPH04317493A (en) Producing device for silicon single crystal
EP1895026B1 (en) Method of growing silicon single crystal
JP2686223B2 (en) Single crystal manufacturing equipment
JP2003002780A (en) Apparatus for producing silicon single crystal and method for producing silicon single crystal using the same
EP0675214B1 (en) Method of growing crystals
JPH03115188A (en) Production of single crystal
JP2010269992A (en) Method and apparatus for refining metallic silicon
JP2619611B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH06227891A (en) Crucible for pulling silicon single crystal
US3021198A (en) Method for producing semiconductor single crystals
JP2008247737A (en) Apparatus and method for producing silicon single crystal, and silicon wafer
JPH06340490A (en) Apparatus for production of silicon single crystal
JP2007022865A (en) Method for manufacturing silicon single crystal
JPH04338192A (en) Device for producing silicon single crystal
JP2937109B2 (en) Single crystal manufacturing apparatus and manufacturing method
US7442251B2 (en) Method for producing silicon single crystals and silicon single crystal produced thereby
JPH0543382A (en) Production of silicon single crystal
JP3640940B2 (en) Semiconductor single crystal manufacturing equipment
JPH07223894A (en) Apparatus for production of semiconductor single crystal
JPH04317492A (en) Producing device for silicon single crystal
JPH054888A (en) Apparatus for producing silicon single crystal
JP3151327B2 (en) Single crystal production equipment
JPH04219398A (en) Production of single crystalline silicon
JPH10167891A (en) Device for producing single crystal silicon and production of single crystal silicon, using the same