JPH04338133A - Production of glass powder - Google Patents

Production of glass powder

Info

Publication number
JPH04338133A
JPH04338133A JP13163691A JP13163691A JPH04338133A JP H04338133 A JPH04338133 A JP H04338133A JP 13163691 A JP13163691 A JP 13163691A JP 13163691 A JP13163691 A JP 13163691A JP H04338133 A JPH04338133 A JP H04338133A
Authority
JP
Japan
Prior art keywords
glass powder
powder
glass
fiber length
pressurizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13163691A
Other languages
Japanese (ja)
Inventor
Hideo Taguchi
田口 秀男
Kozo Shioura
塩浦 康三
Mitsukazu Sugano
菅野 三和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP13163691A priority Critical patent/JPH04338133A/en
Publication of JPH04338133A publication Critical patent/JPH04338133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To offer the production method of glass powder by which such particles having extremely large or small aspect ratios are hardly produced, the powder can be produced at high yield and is easily classified, and the obtd. powder can be used as a spacer for a liquid crystal display device to make a uniform distance between substrates. CONSTITUTION:Glass filament is preliminarily pulverized to 200-1000mum fiber length and then continuously pressurized in a pressurizing chamber to obtain the glass powder. The obtd. glass powder hardly includes such particles having extremely large or small aspect ratios. Thereby, classification of the powder can be done simply and the production yield can be improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、おもに液晶表示装置の
基板間隔均一化のためのスペーサーとして用いられ、ま
た、射出成形複合材料のフィラーなどとしても用いるこ
とが可能なグラスパウダーの製造方法に関する。
[Field of Industrial Application] The present invention relates to a method for producing glass powder, which is mainly used as a spacer for uniformizing the spacing between substrates of liquid crystal display devices, and can also be used as a filler for injection molded composite materials. .

【0002】0002

【従来の技術】これまで、液晶表示装置の基板間隔均一
化のためのスペーサーとして、ガラス長繊維を粉砕して
得た円柱状のグラスパウダー、あるいはポリスチレン、
アクリル樹脂、フェノール樹脂などの球状のプラスチッ
クビーズが用いられてきた。また、そのなかでもグラス
パウダーは、FRP、FRTPのフィラーまたは電気絶
縁用途においても有効に用いられてきた。
[Prior Art] Until now, cylindrical glass powder obtained by crushing long glass fibers, polystyrene,
Spherical plastic beads made of acrylic resin, phenolic resin, etc. have been used. Moreover, among these, glass powder has been effectively used as a filler for FRP and FRTP or for electrical insulation purposes.

【0003】従来、グラスパウダーは、ガラス長繊維を
はさみ、ギロチンカッターあるいはそのほかの切断装置
でミリメートルオーダーの適切な長さにして後、清水紀
夫著「ガラス繊維と光ファイバー」(1983年12月
15日技報堂出版株式会社発行1版1刷)75ページ以
下に記載されているように、ボールミルや攪拌羽根式粉
砕機などで細かく粉砕することによって作られてきた。
Conventionally, glass powder is made by sandwiching long glass fibers and cutting them into appropriate lengths on the millimeter order using a guillotine cutter or other cutting device. As described on page 75 (published by Gihodo Publishing Co., Ltd., 1st edition, 1st printing), it has been made by finely pulverizing it with a ball mill, stirring blade type pulverizer, etc.

【0004】0004

【発明が解決しようとする課題】ところが、上述の方法
によっては、粉砕操作をいかに工夫しても、液晶表示装
置の基板間隔均一化のためのスペーサーとしては用いる
ことの好ましくない、繊維長が100μm以上の物が5
%以上、また、同様にスペーサーしては用いることので
きない、アスペクト比、即ち、(繊維長)/(繊維径)
が1未満のものも10%以上、場合に因っては40%近
く発生し、目覚ましい収率の向上は望めない。加えて、
その様な不良品(以下ジャンクパウダーと称する)の多
量の発生は、製品となるグラスパウダーを得るための分
級操作をも困難なものにしていた。
[Problems to be Solved by the Invention] However, depending on the above-mentioned method, no matter how devised the crushing operation is, the fiber length is 100 μm, which is not preferable for use as a spacer for uniformizing the distance between the substrates of a liquid crystal display device. The above items are 5
% or more, and similarly cannot be used as a spacer, aspect ratio, i.e. (fiber length) / (fiber diameter)
is less than 1 in 10% or more, and in some cases nearly 40%, and no remarkable improvement in yield can be expected. In addition,
The generation of a large amount of such defective products (hereinafter referred to as junk powder) has made it difficult to perform a classification operation to obtain glass powder as a product.

【0005】本発明の目的は、アスペクト比の極端に大
きなものと極端に小さなものの発生が少ない、収率も高
く分級操作も容易な、おもに液晶表示装置の基板間隔均
一化のためのスペーサーとして用いることの可能なグラ
スパウダーの製造方法を提供することである。
The object of the present invention is to reduce the occurrence of extremely large and extremely small aspect ratios, to have a high yield, and to facilitate classification operations, and to be used primarily as a spacer for uniformizing the spacing between substrates of liquid crystal display devices. An object of the present invention is to provide a method for producing glass powder that is possible.

【0006】[0006]

【課題を解決するための手段】本発明者は、粉砕操作を
、ボールミルや攪拌羽根式粉砕機などを用いて一工程で
行う代りに、ボールミルや攪拌羽根式粉砕機などを用い
る工程を予備粉砕工程としてまず繊維長200〜100
0μmのベースとなるグラスパウダ−を調製し、次にそ
のベースを持続的に加圧することによって、高い収率で
液晶表示装置の基板間隔均一化のためのスペーサーとし
て用いることの可能なグラスパウダーを得られることを
見出だし、この知見に基づいて本発明をなすに至った。
[Means for Solving the Problems] Instead of performing the crushing operation in one step using a ball mill, stirring blade type crusher, etc., the present inventor has proposed a preliminary pulverization process using a ball mill, stirring blade type crusher, etc. As a process, first the fiber length is 200 to 100.
By preparing a base glass powder with a diameter of 0 μm and then continuously applying pressure to the base, a glass powder that can be used as a spacer for uniformizing the distance between substrates of a liquid crystal display device can be produced in a high yield. Based on this finding, the present invention has been completed.

【0007】すなわち、本発明は、ガラス長繊維を繊維
長が200〜1000μmとなるように予備粉砕した後
、加圧用容器に詰めて持続的加圧することによるグラス
パウダーの製造方法を要旨とするものである。
[0007] That is, the gist of the present invention is a method for producing glass powder by pre-pulverizing long glass fibers to a fiber length of 200 to 1000 μm, and then packing the fibers into a pressurizing container and subjecting them to continuous pressurization. It is.

【0008】以下、本発明を詳細に説明する。ガラス繊
維の予備粉砕は、次のようにして行う。まず、予備粉砕
にかけるガラス長繊維をはさみ、ギロチンカッターある
いはそのほかの切断装置でミリメートルからセンチメー
トルのオーダー、好ましくは10〜20mm位の適切な
長さにする。次ぎに、その切断されたガラス繊維を、攪
拌羽根式粉砕機のような、グラスパウダーを調製するた
めに用いられる粉砕装置で繊維長が200〜1000μ
mとなるようにする。
The present invention will be explained in detail below. Preliminary crushing of glass fibers is performed as follows. First, the long glass fibers to be pre-pulverized are sandwiched and cut into an appropriate length on the order of millimeters to centimeters, preferably about 10 to 20 mm, using a guillotine cutter or other cutting device. Next, the cut glass fibers are crushed into a fiber length of 200 to 1000 μm using a crushing device used for preparing glass powder, such as a stirring blade type crusher.
m.

【0009】予備粉砕されたガラス繊維は、加圧用容器
に詰められ、持続的加圧されてスペーサーとして用いる
ことができるグラスパウダーにされる。加圧用容器は、
模式的には図1の断面図に示される形状の型枠の組み合
わせとして示される。その素材と外観は、加圧用容器が
1000kg/cm2 の加圧の反復に対して耐久性を
有するかぎりとくに限定されない。また、その体積と容
積も、1回にすくなくとも数グラムのガラス繊維を処理
できるものであれば、その他の点については特に制限を
受けない。予備粉砕されたガラス繊維の持続的加圧は、
図1に示す通り側面部型枠2と底部型枠3を組み合わせ
て得られた容器的空間に上述の予備粉砕されたガラス繊
維4を詰め、加圧部型枠1を載せて、プレス装置により
加圧する。このとき用いるプレス装置は、機械式、油圧
式など一般に知られているものが使用可能である。加え
る圧力、及び加圧時間は、プレス装置の能力、目的とす
るグラスパウダーのアスペクト比、および加圧用容器の
加圧面の断面積から決定される。そして、加圧時間は加
える圧力によって変わり、両者によって得られるグラス
パウダーのアスペクト比を制御する。例えば、アスペク
ト比が2程度のものを得るためには、被粉砕物に対して
550kg/cm2 の圧力を5〜8分間かける。
[0009] The pre-milled glass fibers are packed into a pressure container and subjected to continuous pressure to form a glass powder that can be used as a spacer. The pressurized container is
It is schematically shown as a combination of formworks having the shapes shown in the cross-sectional view of FIG. The material and appearance are not particularly limited as long as the pressurizing container has durability against repeated pressurization of 1000 kg/cm2. In addition, there are no other restrictions on the volume or volume, as long as at least several grams of glass fiber can be processed at one time. Continuous pressurization of pre-milled glass fibers
As shown in FIG. 1, the above-mentioned pre-pulverized glass fibers 4 are packed in the container-like space obtained by combining the side part formwork 2 and the bottom part formwork 3, and the pressurizing part formwork 1 is placed on it, and then the press machine Apply pressure. As the press device used at this time, a generally known press device such as a mechanical type or a hydraulic type can be used. The pressure to be applied and the pressurizing time are determined from the capacity of the press device, the aspect ratio of the intended glass powder, and the cross-sectional area of the pressurizing surface of the pressurizing container. The pressurization time changes depending on the applied pressure, and both control the aspect ratio of the glass powder obtained. For example, in order to obtain an aspect ratio of approximately 2, a pressure of 550 kg/cm2 is applied to the material to be crushed for 5 to 8 minutes.

【0010】0010

【作用】以上に示した本発明の製造方法において、加圧
操作の予備粉砕されたガラス繊維に対する作用は、以下
のようなものと説明できると考えられる。
[Function] In the manufacturing method of the present invention described above, the action of the pressurizing operation on the pre-pulverized glass fibers can be explained as follows.

【0011】まず、予備粉砕されたガラス繊維は、ある
程度の長さを有するため、ランダムにではあるが、比較
的2次元的に配向して重なりあった層を形成することが
推測される。それに対して垂直に圧力を加えると、その
圧力はガラス繊維が重なりあった部分に集中するため、
その重なりあった部分のみが折れる。重なりあった部分
間の長さは、繊維の半径の2倍以上であることから、原
理的には繊維径より短く折れるものはないことになる。 また一定圧力に保持することによってランダム配向がよ
り緻密になり、粉砕はある一定時間まで継続的に進行し
、ある時点で完了する。実際、この粉砕の進行により、
100μm以上の繊維長を有するジャンクパウダーの存
在率は1%以下にまで小さくなり、得られるグラスパウ
ダーの平均アスペクト比を2以下にすることも可能とな
った。かつ、平均アスペクト比については、加圧条件を
変えることで、比較的自由に制御することさえ可能とな
った。
First, since the pre-pulverized glass fibers have a certain length, it is presumed that they are oriented relatively two-dimensionally, albeit at random, to form overlapping layers. When pressure is applied perpendicularly to it, the pressure is concentrated in the area where the glass fibers overlap, so
Only the overlapping parts will break. Since the length between the overlapping parts is more than twice the radius of the fiber, in principle there is nothing that can be broken shorter than the fiber diameter. Furthermore, by maintaining a constant pressure, the random orientation becomes more dense, and the crushing continues for a certain period of time and is completed at a certain point. In fact, due to this progress of crushing,
The abundance of junk powder having a fiber length of 100 μm or more was reduced to 1% or less, and it became possible to reduce the average aspect ratio of the obtained glass powder to 2 or less. Furthermore, it has become possible to control the average aspect ratio relatively freely by changing the pressurizing conditions.

【0012】0012

【実施例】次に、実施例によってこの発明をさらに詳細
に説明する。なお、本発明は、以下に示される実施例の
みには限定されない。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples. Note that the present invention is not limited to the examples shown below.

【0013】実施例1 ドラムに巻き付けて紡糸した直径7μmのグラスファイ
バーの束をはさみで繊維長10〜20mmとなるように
切断後、攪拌羽根式粉砕機を用いて10〜30分間粉砕
し、繊維長200〜1000μmの予備粉砕品を得る。 それをステンレス製円筒形加圧用容器(内径100mm
)に100g入れ、50トン級油圧型プレス装置を使っ
て予備粉砕品に450kg/cm2 の圧力を5分間か
けた。得られたグラスパウダーを50本(アスペクト比
が1以上の円柱形が形状の前提なのでこの数え方をする
)について測定を行い、その平均繊維長、平均繊維長の
標準偏差、最大最小繊維長、繊維長の範囲を求めた。 結果を図2に示す。
Example 1 A bundle of glass fibers with a diameter of 7 μm that was wound around a drum and spun was cut with scissors into fiber lengths of 10 to 20 mm, and then crushed for 10 to 30 minutes using a stirring blade type crusher to obtain fibers. A pre-pulverized product with a length of 200 to 1000 μm is obtained. It is a stainless steel cylindrical pressurizing container (inner diameter 100 mm).
), and a pressure of 450 kg/cm2 was applied to the pre-pulverized product for 5 minutes using a 50 ton class hydraulic press. Measure 50 of the obtained glass powder (counting is done this way because the shape is assumed to be cylindrical with an aspect ratio of 1 or more), and calculate the average fiber length, standard deviation of the average fiber length, maximum and minimum fiber length, The range of fiber length was determined. The results are shown in Figure 2.

【0014】また、このとき得られたグラスパウダーの
歩留まりは、予備粉砕品に対して、加圧後にさらに分級
操作を施し終えた段階で94%であった。この値は、ボ
ールミルなどを用いてなされる粉砕では歩留まりが50
〜60%ほどであることに比べると格段の高さを示すと
いえる。
Further, the yield of the glass powder obtained at this time was 94% at the stage where the pre-pulverized product was further subjected to a classification operation after pressurization. This value indicates that the yield is 50% when pulverization is performed using a ball mill or the like.
It can be said that this is significantly higher than that of about 60%.

【0015】実施例2 プレス装置による加圧の際、圧力を550kg/cm2
 とするほかは、すべて実施例1と同様の条件でグラス
パウダーの調製を行い、実施例1と同様に操作して、得
られたグラスパウダーの諸性質、歩留まりなどを調べた
。 結果を図3に示す。歩留まりは、96%であった。
Example 2 When pressurizing with a press device, the pressure was set at 550 kg/cm2.
Except for the above, glass powder was prepared under the same conditions as in Example 1, and the same operations as in Example 1 were conducted to examine various properties, yield, etc. of the obtained glass powder. The results are shown in Figure 3. The yield was 96%.

【0016】[0016]

【発明の効果】以上のように、本発明の方法は、型枠を
組み合わせてなる単純な加圧用容器と一般のプレス装置
を用いることによる簡単なものである。しかし、液晶表
示装置の基板間隔均一化のためのスペーサーとして用い
ることの好ましくない繊維長が100μm以上のもの及
びアスペクト比が1以下のものの存在をほとんど排除で
きるため、目的に適った繊維長分布のグラスパウダーを
得ることを可能にし、このことから歩留まりを飛躍的に
向上させる。したがって、分級操作をも著しく簡素化す
る。
As described above, the method of the present invention is simple because it uses a simple pressurizing container formed by combining a mold and a general press device. However, since it is possible to almost eliminate the presence of fibers with a fiber length of 100 μm or more and fibers with an aspect ratio of 1 or less, which are undesirable for use as spacers for uniformizing the spacing between substrates of liquid crystal display devices, fiber length distribution can be adjusted to suit the purpose. This makes it possible to obtain glass powder, which dramatically improves yield. Therefore, the classification operation is also significantly simplified.

【0017】[0017]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】加圧用容器の模式的断面図である。FIG. 1 is a schematic cross-sectional view of a pressurizing container.

【図2】実施例1で得られたグラスパウダーの繊維長分
布を示すヒストグラムである。
FIG. 2 is a histogram showing the fiber length distribution of the glass powder obtained in Example 1.

【図3】実施例2で得られたグラスパウダーの繊維長分
布を示すヒストグラムである。
FIG. 3 is a histogram showing the fiber length distribution of the glass powder obtained in Example 2.

【符号の説明】[Explanation of symbols]

1  加圧部型枠 2  側面部型枠 3  底部型枠 4  ガラス繊維 1 Pressure part formwork 2 Side formwork 3 Bottom formwork 4 Glass fiber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ガラス長繊維を繊維長が200〜10
00μmとなるように予備粉砕した後、加圧用容器に詰
めて持続的加圧することを特徴とするグラスパウダーの
製造方法。
Claim 1: Long glass fibers with a fiber length of 200 to 10
1. A method for producing glass powder, which comprises pre-pulverizing the powder to a particle size of 0.00 μm, then filling it in a pressurizing container and continuously pressurizing it.
JP13163691A 1991-05-08 1991-05-08 Production of glass powder Pending JPH04338133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13163691A JPH04338133A (en) 1991-05-08 1991-05-08 Production of glass powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13163691A JPH04338133A (en) 1991-05-08 1991-05-08 Production of glass powder

Publications (1)

Publication Number Publication Date
JPH04338133A true JPH04338133A (en) 1992-11-25

Family

ID=15062689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13163691A Pending JPH04338133A (en) 1991-05-08 1991-05-08 Production of glass powder

Country Status (1)

Country Link
JP (1) JPH04338133A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349899A (en) * 2005-06-15 2006-12-28 Nippon Electric Glass Co Ltd Spacer for liquid crystal display element and liquid crystal display element
US8117867B2 (en) 2005-08-17 2012-02-21 Nitto Boseki Co., Ltd. Process for producing spherical inorganic particle
JP2015229615A (en) * 2014-06-05 2015-12-21 日本電気硝子株式会社 Glass filler, production method of the glass filler, and resin film
WO2017014067A1 (en) * 2015-07-23 2017-01-26 日本電気硝子株式会社 Glass filler and resin composition for solid object modeling using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349899A (en) * 2005-06-15 2006-12-28 Nippon Electric Glass Co Ltd Spacer for liquid crystal display element and liquid crystal display element
US8117867B2 (en) 2005-08-17 2012-02-21 Nitto Boseki Co., Ltd. Process for producing spherical inorganic particle
JP2015229615A (en) * 2014-06-05 2015-12-21 日本電気硝子株式会社 Glass filler, production method of the glass filler, and resin film
WO2017014067A1 (en) * 2015-07-23 2017-01-26 日本電気硝子株式会社 Glass filler and resin composition for solid object modeling using same
JPWO2017014067A1 (en) * 2015-07-23 2018-05-10 日本電気硝子株式会社 Glass filler and resin composition for three-dimensional modeling using the same

Similar Documents

Publication Publication Date Title
JP6783336B2 (en) Compression molding method for narrow flake composite fiber material
JPH04338133A (en) Production of glass powder
US2390072A (en) Method of producing a potential opening in a fiber container or other fiber articles
CN206254356U (en) A kind of high-performance extruder for plastic processing
DE2629509A1 (en) PROCESS AND DEVICE FOR FINE CRUSHING INELASTIC MATERIALS
JPS5931040B2 (en) Radioactive waste granulation equipment
CN206444665U (en) Crushed food machine and its crushing mechanism
CN105922471B (en) A kind of cutoff device and blank method
CN105965907A (en) Method for manufacturing glass fiber net covers
JP4666768B2 (en) Manufacturing method of compressed raw material for paint with good fluidity
CN205572770U (en) Material cutting device
JPH04216495A (en) Pellet molding apparatus
WO2013175614A1 (en) Tobacco leaf shredding machine and tobacco leaf shredding method
DE3444541C2 (en)
DE2226691A1 (en) Method and apparatus for producing compacted bodies from thermoplastic material
CN204433656U (en) Chopping machine
JP2784528B2 (en) Molded article containing crushed styrofoam and method for producing the molded article
CN204914330U (en) Plastics pulverizer
WO2010040474A1 (en) Compacting system for foamed plastic material
JPS63288220A (en) Making carbon fiber into ultrashort fiber
US5314655A (en) Method and apparatus for producing continuous powder metallurgy compacts
CN108704732A (en) Hog
CN203527505U (en) Continuous material cutting device of flexible materials
JP7178671B2 (en) Manufacturing method for recycled plastic pellets
JPS634486B2 (en)