JPH04337618A - Solid state electrolyte capacitor and manufacture thereof - Google Patents

Solid state electrolyte capacitor and manufacture thereof

Info

Publication number
JPH04337618A
JPH04337618A JP3109366A JP10936691A JPH04337618A JP H04337618 A JPH04337618 A JP H04337618A JP 3109366 A JP3109366 A JP 3109366A JP 10936691 A JP10936691 A JP 10936691A JP H04337618 A JPH04337618 A JP H04337618A
Authority
JP
Japan
Prior art keywords
acid
meth
electrolytic capacitor
solid electrolytic
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3109366A
Other languages
Japanese (ja)
Inventor
Kikuko Miyata
宮 田 貴久子
Shigeki Yasukawa
安 川 栄 起
Itsuki Seo
瀬 尾   厳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP3109366A priority Critical patent/JPH04337618A/en
Publication of JPH04337618A publication Critical patent/JPH04337618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a solid state electrolyte capacitor whose impedance is made lower and whose loss is made lower. CONSTITUTION:A polymer electrolyte gel that is placed between both electrode foils consists of (a) matrix polymer, (b) solute consisting of salt having ammonium ion and or quarternary phosphonium ion (Specified by chemical formula) as cation components and having conjugate base of acid as anion components, and (c) an organic solute.

Description

【発明の詳細な説明】 【0001】〔発明の背景〕 【産業上の利用分野】本発明は、固体電解コンデンサ、
特に高イオン伝導性高分子電解質ゲルを固体電解質とし
て用いた固体電解コンデンサ、およびその製造法に関す
る。さらに詳しくは、本発明は、ショート不良等を増加
させることなく、低インピーダンスおよび低損失(ta
n δ)を実現する固体電解コンデンサに関するもので
ある。 【0002】 【従来の技術】従来、電解コンデンサの多くは誘電体酸
化皮膜を備えた陽極箔とセパレータ紙と陰極箔とを巻回
した巻回構造をとり、アルミニウム電解コンデンサには
この構造が多く採用されている。これらのコンデンサに
は、駆動用電解液として水または有機溶媒に電解質を溶
解して溶液状にして用いているため、漏液の問題があっ
た。また、セパレータとしては、マニラ紙、クラフト紙
等の繊維からなる抄紙セパレータが一般的に使用されて
いるが、電解コンデンサのインピーダンスを低減させる
ために、セパレータの薄膜化、低密度化が検討されてい
る。しかしながら、低密度等の電解紙を用いると機械的
強度が著しく低下し、さらに繊維が疎となるため、コン
デンサの電極間が短絡するなどの問題を生じ、低密度化
に限界があった。このように耐漏液性を改良し、ショー
ト不良などを増加させることなく、低インピーダンスお
よび低損失の高信頼性の固体電解コンデンサを開発すべ
く、液体有機電解質並の高いイオン導伝率を有しかつ熱
的および電気化学的に安定であって、柔軟で可撓性に優
れた固体電解質を備えた固体電解コンデンサの開発が望
まれている。 【0003】〔発明の概要〕 【発明が解決しようとする課題】近年、電子機器の高性
能化、小型化に伴い、スイッチング電源の高周波化、電
解コンデンサの小型化等、高性能電解コンデンサへの要
求が高まっていることから、高いイオン伝導率を示す固
体電解質の開発とともに、ショート不良等を増加させる
ことなく、低インピーダンスと低損失を実現する固体電
解コンデンサの開発が重要な課題である。 【0004】<要旨> 【課題を解決するための手段】本発明は、上記した課題
を解決することを目的とし、特定の固体状の高分子電解
質ゲルを用いることによって、この目的、特に電解コン
デンサの電解質として低インピーダンスおよび低損失の
固体電解コンデンサの提供、を達成しようとするもので
ある。 【0005】すなわち、本発明による固体電解コンデン
サは、下記の(a)、(b)および(c)を含んでなる
高分子電解質ゲルを陰極箔と陽極箔との電極間に介在さ
せて巻回したこと、を特徴とするものである。(a) 
 重合性ビニルモノマーの重合体からなるマトリックス
ポリマー、(b)  下記の一般式(I)または/およ
び(II)で示されるアンモニウムイオンまたは四級ホ
スホニウムイオンをカチオン成分とし、酸の共役塩基を
アニオン成分とする塩からなる少なくとも一種類の溶質
、【0006】 【化3】 【0007】 【化4】 (式(I)および(II)中、R1 、R2 、R3 
、およびR4 は同じであっても異なっていてもよく、
それぞれ水素原子、炭素数1〜4のアルキル基または炭
素数6〜10のアリール基を表わし、R5 は式(II
)中の窒素原子と結合して脂肪族複素環または芳香族複
素環を形成する炭素数3〜10の基を表わす。)(c)
  有機溶媒【0008】〈効  果〉本発明による固
体電解コンデンサは、陰極と陽極との電極間に、電気化
学的に安定で、柔軟で可撓性に富み、かつ耐熱性にも優
れた固体状の高イオン伝導性高分子電解質ゲルを介在さ
せたことにより、低インピーダンス化および低損失化の
目的を果たすとともに、安全性にも優れた固体電解コン
デンサとして利用できるものである。 【0009】〔発明の具体的説明〕〈マトリックスポリ
マー(成分(a)〉本発明で固体状の高分子電解質ゲル
の母体ないし連結相を形成するマトリックスポリマーは
、重合性ビニルモノマーの重合体からなるものである。 【0010】ここで、重合性ビニルモノマーは、分子中
にCH2 =C(R)−基(式中、Rは水素原子または
C1 〜C2 のアルキル基である)を有する単量体で
あって、この単量体の付加重合によって重合体を形成し
うるものを意味する。従って、本発明でいう「ビニルモ
ノマー」は「エチレン性不飽和モノマー」と同義である
。そして、「重合性ビニルモノマーの重合体」というの
は、次記の好ましい極性基を有する重合性ビニルモノマ
ーの単独重合体および相互の共重合体の外に、優位量の
該重合性ビニルモノマーとそれより少量の共重合可能単
量体との共重合体を意味するものである。 【0011】好ましい極性基を有する重合性ビニルモノ
マーとしてはヒドロキシル基または低級アルコキシル基
(C1 〜C4 程度)、カルボキシル基、アミド基ま
たはアミノ基を有するもの、が挙げられる。そのような
モノマーの具体例としては、(イ)(メタ)アクリル酸
エステル、たとえば、アルコキシアルキル=(メタ)ア
クリレート、ヒドロキシアルキル=(メタ)アクリレー
ト、グリセロール=モノ‐、ジ‐およびトリ‐(メタ)
アクリレート、アルキレングリコール=モノ‐およびジ
‐(メタ)アクリレート等、(メタ)アクリル酸、(メ
タ)アクリルアミド、ジメチルアミノエチル(メタ)ア
クリレート等、を挙げることができる。これらのうち、
アルコキシアルキル=(メタ)アクリレート、ヒドロキ
シアルキル=(メタ)アクリレート、グリセロール=モ
ノ‐、ジ‐およびトリ‐(メタ)アクリレートおよびア
ルキレングリコール=モノ‐およびジ‐(メタ)アクリ
レートから選ばれた少なくとも一種類の(メタ)アクリ
ル酸エステルが好ましく用いられる。 【0012】ここで、「(メタ)アクリル酸」および「
(メタ)アクリレート」は、それぞれアクリル酸および
メタクリル酸、ならびにアクリレートおよびメタクリレ
ート、のいずれをも意味するものとする。 【0013】高導電率を得るための、好ましい(メタ)
アクリル酸エステルの一群は、アルコキシアルキル=(
メタ)アクリレートである。「アルコキシ」基も、低級
なもの、特に炭素数1〜4程度、好ましくは、「アルコ
キシ」基については炭素数1〜3程度、「アルキル」基
については炭素数2〜3程度、が好ましい。 【0014】そのようなアルコキシアルキル=(メタ)
アクリレートの具体例を挙げれば、アクリル酸およびメ
タクリル酸のメトキシエチル、エトキシエチルおよびプ
ロポキシエチルエステルがある。 【0015】好ましい(メタ)アクリル酸エステルの他
の一群は、ヒドロキシアルキル=(メタ)アクリレート
である。この場合の「アルキル」基も、低級なもの、特
に炭素数2〜4程度のもの、が好ましい。「ヒドロキシ
ルアルキル」基は、水酸基を1個持つものが好ましい。 【0016】そのようなヒドロキシアルキル=(メタ)
アクリレートの具体例を挙げれば、アクリル酸およびメ
タクリル酸のヒドロキシエチルおよびヒドロキシプロピ
ルエステルがある。 【0017】好ましい(メタ)アクリル酸エステルの他
の一群は、グリセロール=(メタ)アクリレートである
。この(メタ)アクリレートは、グリセロールの3個の
水酸基のうち1個または2個の水酸基がエステル化され
たものであることが好ましい。 【0018】そのようなグリセロール=(メタ)アクリ
レートの具体例を挙げれば、グリセロール=モノメタク
リレート、グリセロール=ジメタクリレート、およびグ
リセロール=アクリレートメタクリレートがある。 【0019】好ましい(メタ)アクリル酸エステルの他
の一群は、アルキレングリコール=(メタ)アクリレー
トである。 【0020】そのようなアルキレングリコール=(メタ
)アクリレートの具体例を挙げれば、ジエチレングリコ
ール=(メタ)アクリレート、トリエチレングリコール
=(メタ)アクリレート、ポリエチレングリコール=(
メタ)アクリレート(平均分子量200〜2,000程
度)、ジプロピレングリコール=(メタ)アクリレート
、トリプロピレングリコール=(メタ)アクリレート、
ポリプロピレングリコール=(メタ)アクリレート(平
均分子量300〜3,000程度)、ポリアルキレング
リコール=(メタ)アクリレート(エチレンオキサイド
/プロピレンオキサイドブロック共重合体、平均分子量
200〜3,000程度)、メトキシポリエチレングリ
コール=(メタ)アクリレート(平均分子量200〜2
,000程度)、エトキシポリエチレングリコール=(
メタ)アクリレート(平均分子量200〜2,000程
度)、プロポキシポリエチレングリコール=(メタ)ア
クリレート(平均分子量200〜2,000程度)、フ
ェノキシポリエチレングリコール=(メタ)アクリレー
ト(平均分子量300〜2,000程度)、メトキシポ
リプロピレングリコール=(メタ)アクリレート(平均
分子量250〜3,000程度)、エトキシポリプロピ
レングリコール=(メタ)アクリレート(平均分子量2
50〜3,000程度)およびエチレングリコール=(
メタ)アクリレートがある。これらのエステルは、所与
のヒドロキシル基の一部または全部についてのものであ
る。 【0021】これらの極性基を有する重合性ビニルモノ
マーの重合体が少量の共重合性単量体との共重合体であ
ってもよいことは前記したところであるが、そのような
共単量体の具体例を挙げれば、(イ)単官能性モノマー
、たとえば(メタ)アクリル酸アルキルエステル(アル
キル基は、炭素数1〜3程度のもの)等、(ロ)二官能
性モノマー、たとえばエチレングリコール=ジ(メタ)
アクリレート、トリエチレングリコール=ジ(メタ)ア
クリレート、ポリエチレングリコール=ジ(メタ)アク
リレート、ポリプロピレングリコール=ジ(メタ)アク
リレート、1,3‐ブチレングリコール=ジ(メタ)ア
クリレート、ネオペンチルグリコール=ジ(メタ)アク
リレート、2‐ヒドロキシ‐1,3‐ジ(メタ)アクリ
ロキシプロパン、2‐ヒドロキシ‐1‐アクリロキシ‐
3‐メタクリロキシプロパン等、(ハ)三官能性モノマ
ー、たとえばトリメチロールプロパン=トリ(メタ)ア
クリレート、テトラメチロールメタン=トリ(メタ)ア
クリレート等が好ましく、その他のものとして不飽和ニ
トリル、たとえば、アクリロニトリル等、芳香族オレフ
ィン、たとえば、スチレン等、ビニル化合物、たとえば
、塩化ビニル、酢酸ビニル等、N‐ビニルピロリドン、
N‐ビニルピペリドン等のN‐ビニルラクタムがある。 【0022】これらの重合性ビニルモノマーを重合開始
剤を用いて重合させることにより、熱的に安定で、柔軟
で可撓性に優れた(a)成分のマトリックスポリマーを
得ることができる。 【0023】このようなマトリックスポリマーは、電解
液に対する親和性が高いため膨潤特性および保液性が良
好で、ショート不良等に影響を与えることなく、低イン
ピーダンスの固体電解コンデンサを得ることが可能とな
る。 【0024】〈溶質(成分(b)〉本発明の電解コンデ
ンサにおいて使用される(b)成分の溶質は、後記の(
c)成分の有機溶媒中でイオンに電離してイオン伝導性
を示すものである。このような溶質としては、カチオン
成分である下記の一般式(I)または/および(II)
で示されるアンモニウムイオンまたは四級ホスホニウム
イオンとアニオン成分である酸の共役塩基とからなる塩
が用いられる。 【0025】 【化5】 【0026】 【化6】 【0027】(式(I)および(II)中、R1 、R
2、R3 、およびR4 は同じであっても異なってい
てもよく、水素原子、炭素数1〜4のアルキル基または
炭素数6〜10のアリール基を表わし、R5 は式(I
I)中の窒素原子と結合して脂肪族複素環または芳香族
複素環を形成する炭素数3〜10の基を表わす。)【0
028】そして、この溶質としての塩は、一種類であっ
ても二種類以上を併用するものであってもよい。ここで
、酸の共役塩基というのは、一般的な化学の教科書等に
も記載されているように、ブレンステッド−ローリーの
酸塩基の理論において、ある酸に対してその酸がプロト
ン(II+ )を失ったものを意味する。 【0029】このような塩を形成するカチオン成分のア
ンモニウムイオンとしては、上記の一般式(I)および
(II)で示される脂肪族アンモニウムイオン、アンモ
ニウムイオン、脂環式アンモニウムイオンのほか、含窒
素芳香族アンモニウムイオンがある。 【0030】(I)式で示されるアンモニウムイオンと
して具体的には、(イ)四級アンモニウムイオン、たと
えば、テトラエチルアンモニウム、テトラプロピルアン
モニウム、テトラブチルアンモニウム、メチルトリエチ
ルアンモニウム、メチルトリプロピルアンモニウム、メ
チルトリブチルアンモニウム、ジメチルジエチルアンモ
ニウム、ジメチルジプロピルアンモニウム、ジメチルジ
ブチルアンモニウム、エチルトリプロピルアンモニウム
、エチルトリブチルアンモニウム、ジエチルジプロピル
アンモニウム、ジエチルジブチルアンモニウム、トリエ
チルプロピルアンモニウム、トリエチルブチルアンモニ
ウム等、(ロ)脂肪族アンモニウムイオン、たとえば、
トリエチルアンモニウム、トリプロピルアンモニウム、
トリブチルアンモニウム、メチルジエチルアンモニウム
、メチルジプロピルアンモニウム、メチルジブチルアン
モニウム、ジメチルエチルアンモニウム、ジメチルプロ
ピルアンモニウム、ジメチルブチルアンモニウム、エチ
ルジプロピルアンモニウム、エチルジブチルアンモニウ
ム、ジエチルプロピルアンモニウム、ジエチルブチルア
ンモニウム、モノメチルアンモニウム、モノエチルアン
モニウム、モノプロピルアンモニウム、ジメチルアンモ
ニウム、ジエチルアンモニウム、ジプロピルアンモニウ
ム、ジブチルアンモニウム、メチルエチルアンモニウム
等、および(ハ)アンモニウムイオン(NH4 + )
、を例示することができる。 【0031】(II)式で示されるアンモニウムイオン
として具体的には、(イ)環式アンモニウムイオン、た
とえば、N,N‐ジメチルピロリジニウム、N,N‐ジ
メチルピペリジニウム、N‐メチル‐N‐エチルピロリ
ジニウム、N‐メチル‐N‐エチルピペリジニウム、N
,N‐テトラメチレンピロリジニウム、N,N‐ペンタ
メチレンピペリジニウム、N‐メチルピペリジニウム、
N‐メチルピロリジニウム等、(ロ)含窒素芳香族アン
モニウムイオン、たとえば、N‐エチルピリジニウム、
N,N‐ジメチルイミダゾリニウム、ピリジニウム、N
‐メチルイミダゾリウム等、を例示することができる。 【0032】同様にカチオン成分の四級ホスホニウムイ
オンとしては、(イ)脂肪族四級ホスホニウムイオン、
たとえば、テトラメチルホスホニウム、テトラエチルホ
スホニウム、テトラプロピルホスホニウム、テトラブチ
ルホスホニウム、メチルトリエチルホスホニウム、メチ
ルトリプロピルホスホニウム、メチルトリブチルホスホ
ニウム、ジメチルジエチルホスホニウム、ジメチルジプ
ロピルホスホニウム、ジメチルジブチルホスホニウム、
トリメチルエチルホスホニウム、トリメチルプロピルホ
スホニウム、トリメチルブチルホスホニウム、エチルト
リプロピルホスホニウム、エチルトリブチルホスホニウ
ム、ジエチルジプロピルホスホニウム、ジエチルジブチ
ルホスホニウム、トリエチルプロピルホスホニウム、ト
リエチルブチルホスホニウム、プロピルトリブチルホス
ホニウム、ジプロピルジブチルホスホニウム、トリプロ
ピルブチルホスホニウム等、(ロ)脂環式四級ホスホニ
ウムイオン、たとえば、1,1‐ジメチルホスホラニウ
ム、1‐メチル‐1‐エチルホスホラニウム、1,1‐
ジエチルホスホラニウム、1,1‐ジメチルホスホリナ
ニウム、1‐メチル‐1‐エチルホスホリナニウム、1
,1‐ジエチルホスホリナニウム、1,1‐ペンタメチ
レンホスホリナニウム等、を例示することができる。 【0033】一方、溶質のアニオン成分としては、下記
の5つのグループの中から選ばれる酸の共役塩基が好ま
しく用いられる。 (1)  カルボン酸およびフェノール類、(2)  
ホウ酸、リン酸、亜リン酸、次亜リン酸、炭酸、ケイ酸
およびそれらの誘導体、 (3)  ピクリン酸およびスルホン酸、(4)  硝
酸、硫酸、亜硫酸、チオシアン酸およびそれらの誘導体
、 (5)  ハロゲン原子を含む強酸。 【0034】(1)および(2)のグループから選ばれ
た酸の共役塩基であるアニオンは、皮膜形成性アニオン
として良好なものであって、低圧用コンデンサばかりで
なく、中高圧用コンデンサにも使用することができる。 (3)、(4)および(5)のグループから選ばれたも
のも酸化皮膜形成能を有するが、酸性が強く、酸化皮膜
を腐食しやすいので、100V以下の低圧用コンデンサ
に使用すべきである。特に、(5)のグループから選ば
れたアニオンは、アルミニウムにとって好ましくないハ
ロゲン化物イオンを遊離するので、10V以下の低圧用
コンデンサに使用すべきである。このように使用するコ
ンデンサの用途に応じて、上記(1)〜(5)の5つの
グループの中から適宜好ましいものを選択使用すること
ができる。 【0035】グループ(1)のカルボン酸としては、総
炭素数が1〜30、好ましくは2〜20、の脂肪族およ
び芳香族の1価あるいは多価カルボン酸が好ましい。 【0036】具体的には、(イ)脂肪族モノカルボン酸
、たとえば、ギ酸、酢酸、プロピオン酸、酪酸、カプロ
ン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリ
ン酸、ウンデカン酸、ラウリン酸、バクセン酸、ガドレ
イン酸、メタクリル酸、3‐メチルクロトン酸、チグリ
ン酸、メチルペンテン酸、シクロペンタンカルボン酸、
シクロヘキサンカルボン酸等、(ロ)脂肪族ジカルボン
酸、たとえば、シュウ酸、マロン酸、コハク酸、グルタ
ル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライ
ン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、ト
リデカン二酸、テトラデカン二酸、ペンタデカン二酸、
ヘキサデカン二酸、ヘプタデカン二酸、オクタデカン二
酸、ノナデカン二酸、エイコサン二酸、メチルマロン酸
、エチルマロン酸、プロピルマロン酸、ブチルマロン酸
、ペンチルマロン酸、ヘキシルマロン酸、ジメチルマロ
ン酸、メチルエチルマロン酸、ジエチルマロン酸、メチ
ルプロピルマロン酸、メチルブチルマロン酸、エチルプ
ロピルマロン酸、ジプロピルマロン酸、エチルブチルマ
ロン酸、プロピルブチルマロン酸、ジブチルマロン酸、
メチルコハク酸、エチルコハク酸、2,2‐ジメチルコ
ハク酸、2,3‐ジメチルコハク酸、2‐メチルグルタ
ル酸、3‐メチルグルタル酸、3‐メチル‐3‐エチル
グルタル酸、3,3‐ジエチルグルタル酸、マレイン酸
、シトラコン酸、1,5‐オクタンジカルボン酸、5,
6‐デカンジカルボン酸、1,7‐デカンジカルボン酸
、4,6‐ジメチル‐4‐ノネン‐1,2‐ジカルボン
酸、4,6‐ジメチル‐1,2‐ノナンジカルボン酸、
1,7‐ドデカンジカルボン酸、5‐エチル‐1,10
‐デカンジカルボン酸、6‐メチル‐6‐ドデセン‐1
,12‐ジカルボン酸、6‐メチル‐1,12‐ドデカ
ンジカルボン酸、6‐エチレン‐1,12‐ドデカンジ
カルボン酸、6‐エチル‐1,12‐ドデカンジカルボ
ン酸、7‐メチル‐7‐テトラデセン‐1,14‐ジカ
ルボン酸、7‐メチル‐1,14‐テトラデカンジカル
ボン酸、3‐ヘキシル‐4‐デセン‐1,2‐ジカルボ
ン酸、3‐ヘキシル‐1,2‐デカンジカルボン酸、6
‐エチレン‐9‐ヘキサデセン‐1,16‐ジカルボン
酸、6‐エチル‐1,16‐ヘキサデカンジカルボン酸
、6‐フェニル‐1,12‐ドデカンジカルボン酸、7
,12‐ジメチル‐7,11‐オクタデカジエン‐1,
18‐ジカルボン酸、7,12‐ジメチル‐1,18‐
オクタデカンジカルボン酸、6,8‐ジフェニル‐1,
14‐テトラデカンジカルボン酸、1,1‐シクロペン
タンジカルボン酸、1,2‐シクロペンタンジカルボン
酸、1,1‐シクロヘキサンジカルボン酸、1,2‐シ
クロヘキサンジカルボン酸、4‐シクロヘキセン‐1,
2‐ジカルボン酸、5‐ノルボルネン‐2,3‐ジカル
ボン酸等、(ハ)芳香族モノカルボン酸(o,m,p‐
各異性体を含む)、たとえば、安息香酸、トルイル酸、
エチル安息香酸、プロピル安息香酸、イソプロピル安息
香酸、ブチル安息香酸、イソブチル安息香酸、第二ブチ
ル安息香酸、第三ブチル安息香酸、ヒドロキシ安息香酸
、アニス酸、エトキシ安息香酸、プロポキシ安息香酸、
イソプロポキシ安息香酸、ブトキシ安息香酸、イソブト
キシ安息香酸、第二ブトキシ安息香酸、第三ブトキシ安
息香酸、アミノ安息香酸、N‐メチルアミノ安息香酸、
N‐エチルアミノ安息香酸、N‐プロピルアミノ安息香
酸、N‐イソプロピルアミノ安息香酸、N‐ブチルアミ
ノ安息香酸、N‐イソブチルアミノ安息香酸、N‐第二
ブチルアミノ安息香酸、N‐第三ブチルアミノ安息香酸
、N,N‐ジメチルアミノ安息香酸、N,N‐ジエチル
アミノ安息香酸、ニトロ安息香酸、レゾルシン酸等、(
ニ)芳香族多価カルボン酸、たとえば、フタル酸、イソ
フタル酸、テレフタル酸、3‐ニトロフタル酸、4‐ニ
トロフタル酸、トリメリット酸、ヘミメリット酸、トリ
メシン酸、ピロメリット酸等、を例示することができる
。 【0037】フェノール類として、具体的には、フェノ
ール、カテコール、レゾルシノール、ハイドロキノン、
フロログルシノール、ピロガロール、1,2,4‐トリ
ヒドロキシベンゼン、o‐ニトロフェノール、m‐ニト
ロフェノール、p‐ニトロフェノール、2,4‐ジニト
ロフェノール、2,5‐ジニトロフェノール、2,6‐
ジニトロフェノール、3,4‐ジニトロフェノール、4
‐ニトロカテコールおよび2‐ニトロレゾルシノールを
例示することができる。 【0038】グループ(2)に属するものは、ホウ酸、
下記一般式(III )で示されるホウ酸誘導体、リン
酸、下記一般式(IV)で示されるリン酸エステル、亜
リン酸、下記一般式(V)で示される亜リン酸誘導体、
次亜リン酸、下記一般式(VI)で示される次亜リン酸
誘導体、炭酸、下記一般式(VII )で示される炭酸
モノエステル、およびケイ酸である。               OH             /     R6 −B                
                         
   (III )            \               OH             O             ‖     R7 O−P−OH            
                        (
IV)            |  6              OR           O           ‖     R7 −P−OH             
                         
(V)          |  6            OR           O           ‖     R7 −P−OH             
                         
(VI)          |8            R             O             ‖     R9 O−C−OH            
                        (
VII )〔式(III )〜(VII )中、R6 
〜R9 はそれぞれ炭素数1〜10のアルキル基または
アリール基を示す。また、R7 あるいはR8 の一つ
は水素原子であって、よい。〕 【0039】式(III )で示されるホウ酸誘導体の
具体例としては、メチルホウ酸、エチルホウ酸、フェニ
ルホウ酸等を例示することができる。式(IV)で示さ
れるリン酸エステルの具体例としては、モノメチルリン
酸、ジメチルリン酸、フェニルリン酸等を例示すること
ができる。式(V)で示される亜リン酸誘導体の具体例
としては、亜リン酸モノメチルエステル、メチルスルホ
ン酸、メチルホスホス酸メチルエステル等を例示するこ
とができる。式(VI)で示される次亜リン酸誘導体の
具体例としては、メチルホスフィン酸、ジメチルホスフ
ィン酸、フェニルホスフィン酸等を例示することができ
る。式(VII )で示される炭酸モノエステルの具体
例としては、炭酸モノメチルエステル、炭酸モノフェニ
ルエステル等を例示することができる。 【0040】グループ(3)に属するものは、ピクリン
酸およびスルホン酸である。スルホン酸としては、総炭
素数1〜30、好ましくは1〜20、の脂肪族および芳
香族の1価あるいは多価スルホン酸が好ましい。 【0041】具体的には、メタンスルホン酸、エタンス
ルホン酸、プロパンスルホン酸、ブタンスルホン酸、ペ
ンタンスルホン酸、ヘキサンスルホン酸、ヘプタンスル
ホン酸、オクタンスルホン酸、ノナンスルホン酸、デカ
ンスルホン酸、ビニルスルホン酸、アリルスルホン酸、
1,2‐エタンジスルホン酸、1,4‐ブタンジスルホ
ン酸、ベンゼンスルホン酸、p‐トルエンスルホン酸、
1‐エチルベンゼンスルホン酸、キシレンスルホン酸、
ナフタレンスルホン酸、フェノールスルホン酸、ニトロ
ベンゼンスルホン酸、2,4‐ジニトロベンゼンスルホ
ン酸、ピクリルスルホン酸、ピリジン‐3‐スルホン酸
、m‐ベンゼンスルホン酸、トルエン‐3,4‐ジスル
ホン酸等を例示することができる。 【0042】グループ(4)に属するものは、硝酸、硫
酸、下記一般式(VIII)で示される硫酸モノエステ
ル、亜硫酸、下記一般式(IX)で示される亜硫酸モノ
エステルおよびチオシアン酸である。             O             ‖     R10O−S−OH            
                        (
VIII)            ‖             O             O             ‖     R10O−S−OH            
                        (
IX)〔式(VIII)〜(IX)中、R10は炭素数
1〜10のアルキル基またはアリール基を示す。〕 【0043】グループ(5)に属するものは、電気陰性
度の高いハロゲン原子を含んでいるため、強い酸性を示
す酸である。 【0044】具体的には、HBF4 、HPF6 、H
AsF6 、HSbF6 、CF3 SO3 H、CF
3 COOH、C4 F9 SO3 H、C4 F9 
COOH、HClO4 等を例示することができる。 【0045】〈有機溶媒(成分(c)〉本発明の電解コ
ンデンサにおいて使用される(c)成分は、有機溶媒で
ある。この有機溶媒は、上記した(b)成分の溶質を溶
解してイオン伝導性の電解液を形成するためのものであ
る。 【0046】このような有機溶媒としては、たとえば(
イ)アミド溶媒、たとえば、N‐メチルホルムアミド、
N‐エチルホルムアミド、N,N′‐ジメチルホルムア
ミド、N,N‐ジエチルホルムアミド、N‐メチルアセ
トアミド、N‐エチルアセトアミド、N,N‐ジメチル
アセトアミド、N,N‐ジエチルアセトアミド、N‐メ
チルピロリジノン等、(ロ)カーバメート溶媒、たとえ
ば、N‐メチルオキサゾリジノン等、(ハ)ユレア溶媒
、たとえば、N,N′‐ジメチルイミダゾリジノン等、
(ニ)ラクトン溶媒、たとえば、γ‐ブチロラクトン、
γ‐バレロラクトン等、(ホ)カーボネート溶媒、たと
えば、エチレンカーボネート、プロピレンカーボネート
、ブチレンカーボネート等、(ヘ)アルコール溶媒、た
とえば、エチレングリコール、メチルセロソルブ等、(
ト)スルホラン溶媒、たとえば、スルホラン、3‐メチ
ルスルホラン等、(チ)ニトリル溶媒、たとえば、アセ
トニトリル、3‐メトキシプロピオニトリル等、(リ)
ホスフェート溶媒、たとえば、トリメチルホスフェート
等、(ヌ)エーテル溶媒、たとえば、1,2‐ジメトキ
シエタン、テトラヒドロフラン、1,3‐ジオキソラン
等、および(ル)炭化水素溶媒、たとえば、ヘキサン、
ベンゼン、トルエン等、の単独あるいは混合溶媒を例示
することができる。また、上記有機溶媒と水との混合溶
媒も使用することができる。 【0047】これらの中でも、γ‐ブチロラクトン、エ
チレングリコール等を主体溶媒とする電解液が、使用温
度範囲が広く、毒性が低く、耐ハロゲン性が強い等のこ
とから好ましい。 【0048】〈補強材〉本発明に使用される高分子電解
質ゲルの機械的、物理的強度を向上させるために補強材
を用いることができる。具体的には、前記(a)成分の
マトリックスポリマーと一体化して用いる多孔性膜また
は/および不織布としては、ポリエチレン、ポリプロピ
レン、ポリテトラフルオロエチレン、ポリエステル、ポ
リアクリロニトリル等のポリオレフィン樹脂からなる微
多孔性フィルムまたは/および不織布、クラフト紙、マ
ニラ紙等のセルロース系繊維からなる電解コンデンサ用
天然紙、およびセルロース系繊維からなる不織布等を用
いることができる。これらの中でも、機械的強度に優れ
、耐熱性が高いことおよび薄膜化が容易で内部抵抗を小
さくする目的からは、多孔度の大きい不織布を用いるこ
とが好ましい。 【0049】〈配合比〉本発明において、高イオン伝導
性を有し、熱的、電気化学的に安定で、かつ柔軟で可撓
性に富み、安全性に優れた固体状の高分子電解質ゲルを
得るためには、(a)成分に用いられる重合体は、高分
子電解質ゲル((a)成分〜(c)成分の合計量基準)
に対して、2重量%〜35重量%、好ましくは2.5重
量%〜30重量%、含有するような割合に調製すること
が好ましい。 【0050】また、(a)成分重合体が極性モノマーに
単官能性および/または多官能性モノマーを共重合させ
たものである場合には、単官能性および/または多官能
性モノマーを、重合性モノマーの全量に対し1〜10重
量%、好ましくは3〜6重量%、の範囲で含有させるこ
とが、高イオン伝導性と柔軟で可撓性に優れたマトリッ
クスポリマーを得る目的で好ましい。 【0051】また、(b)成分の溶質の含有量は、一般
的には飽和濃度以下、好ましくは高分子電解質ゲル((
a)成分〜(c)成分の合計量基準)に対し、0.1〜
30重量%、である。より好ましくは、低圧コンデンサ
用には5〜25重量%、中高圧コンデンサ用には1〜2
0重量%、含有するような割合に調製することが好まし
い。 【0052】〈固体電解コンデンサの製造〉本発明の固
体電解コンデンサの製造法としては、陰極たとえばアル
ミニウム箔と陽極たとえば誘電体酸化皮膜を備えたアル
ミニウム箔との間に、高分子電解質ゲルを介在させ、巻
回することからなる方法を例示することができる。この
際、該高分子電解質ゲルは、必要に応じて補強材を使用
する場合を含めて、合目的な任意の方法によって製造す
ることができる。具体的には、例えばあらかじめ重合性
ビニルモノマーを重合させてマトリックスポリマー(a
)の膜状物を合成し、該膜状物を陰極箔と陽極箔との間
に設置し、巻回してコンデンサ素子を形成した後、該膜
状物中に溶質(成分(b))および有機溶媒(成分(c
))を添加して、固体電解コンデンサを得る方法がある
。 【0053】すなわち、重合性ビニルモノマー(成分(
a)の前駆体)を必要により有機溶媒(成分(c))に
溶解し、さらに重合開始剤として、過酸化物またはアゾ
化合物等のラジカル重合開始剤あるいは光(UV)重合
開始剤を添加した均一な溶液を、流延法もしくは注型法
により膜状物に成形し、または必要により不織布等の補
強材上に流延し、60〜90℃の加熱下または光(UV
)照射により重合させ、乾燥して膜状のマトリックスポ
リマーを合成する。次いで、該乾燥膜状物を陰極箔と誘
電体酸化皮膜を備えた陽極箔との間に設置し、巻回して
コンデンサ素子を形成し、この素子を溶質を溶解させた
有機溶媒(成分(c))中に浸漬しあるいは該溶液を含
浸させることにより、コンデンサ素子と一体化した形で
高分子電解質ゲルを形成し、該素子をアルミニウム製の
外装ケースに収納し、開口部を弾性ゴムで密封して固体
電解コンデンサを製造することができる。 【0054】他の製造法としては、重合性ビニルモノマ
ーを溶質および有機溶媒の存在下に重合させ、乾燥して
、溶質(成分(b))を含有するマトリックスポリマー
(a)の膜状物を合成し、該膜状物を陰極箔と陽極箔と
の間に設置し、巻回してコンデンサ素子を形成した後、
該膜中に有機溶媒(成分(c))を添加して、固体電解
コンデンサを製造することもできる。 【0055】すなわち、具体的には、溶質を有機溶媒に
溶解した均一な溶液中に重合性ビニルモノマーを添加混
合し、さらに通常のラジカル重合開始剤あるいは光(U
V)重合開始剤を添加した均一な溶液を、流延法あるい
は注型法により膜状物に成形し、または必要により不織
布等の補強材上に流延し、60〜90℃の加熱下または
光(UV)照射により重合させて、固体状電解質膜を合
成する。次いで、該膜状物を乾燥した後、陰極箔と誘電
体酸化皮膜を備えた陽極箔との間に設置し、巻回してコ
ンデンサ素子を形成し、この素子を有機溶媒(成分(c
))中に浸漬または含浸することにより、コンデンサ素
子と一体化した形で高分子電解質ゲルを形成し、該素子
をアルミニウム製の外装ケースに収納し、開口部を弾性
ゴムで密封して、固体電解コンデンサを製造することが
できる。 【0056】 【実施例】以下の実施例は、本発明をさらに具体的に説
明するためのものである。これらの例によって、本発明
の範囲が限定されるものではない。 【0057】実施例1 γ‐ブチロラクトン溶媒(GBL)67.5g(固体状
電解質に対する組成重量比として、67.5重量%)に
フタル酸水素テトラメチルアンモニウムの22.5g(
22.5重量%)を溶解した電解液に重合性ビニルモノ
マーとしてヒドロキシエチルメタクリレート(HEMA
)の9.4g(9.4重量%)とネオペンチルグリコー
ルジメタクリレート(NPGM)の0.6g(0.6重
量%)を添加するとともに重合開始剤として「パーブチ
ルO」(PBO、日本油脂製)30μgを添加して均一
な溶液とした。 【0058】上記調製液の一部を、誘電体酸化皮膜を備
えた陽極箔と長繊維セルロースからなるセパレータ紙(
厚さ50μm、密度0.36g/cm3 )と陰極箔と
を巻回してなる静電容量470μF、定格電圧25WV
のコンデンサ素子に含浸させ、アルミニウム製の外装ケ
ースに収納し、窒素置換した後に開口部を弾性ゴムで密
封した。次にこのコンデンサを70℃で6時間加熱して
重合を行って、高分子電解質ゲルを形成するとともに固
体電解コンデンサを製造した。得られた電解コンデンサ
の静電容量、損失角の正接、インピーダンス等の基本特
性を測定した結果は、表1に示す通りであった。 【0059】実施例2 エチレングリコール溶媒(EG)40.0g(40重量
%)と水40.0g(40重量%)に重合性ビニルモノ
マーとしてヒドロキシエチルメタクリレート(HEMA
)8.0g(8重量%)、メトキシポリエチレングリコ
ールメタクリレート(MPEO)12.0g(12重量
%)を添加混合するとともに重合開始剤としてPBO6
0μgを添加して均一な溶液とした。 【0060】上記調製液の一部を、幅5cm、長さ21
cmに裁断した長繊維セルロース系不織布(厚さ50μ
m、密度0.36g/cm3 )とポリプロピレンフィ
ルムとを重ね合わせて巻回したロール状物に含浸させ、
窒素雰囲気下70℃で6時間加熱して熱重合を行って、
不織布と一体化した膜状のマトリックスポリマーを得た
。得られた膜状マトリックスポリマーをロール状物のま
ま105℃で6時間真空乾燥した後、幅1.5cmに裁
断して膜状の乾燥マトリックスポリマーを得た。これを
静電容量470μF、定格電圧25WVのアルミニウム
電解コンデンサ用の陽極箔と陰極箔との電極間に設置し
、巻回してコンデンサ素子を形成した。次に該素子を、
GBL溶媒にフタル酸水素テトラメチルアンモニウム(
25重量%)を溶解した電解液に2時間浸漬し、脱気処
理して、高分子電解質ゲルとした後、アルミニウム製外
装ケースに収納し、開口部を弾性ゴムで密封して、固体
電解コンデンサを製造した。得られた固体電解コンデン
サの基本特性は、表1に示す通りであった。 【0061】実施例3 実施例2において重合性ビニルモノマーとしてHEMA
10.0g(10重量%)およびMPEO10.0g(
10重量%)を用い、不織布としてポリプロピレン不織
布(厚さ80μm、密度0.3g/cm3 )を用いた
他は実施例2と同様にして固体電解コンデンサを得た。 得られた固体電解コンデンサの基本特性は、表1に示す
通りであった。 【0062】実施例4 実施例2と同様にして得られたコンデンサ素子に電解液
としてマレイン酸トリエチルメチルアンモニウム(25
重量%)を溶解したGBL溶媒を用いて高分子電解質ゲ
ルを形成した他は実施例2と同様にして固体電解コンデ
ンサを製造した。得られた固体電解コンデンサの基本特
性は、表1に示す通りであった。 【0063】実施例5 実施例2と同様にして得られたコンデンサ素子に電解液
としてアゼライン酸アンモニウム(10重量%)を溶解
したEG溶媒を用いて高分子電解質ゲルを形成した他は
実施例2と同様にして固体電解コンデンサを製造した。 得られた固体電解コンデンサの基本特性は、表1に示す
通りであった。 【0064】実施例6 実施例2におけるEG溶媒と水の代わりに、GBL溶媒
60.0g(60重量%)にフタル酸水素テトラメチル
アンモニウムの20.0g(20重量%)を溶解した電
解液を用いた他は、実施例2と同様にして固体電解コン
デンサを製造した。得られた固体電解コンデンサの基本
特性は、表1に示す通りであった。 【0065】比較例1 GBL溶媒75.0g(75重量%)にフタル酸水素テ
トラメチルアンモニウムの25.0g(25重量%)を
溶解した電解液の一部を、誘電体酸化膜を備えた陽極箔
とマニラ麻からなるセパレータ紙(厚さ50μm、密度
0.5g/cm3 )と陰極箔とを巻回してなる静電容
量470μF、定格電圧25WVのコンデンサ素子に含
浸させ、アルミニウム製の外装ケースに収納した後、開
口部を弾性ゴムで密封してアルミニウム電解コンデンサ
を製造した。得られた電解コンデンサの基本特性は、表
1に示す通りであった。 【0066】                          
 表  1    評価用素子:静電容量470μF、
定格電圧25WV                 
                         
                         
                         
  評  価  項  目  実施例        
                         
                         
番  号        静電容量        損
失角の正接    インピーダンス         
       (120Hz)           
(120Hz)         (100KHz) 
                         
                         
                 1       
 455(μF)      0.056      
57(mΩ)    2        447   
           0.058      74 
   3        446          
    0.070      83    4   
     451              0.0
60      59    5        41
4              0.123    2
27    6        450       
       0.076    102      
                         
                         
          比較例1    449    
          0.063      93  
                         
                         
            【0067】 【発明の効果】本発明による固体電解コンデンサが、特
定の固体状高イオン伝導性高分子電解質ゲルを電解質と
して使用したことによって低インピーダンス化および低
損失化に成功したことは〔課題を解決するための手段〕
の項において前記した通りである。
Detailed Description of the Invention [0001] [Background of the Invention] [Field of Industrial Application] The present invention relates to solid electrolytic capacitors,
In particular, the present invention relates to a solid electrolytic capacitor using a highly ionic conductive polymer electrolyte gel as a solid electrolyte, and a method for manufacturing the same. More specifically, the present invention provides low impedance and low loss (ta) without increasing short circuit defects.
The present invention relates to a solid electrolytic capacitor that realizes n δ). [0002] Conventionally, most electrolytic capacitors have a wound structure in which an anode foil with a dielectric oxide film, a separator paper, and a cathode foil are wound, and many aluminum electrolytic capacitors have this structure. It has been adopted. These capacitors have the problem of leakage because they use a driving electrolyte in which an electrolyte is dissolved in water or an organic solvent in the form of a solution. In addition, paper separators made of fibers such as manila paper and kraft paper are generally used as separators, but in order to reduce the impedance of electrolytic capacitors, thinner separators and lower density separators are being considered. There is. However, when low-density electrolytic paper is used, the mechanical strength is significantly reduced, and the fibers become sparse, resulting in problems such as short circuits between the electrodes of the capacitor, and there is a limit to how low the density can be reduced. In order to improve leakage resistance and develop highly reliable solid electrolytic capacitors with low impedance and low loss without increasing short-circuit defects, we developed a capacitor that has high ionic conductivity comparable to that of liquid organic electrolytes. It is desired to develop a solid electrolytic capacitor having a solid electrolyte that is thermally and electrochemically stable, flexible, and has excellent flexibility. [Summary of the Invention] [Problems to be Solved by the Invention] In recent years, as electronic equipment has become more sophisticated and more compact, there has been an increase in the frequency of switching power supplies, miniaturization of electrolytic capacitors, etc. Due to increasing demands, it is important to develop solid electrolytes that exhibit high ionic conductivity as well as solid electrolytic capacitors that achieve low impedance and low loss without increasing short-circuit defects. <Summary> [Means for Solving the Problems] The present invention aims to solve the above-mentioned problems, and by using a specific solid polymer electrolyte gel, it can be used for this purpose, especially for electrolytic capacitors. The present invention aims to provide a solid electrolytic capacitor with low impedance and low loss as an electrolyte. That is, the solid electrolytic capacitor according to the present invention consists of a polymer electrolyte gel containing the following (a), (b), and (c) interposed between the electrodes of a cathode foil and an anode foil, and then wound. It is characterized by what has been done. (a)
A matrix polymer consisting of a polymer of polymerizable vinyl monomers, (b) an ammonium ion or quaternary phosphonium ion represented by the following general formula (I) or/and (II) as a cation component, and a conjugate base of an acid as an anion component. At least one solute consisting of a salt of
, and R4 may be the same or different,
Each represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 10 carbon atoms, and R5 is represented by the formula (II
) represents a group having 3 to 10 carbon atoms that forms an aliphatic heterocycle or an aromatic heterocycle by bonding with the nitrogen atom in the group. )(c)
[0008] <Effects> The solid electrolytic capacitor according to the present invention has a solid electrolytic capacitor that is electrochemically stable, flexible, and has excellent heat resistance between the cathode and anode electrodes. By interposing the highly ionic conductive polymer electrolyte gel, it can be used as a solid electrolytic capacitor that not only achieves the objectives of lower impedance and lower loss, but also has excellent safety. [Detailed description of the invention] <Matrix polymer (component (a))> The matrix polymer forming the matrix or linking phase of the solid polymer electrolyte gel in the present invention is composed of a polymer of polymerizable vinyl monomers. Here, the polymerizable vinyl monomer is a monomer having a CH2=C(R)- group (in the formula, R is a hydrogen atom or a C1-C2 alkyl group) in the molecule. It means a monomer that can form a polymer by addition polymerization of this monomer. Therefore, "vinyl monomer" as used in the present invention has the same meaning as "ethylenic unsaturated monomer". "Polymer of polymerizable vinyl monomers" means, in addition to homopolymers and copolymers of polymerizable vinyl monomers having polar groups as described below, a predominant amount of the polymerizable vinyl monomers and a smaller amount of the polymerizable vinyl monomers. It means a copolymer with a copolymerizable monomer. Preferred examples of the polymerizable vinyl monomer having a polar group include a hydroxyl group or a lower alkoxyl group (about C1 to C4), a carboxyl group, and an amide group. or having an amino group.Specific examples of such monomers include (a) (meth)acrylic acid esters, such as alkoxyalkyl (meth)acrylates, hydroxyalkyl (meth)acrylates, glycerol; = mono-, di- and tri-(meta)
Examples include acrylate, alkylene glycol mono- and di-(meth)acrylate, (meth)acrylic acid, (meth)acrylamide, dimethylaminoethyl (meth)acrylate, and the like. Of these,
At least one type selected from alkoxyalkyl (meth)acrylate, hydroxyalkyl (meth)acrylate, glycerol mono-, di- and tri-(meth)acrylate, and alkylene glycol mono- and di-(meth)acrylate (meth)acrylic acid esters are preferably used. Here, "(meth)acrylic acid" and "
"(Meth)acrylate" shall mean both acrylic acid and methacrylic acid, and acrylate and methacrylate, respectively. Preferred (meta) for obtaining high conductivity
One group of acrylic esters is alkoxyalkyl=(
meth)acrylate. The "alkoxy" group is also preferably a lower one, particularly one having about 1 to 4 carbon atoms, preferably about 1 to 3 carbon atoms for an "alkoxy" group, and about 2 to 3 carbon atoms for an "alkyl" group. Such alkoxyalkyl=(meth)
Specific examples of acrylates include methoxyethyl, ethoxyethyl and propoxyethyl esters of acrylic and methacrylic acids. Another group of preferred (meth)acrylic esters are hydroxyalkyl (meth)acrylates. The "alkyl" group in this case is also preferably a lower one, particularly one having about 2 to 4 carbon atoms. The "hydroxylalkyl" group preferably has one hydroxyl group. Such hydroxyalkyl=(meth)
Specific examples of acrylates include hydroxyethyl and hydroxypropyl esters of acrylic and methacrylic acids. Another group of preferred (meth)acrylic esters are glycerol (meth)acrylates. This (meth)acrylate is preferably one in which one or two of the three hydroxyl groups of glycerol are esterified. Specific examples of such glycerol (meth)acrylates include glycerol monomethacrylate, glycerol dimethacrylate, and glycerol acrylate methacrylate. Another group of preferred (meth)acrylic esters are alkylene glycol (meth)acrylates. Specific examples of such alkylene glycol (meth)acrylate include diethylene glycol (meth)acrylate, triethylene glycol (meth)acrylate, and polyethylene glycol (meth)acrylate.
meth)acrylate (average molecular weight about 200 to 2,000), dipropylene glycol = (meth)acrylate, tripropylene glycol = (meth)acrylate,
Polypropylene glycol = (meth)acrylate (average molecular weight approximately 300 to 3,000), polyalkylene glycol = (meth)acrylate (ethylene oxide/propylene oxide block copolymer, average molecular weight approximately 200 to 3,000), methoxypolyethylene glycol =(meth)acrylate (average molecular weight 200-2
,000), ethoxypolyethylene glycol = (
meth)acrylate (average molecular weight of about 200 to 2,000), propoxypolyethylene glycol = (meth)acrylate (average molecular weight of about 200 to 2,000), phenoxypolyethylene glycol = (meth)acrylate (average molecular weight of about 300 to 2,000) ), Methoxypolypropylene glycol = (meth)acrylate (average molecular weight approximately 250 to 3,000), Ethoxypolypropylene glycol = (meth)acrylate (average molecular weight 2
50 to 3,000) and ethylene glycol = (
There are meta)acrylates. These esters are for some or all of a given hydroxyl group. As mentioned above, the polymer of these polar group-containing polymerizable vinyl monomers may be a copolymer with a small amount of copolymerizable monomer; Specific examples include (a) monofunctional monomers, such as (meth)acrylic acid alkyl esters (the alkyl group has about 1 to 3 carbon atoms), and (b) difunctional monomers, such as ethylene glycol. = Ji (meta)
Acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate ) acrylate, 2-hydroxy-1,3-di(meth)acryloxypropane, 2-hydroxy-1-acryloxy-
(c) Trifunctional monomers such as 3-methacryloxypropane, such as trimethylolpropane tri(meth)acrylate, tetramethylolmethane tri(meth)acrylate, etc. are preferred, and others include unsaturated nitriles such as acrylonitrile. etc., aromatic olefins such as styrene, vinyl compounds such as vinyl chloride, vinyl acetate, etc., N-vinylpyrrolidone,
There are N-vinyl lactams such as N-vinylpiperidone. By polymerizing these polymerizable vinyl monomers using a polymerization initiator, it is possible to obtain a matrix polymer of component (a) which is thermally stable, soft and has excellent flexibility. [0023] Such a matrix polymer has a high affinity for electrolytic solution, so it has good swelling properties and liquid retention properties, and it is possible to obtain a low-impedance solid electrolytic capacitor without affecting short-circuit defects. Become. <Solute (component (b))> The solute (component (b)) used in the electrolytic capacitor of the present invention is as described below (
c) It exhibits ionic conductivity by dissociating into ions in the organic solvent. Such solutes include those of the following general formula (I) and/or (II) which are cationic components.
A salt consisting of an ammonium ion or quaternary phosphonium ion represented by the formula and a conjugate base of an acid as an anion component is used. [Chemical formula 5] [Chemical formula 6] (In formulas (I) and (II), R1, R
2, R3, and R4 may be the same or different and represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 10 carbon atoms, and R5 is represented by the formula (I
Represents a group having 3 to 10 carbon atoms that forms an aliphatic heterocycle or aromatic heterocycle by bonding with the nitrogen atom in I). ) [0
[028] The salt used as the solute may be one type or a combination of two or more types. Here, the conjugate base of an acid is, as described in general chemistry textbooks, in the Brønsted-Lowry acid-base theory, when the acid has a proton (II+). means something lost. Examples of the ammonium ion as a cationic component that forms such a salt include aliphatic ammonium ions, ammonium ions, and alicyclic ammonium ions represented by the above general formulas (I) and (II), as well as nitrogen-containing ammonium ions. There is an aromatic ammonium ion. Specifically, the ammonium ions represented by the formula (I) include (a) quaternary ammonium ions such as tetraethylammonium, tetrapropylammonium, tetrabutylammonium, methyltriethylammonium, methyltripropylammonium, and methyltributyl; Ammonium, dimethyldiethylammonium, dimethyldipropylammonium, dimethyldibutylammonium, ethyltripropylammonium, ethyltributylammonium, diethyldipropylammonium, diethyldibutylammonium, triethylpropylammonium, triethylbutylammonium, etc., (b) aliphatic ammonium ions, for example,
triethylammonium, tripropylammonium,
Tributylammonium, methyldiethylammonium, methyldipropylammonium, methyldibutylammonium, dimethylethylammonium, dimethylpropylammonium, dimethylbutylammonium, ethyldipropylammonium, ethyldibutylammonium, diethylpropylammonium, diethylbutylammonium, monomethylammonium, monoethyl Ammonium, monopropylammonium, dimethylammonium, diethylammonium, dipropylammonium, dibutylammonium, methylethylammonium, etc., and (iii) ammonium ion (NH4 + )
, can be exemplified. Specifically, the ammonium ions represented by formula (II) include (a) cyclic ammonium ions, such as N,N-dimethylpyrrolidinium, N,N-dimethylpiperidinium, N-methyl- N-ethylpyrrolidinium, N-methyl-N-ethylpiperidinium, N
, N-tetramethylenepyrrolidinium, N,N-pentamethylenepiperidinium, N-methylpiperidinium,
(b) Nitrogen-containing aromatic ammonium ions such as N-methylpyrrolidinium, such as N-ethylpyridinium,
N,N-dimethylimidazolinium, pyridinium, N
-Methylimidazolium, etc. can be exemplified. Similarly, quaternary phosphonium ions as cationic components include (a) aliphatic quaternary phosphonium ions;
For example, tetramethylphosphonium, tetraethylphosphonium, tetrapropylphosphonium, tetrabutylphosphonium, methyltriethylphosphonium, methyltripropylphosphonium, methyltributylphosphonium, dimethyldiethylphosphonium, dimethyldipropylphosphonium, dimethyldibutylphosphonium,
Trimethylethylphosphonium, trimethylpropylphosphonium, trimethylbutylphosphonium, ethyltripropylphosphonium, ethyltributylphosphonium, diethyldipropylphosphonium, diethyldibutylphosphonium, triethylpropylphosphonium, triethylbutylphosphonium, propyltributylphosphonium, dipropyldibutylphosphonium, tripropylbutyl (b)Alicyclic quaternary phosphonium ions such as phosphonium, such as 1,1-dimethylphosphoranium, 1-methyl-1-ethylphosphoranium, 1,1-
Diethylphosphoranium, 1,1-dimethylphosphoranium, 1-methyl-1-ethylphosphoranium, 1
, 1-diethylphospholinanium, 1,1-pentamethylenephospholinanium, and the like. On the other hand, as the anion component of the solute, a conjugate base of an acid selected from the following five groups is preferably used. (1) Carboxylic acids and phenols, (2)
Boric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, silicic acid and their derivatives, (3) Picric acid and sulfonic acid, (4) Nitric acid, sulfuric acid, sulfite, thiocyanic acid and their derivatives, ( 5) Strong acids containing halogen atoms. Anions which are conjugate bases of acids selected from groups (1) and (2) are good as film-forming anions, and are suitable not only for low voltage capacitors but also for medium and high voltage capacitors. can be used. Those selected from groups (3), (4), and (5) also have the ability to form oxide films, but they are highly acidic and easily corrode oxide films, so they should not be used in low-voltage capacitors of 100V or less. be. In particular, anions selected from group (5) liberate halide ions, which are unfavorable to aluminum, and should therefore be used in low-voltage capacitors of 10 V or less. According to the purpose of the capacitor used in this manner, a suitable one can be selected and used from among the five groups (1) to (5) above. The carboxylic acids of group (1) are preferably aliphatic and aromatic monovalent or polyvalent carboxylic acids having a total number of carbon atoms of 1 to 30, preferably 2 to 20. Specifically, (a) aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, lauric acid, and vaccinic acid. Acid, gadoleic acid, methacrylic acid, 3-methylcrotonic acid, tiglic acid, methylpentenoic acid, cyclopentanecarboxylic acid,
(b) Aliphatic dicarboxylic acids such as cyclohexanecarboxylic acid, such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid,
Hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, eicosanedioic acid, methylmalonic acid, ethylmalonic acid, propylmalonic acid, butylmalonic acid, pentylmalonic acid, hexylmalonic acid, dimethylmalonic acid, methyl ethyl Malonic acid, diethylmalonic acid, methylpropylmalonic acid, methylbutylmalonic acid, ethylpropylmalonic acid, dipropylmalonic acid, ethylbutylmalonic acid, propylbutylmalonic acid, dibutylmalonic acid,
Methylsuccinic acid, ethylsuccinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylsuccinic acid, 2-methylglutaric acid, 3-methylglutaric acid, 3-methyl-3-ethylglutaric acid, 3,3-diethylglutaric acid acid, maleic acid, citraconic acid, 1,5-octanedicarboxylic acid, 5,
6-decanedicarboxylic acid, 1,7-decanedicarboxylic acid, 4,6-dimethyl-4-nonene-1,2-dicarboxylic acid, 4,6-dimethyl-1,2-nonanedicarboxylic acid,
1,7-dodecanedicarboxylic acid, 5-ethyl-1,10
-decanedicarboxylic acid, 6-methyl-6-dodecene-1
, 12-dicarboxylic acid, 6-methyl-1,12-dodecanedicarboxylic acid, 6-ethylene-1,12-dodecanedicarboxylic acid, 6-ethyl-1,12-dodecanedicarboxylic acid, 7-methyl-7-tetradecene- 1,14-dicarboxylic acid, 7-methyl-1,14-tetradecanedicarboxylic acid, 3-hexyl-4-decene-1,2-dicarboxylic acid, 3-hexyl-1,2-decanedicarboxylic acid, 6
-ethylene-9-hexadecene-1,16-dicarboxylic acid, 6-ethyl-1,16-hexadecanedicarboxylic acid, 6-phenyl-1,12-dodecanedicarboxylic acid, 7
, 12-dimethyl-7,11-octadecadiene-1,
18-dicarboxylic acid, 7,12-dimethyl-1,18-
Octadecanedicarboxylic acid, 6,8-diphenyl-1,
14-tetradecanedicarboxylic acid, 1,1-cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,1-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-cyclohexene-1,
(3) Aromatic monocarboxylic acids (o, m, p-
(including each isomer), for example, benzoic acid, toluic acid,
Ethylbenzoic acid, propylbenzoic acid, isopropylbenzoic acid, butylbenzoic acid, isobutylbenzoic acid, sec-butylbenzoic acid, tertiary-butylbenzoic acid, hydroxybenzoic acid, anisic acid, ethoxybenzoic acid, propoxybenzoic acid,
Isopropoxybenzoic acid, butoxybenzoic acid, isobutoxybenzoic acid, sec-butoxybenzoic acid, tertiary-butoxybenzoic acid, aminobenzoic acid, N-methylaminobenzoic acid,
N-ethylaminobenzoic acid, N-propylaminobenzoic acid, N-isopropylaminobenzoic acid, N-butylaminobenzoic acid, N-isobutylaminobenzoic acid, N-sec-butylaminobenzoic acid, N-tert-butylaminobenzoic acid Benzoic acid, N,N-dimethylaminobenzoic acid, N,N-diethylaminobenzoic acid, nitrobenzoic acid, resorcinic acid, etc.
d) Aromatic polycarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, 3-nitrophthalic acid, 4-nitrophthalic acid, trimellitic acid, hemimellitic acid, trimesic acid, pyromellitic acid, etc. Can be done. [0037] Specific examples of phenols include phenol, catechol, resorcinol, hydroquinone,
Phloroglucinol, pyrogallol, 1,2,4-trihydroxybenzene, o-nitrophenol, m-nitrophenol, p-nitrophenol, 2,4-dinitrophenol, 2,5-dinitrophenol, 2,6-
Dinitrophenol, 3,4-dinitrophenol, 4
-nitrocatechol and 2-nitroresorcinol. Those belonging to group (2) include boric acid,
Boric acid derivatives represented by the following general formula (III), phosphoric acid, phosphoric acid esters represented by the following general formula (IV), phosphorous acid, phosphorous acid derivatives represented by the following general formula (V),
These are hypophosphorous acid, a hypophosphorous acid derivative represented by the following general formula (VI), carbonic acid, a carbonate monoester represented by the following general formula (VII), and silicic acid. OH/R6-B

(III) \OH O ‖ R7 O-P-OH
(
IV) | 6 OR O ‖ R7 -P-OH

(V) | 6 OR O ‖ R7 -P-OH

(VI) |8 R O ‖ R9 O-C-OH
(
VII) [In formulas (III) to (VII), R6
~R9 each represents an alkyl group or an aryl group having 1 to 10 carbon atoms. Further, one of R7 or R8 may be a hydrogen atom. [0039] Specific examples of the boric acid derivative represented by formula (III) include methylboric acid, ethylboric acid, and phenylboric acid. Specific examples of the phosphoric acid ester represented by formula (IV) include monomethyl phosphoric acid, dimethyl phosphoric acid, phenyl phosphoric acid, and the like. Specific examples of the phosphorous acid derivative represented by formula (V) include phosphorous acid monomethyl ester, methylsulfonic acid, and methylphosphonic acid methyl ester. Specific examples of the hypophosphorous acid derivative represented by formula (VI) include methylphosphinic acid, dimethylphosphinic acid, phenylphosphinic acid, and the like. Specific examples of the carbonate monoester represented by formula (VII) include carbonate monomethyl ester, carbonate monophenyl ester, and the like. Belonging to group (3) are picric acid and sulfonic acid. As the sulfonic acid, aliphatic and aromatic monovalent or polyvalent sulfonic acids having a total carbon number of 1 to 30, preferably 1 to 20 are preferred. Specifically, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, pentanesulfonic acid, hexanesulfonic acid, heptanesulfonic acid, octanesulfonic acid, nonanesulfonic acid, decanesulfonic acid, vinylsulfonic acid. acid, allylsulfonic acid,
1,2-ethanedisulfonic acid, 1,4-butanedisulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid,
1-ethylbenzenesulfonic acid, xylene sulfonic acid,
Examples include naphthalenesulfonic acid, phenolsulfonic acid, nitrobenzenesulfonic acid, 2,4-dinitrobenzenesulfonic acid, picrylsulfonic acid, pyridine-3-sulfonic acid, m-benzenesulfonic acid, toluene-3,4-disulfonic acid, etc. can do. Those belonging to group (4) are nitric acid, sulfuric acid, sulfuric acid monoester represented by the following general formula (VIII), sulfurous acid, sulfite monoester represented by the following general formula (IX), and thiocyanic acid. O ‖ R10O-S-OH
(
VIII) ‖ O ‖ R10O-S-OH
(
IX) [In formulas (VIII) to (IX), R10 represents an alkyl group or an aryl group having 1 to 10 carbon atoms. [0043] Those belonging to group (5) contain highly electronegative halogen atoms, and are therefore acids that exhibit strong acidity. Specifically, HBF4, HPF6, H
AsF6, HSbF6, CF3SO3H, CF
3 COOH, C4 F9 SO3 H, C4 F9
Examples include COOH and HClO4. <Organic solvent (component (c))> The component (c) used in the electrolytic capacitor of the present invention is an organic solvent. This organic solvent dissolves the solute of the component (b) described above and forms ions. It is used to form a conductive electrolyte. Examples of such organic solvents include (
b) Amide solvents, such as N-methylformamide,
N-ethylformamide, N,N'-dimethylformamide, N,N-diethylformamide, N-methylacetamide, N-ethylacetamide, N,N-dimethylacetamide, N,N-diethylacetamide, N-methylpyrrolidinone, etc. (b) carbamate solvents, such as N-methyloxazolidinone; (c) urea solvents, such as N,N'-dimethylimidazolidinone;
(d) Lactone solvents, such as γ-butyrolactone,
γ-valerolactone, etc., (e) carbonate solvents, such as ethylene carbonate, propylene carbonate, butylene carbonate, etc., (f) alcohol solvents, such as ethylene glycol, methyl cellosolve, etc.
g) Sulfolane solvents, such as sulfolane, 3-methylsulfolane, etc.; (th) nitrile solvents, such as acetonitrile, 3-methoxypropionitrile, etc.;
Phosphate solvents, such as trimethyl phosphate, (nu)ether solvents, such as 1,2-dimethoxyethane, tetrahydrofuran, 1,3-dioxolane, etc., and (ru)hydrocarbon solvents, such as hexane,
Examples include benzene, toluene, etc. alone or in combination. Moreover, a mixed solvent of the above organic solvent and water can also be used. Among these, electrolytic solutions containing γ-butyrolactone, ethylene glycol, etc. as main solvents are preferred because they have a wide usable temperature range, low toxicity, and strong halogen resistance. <Reinforcing material> A reinforcing material can be used to improve the mechanical and physical strength of the polymer electrolyte gel used in the present invention. Specifically, the porous membrane and/or nonwoven fabric used integrally with the matrix polymer of component (a) include microporous membranes made of polyolefin resins such as polyethylene, polypropylene, polytetrafluoroethylene, polyester, and polyacrylonitrile. Films and/or nonwoven fabrics, natural papers for electrolytic capacitors made of cellulose fibers such as kraft paper and Manila paper, and nonwoven fabrics made of cellulose fibers can be used. Among these, it is preferable to use a nonwoven fabric with high porosity in order to have excellent mechanical strength, high heat resistance, easy formation into a thin film, and low internal resistance. <Blending ratio> In the present invention, a solid polymer electrolyte gel that has high ionic conductivity, is thermally and electrochemically stable, is flexible, and has excellent safety. In order to obtain this, the polymer used for component (a) is a polymer electrolyte gel (based on the total amount of components (a) to (c)).
It is preferable to adjust the ratio so that the content is 2% to 35% by weight, preferably 2.5% to 30% by weight. In addition, when the component polymer (a) is a polar monomer copolymerized with a monofunctional and/or polyfunctional monomer, the monofunctional and/or polyfunctional monomer may be copolymerized. In order to obtain a matrix polymer with high ionic conductivity and excellent flexibility, it is preferable to contain the polymer in an amount of 1 to 10% by weight, preferably 3 to 6% by weight, based on the total amount of the monomer. In addition, the content of the solute in component (b) is generally below the saturation concentration, preferably in a polymer electrolyte gel ((
a) component to (c) component total amount standard), 0.1 to
30% by weight. More preferably, it is 5 to 25% by weight for low voltage capacitors, and 1 to 2% by weight for medium and high voltage capacitors.
It is preferable to adjust the proportion so that it contains 0% by weight. <Manufacture of solid electrolytic capacitor> The method of manufacturing the solid electrolytic capacitor of the present invention involves interposing a polymer electrolyte gel between a cathode, such as an aluminum foil, and an anode, such as an aluminum foil provided with a dielectric oxide film. , a method consisting of winding can be exemplified. In this case, the polyelectrolyte gel can be produced by any suitable method, including the use of reinforcing materials if necessary. Specifically, for example, a polymerizable vinyl monomer is polymerized in advance to form a matrix polymer (a
) is synthesized, the film is placed between a cathode foil and an anode foil, and the film is wound to form a capacitor element, and then the solute (component (b)) and Organic solvent (component (c)
)) to obtain a solid electrolytic capacitor. That is, the polymerizable vinyl monomer (component (
Precursor (a)) was dissolved in an organic solvent (component (c)) if necessary, and a radical polymerization initiator such as a peroxide or an azo compound or a photo (UV) polymerization initiator was added as a polymerization initiator. The homogeneous solution is formed into a film by a casting method or a casting method, or if necessary, it is cast onto a reinforcing material such as a nonwoven fabric, and heated at 60 to 90°C or exposed to light (UV).
) Polymerize by irradiation and dry to synthesize a film-like matrix polymer. Next, the dry film-like material is placed between a cathode foil and an anode foil provided with a dielectric oxide film, and is wound to form a capacitor element. )) By dipping in or impregnating with the solution, a polymer electrolyte gel is formed integrally with the capacitor element, the element is housed in an aluminum exterior case, and the opening is sealed with elastic rubber. solid electrolytic capacitors can be manufactured by [0054] As another production method, a polymerizable vinyl monomer is polymerized in the presence of a solute and an organic solvent, and dried to form a film of matrix polymer (a) containing the solute (component (b)). After synthesizing, placing the film-like material between a cathode foil and an anode foil, and winding it to form a capacitor element,
A solid electrolytic capacitor can also be manufactured by adding an organic solvent (component (c)) to the film. Specifically, a polymerizable vinyl monomer is added and mixed into a homogeneous solution of a solute dissolved in an organic solvent, and then an ordinary radical polymerization initiator or light (U) is added and mixed.
V) A homogeneous solution containing a polymerization initiator is formed into a film by a casting method or a casting method, or if necessary, it is cast onto a reinforcing material such as a nonwoven fabric, and heated at 60 to 90°C or Polymerization is performed by irradiation with light (UV) to synthesize a solid electrolyte membrane. Next, after drying the film-like material, it is placed between a cathode foil and an anode foil provided with a dielectric oxide film, and is wound to form a capacitor element.
)) to form a polymer electrolyte gel integrated with the capacitor element, house the element in an aluminum exterior case, and seal the opening with elastic rubber to form a solid polymer electrolyte gel. Electrolytic capacitors can be manufactured. EXAMPLES The following examples are intended to explain the present invention more specifically. These examples do not limit the scope of the invention. Example 1 22.5 g of tetramethylammonium hydrogen phthalate (22.5 g of tetramethylammonium hydrogen phthalate) was added to 67.5 g of γ-butyrolactone solvent (GBL) (67.5% by weight as a composition weight ratio to the solid electrolyte).
As a polymerizable vinyl monomer, hydroxyethyl methacrylate (HEMA
) and 0.6 g (0.6 wt%) of neopentyl glycol dimethacrylate (NPGM) were added, and "Perbutyl O" (PBO, manufactured by NOF Corporation) was added as a polymerization initiator. ) was added to make a homogeneous solution. A part of the above prepared solution was transferred to a separator paper (made of anode foil with a dielectric oxide film and long fiber cellulose).
A capacitance of 470 μF and a rated voltage of 25 WV is obtained by winding a cathode foil with a thickness of 50 μm and a density of 0.36 g/cm3.
The capacitor element was impregnated with the liquid, housed in an aluminum exterior case, and after purging with nitrogen, the opening was sealed with elastic rubber. Next, this capacitor was heated at 70° C. for 6 hours to perform polymerization, thereby forming a polymer electrolyte gel and manufacturing a solid electrolytic capacitor. The basic characteristics of the obtained electrolytic capacitor, such as capacitance, loss angle tangent, and impedance, were measured and the results are shown in Table 1. Example 2 Hydroxyethyl methacrylate (HEMA) was added as a polymerizable vinyl monomer to 40.0 g (40% by weight) of ethylene glycol solvent (EG) and 40.0 g (40% by weight) of water.
) 8.0g (8% by weight) and 12.0g (12% by weight) of methoxypolyethylene glycol methacrylate (MPEO) were added and mixed together with PBO6 as a polymerization initiator.
0 μg was added to make a homogeneous solution. [0060] A part of the above prepared liquid was placed into a 5 cm wide and 21 cm long
Long-fiber cellulose nonwoven fabric cut into cm pieces (thickness 50 μm)
m, density 0.36 g/cm3) and a polypropylene film are impregnated into a rolled material,
Thermal polymerization was performed by heating at 70°C for 6 hours in a nitrogen atmosphere,
A membrane-like matrix polymer integrated with a nonwoven fabric was obtained. The obtained film-like matrix polymer was vacuum-dried as a roll at 105° C. for 6 hours, and then cut to a width of 1.5 cm to obtain a film-like dry matrix polymer. This was placed between the electrodes of an anode foil and a cathode foil for an aluminum electrolytic capacitor having a capacitance of 470 μF and a rated voltage of 25 WV, and wound to form a capacitor element. Next, the element is
Tetramethylammonium hydrogen phthalate (
25% by weight) dissolved in an electrolytic solution for 2 hours, deaerated to form a polymer electrolyte gel, it is stored in an aluminum exterior case, and the opening is sealed with elastic rubber to form a solid electrolytic capacitor. was manufactured. The basic characteristics of the obtained solid electrolytic capacitor were as shown in Table 1. Example 3 In Example 2, HEMA was used as the polymerizable vinyl monomer.
10.0g (10% by weight) and MPEO10.0g (
A solid electrolytic capacitor was obtained in the same manner as in Example 2, except that a polypropylene nonwoven fabric (thickness 80 μm, density 0.3 g/cm 3 ) was used as the nonwoven fabric. The basic characteristics of the obtained solid electrolytic capacitor were as shown in Table 1. Example 4 Triethylmethylammonium maleate (25
A solid electrolytic capacitor was manufactured in the same manner as in Example 2, except that a polymer electrolyte gel was formed using a GBL solvent in which GBL (% by weight) was dissolved. The basic characteristics of the obtained solid electrolytic capacitor were as shown in Table 1. Example 5 Example 2 was repeated except that a polymer electrolyte gel was formed on a capacitor element obtained in the same manner as in Example 2 using an EG solvent in which ammonium azelaate (10% by weight) was dissolved as an electrolyte. A solid electrolytic capacitor was manufactured in the same manner. The basic characteristics of the obtained solid electrolytic capacitor were as shown in Table 1. Example 6 Instead of the EG solvent and water in Example 2, an electrolytic solution in which 20.0 g (20 wt.%) of tetramethylammonium hydrogen phthalate was dissolved in 60.0 g (60 wt.%) of GBL solvent was used. A solid electrolytic capacitor was manufactured in the same manner as in Example 2, except for using the following. The basic characteristics of the obtained solid electrolytic capacitor were as shown in Table 1. Comparative Example 1 A portion of an electrolyte solution prepared by dissolving 25.0 g (25 wt. %) of tetramethylammonium hydrogen phthalate in 75.0 g (75 wt. %) of GBL solvent was applied to an anode equipped with a dielectric oxide film. A capacitor element with a capacitance of 470 μF and a rated voltage of 25 WV, which is made by winding a separator paper made of foil and Manila hemp (50 μm thick, density 0.5 g/cm3) and a cathode foil, is impregnated and stored in an aluminum exterior case. After that, the opening was sealed with elastic rubber to produce an aluminum electrolytic capacitor. The basic characteristics of the obtained electrolytic capacitor were as shown in Table 1. [0066]
Table 1 Evaluation element: Capacitance 470μF,
Rated voltage 25WV



Evaluation item Example


No. Capacitance Tangent of Loss Angle Impedance
(120Hz)
(120Hz) (100KHz)


1
455 (μF) 0.056
57 (mΩ) 2 447
0.058 74
3 446
0.070 83 4
451 0.0
60 59 5 41
4 0.123 2
27 6 450
0.076 102


Comparative example 1 449
0.063 93


Effects of the Invention: The solid electrolytic capacitor of the present invention has succeeded in reducing impedance and loss by using a specific solid high ion conductive polymer electrolyte gel as an electrolyte. Means to solve]
As mentioned above in the section.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】下記の(a)、(b)および(c)を含ん
でなる高分子電解質ゲルを陰極箔と陽極箔との電極間に
介在させて巻回したことを特徴とする、固体電解コンデ
ンサ。(a)  重合性ビニルモノマーの重合体からな
るマトリックスポリマー、(b)  下記の一般式(I
)または/および(II)で示されるアンモニウムイオ
ンまたは四級ホスホニウムイオンをカチオン成分とし、
酸の共役塩基をアニオン成分とする塩からなる少なくと
も一種類の溶質、 【化1】 【化2】 (式(I)および(II)中、R1 、R2 、R3 
、およびR4 は同じであっても異なっていてもよく、
それぞれ水素原子、炭素数1〜4のアルキル基または炭
素数6〜10のアリール基を表わし、R5 は式(II
)中の窒素原子と結合して脂肪族複素環または芳香族複
素環を形成する炭素数3〜10の基を表わす。)(c)
  有機溶媒
[Claim 1] A solid material, characterized in that a polymer electrolyte gel comprising the following (a), (b) and (c) is interposed between electrodes of a cathode foil and an anode foil and wound. Electrolytic capacitor. (a) a matrix polymer consisting of a polymer of polymerizable vinyl monomers, (b) the following general formula (I
) or/and (II) as an ammonium ion or quaternary phosphonium ion as a cation component,
At least one solute consisting of a salt having a conjugate base of an acid as an anion component, [Formula 1] [Formula 2] (In formulas (I) and (II), R1, R2, R3
, and R4 may be the same or different,
Each represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 10 carbon atoms, and R5 is represented by the formula (II
) represents a group having 3 to 10 carbon atoms that forms an aliphatic heterocycle or an aromatic heterocycle by bonding with the nitrogen atom in the group. )(c)
organic solvent
【請求項2】重合性ビニルモノマーがアル
コキシアルキル=(メタ)アクリレート、ヒドロキシア
ルキル=(メタ)アクリレート、グリセロール=(メタ
)アクリレート、およびアルキレングリコール=(メタ
)アクリレートから選ばれた少なくとも一種類の(メタ
)アクリル酸エステルである、請求項1に記載の固体電
解コンデンサ。
2. The polymerizable vinyl monomer is at least one type of (meth)acrylate selected from alkoxyalkyl (meth)acrylate, hydroxyalkyl (meth)acrylate, glycerol (meth)acrylate, and alkylene glycol (meth)acrylate. The solid electrolytic capacitor according to claim 1, which is a meth)acrylic acid ester.
【請求項3】溶質のアニオン成分が、カルボン酸、フェ
ノール類、ホウ酸、リン酸、亜リン酸、次亜リン酸、炭
酸、ケイ酸、ビクリン酸、スルホン酸、硝酸、硫酸、亜
硫酸、チオシアン酸、ハロゲン原子を含む強酸、および
それらの誘導体、から選ばれた少なくとも一種類の酸の
共役塩基である、請求項1または2に記載の固体電解コ
ンデンサ。
Claim 3: The anion component of the solute is carboxylic acid, phenols, boric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, silicic acid, bicric acid, sulfonic acid, nitric acid, sulfuric acid, sulfite, thiocyanide. The solid electrolytic capacitor according to claim 1 or 2, wherein the solid electrolytic capacitor is a conjugate base of at least one acid selected from acids, strong acids containing halogen atoms, and derivatives thereof.
【請求項4】高分子電解質ゲルが多孔性膜または/およ
び不織布と一体化されている、請求項1、2または3に
記載の固体電解コンデンサ。
4. The solid electrolytic capacitor according to claim 1, wherein the polymer electrolyte gel is integrated with a porous membrane or/and a nonwoven fabric.
【請求項5】(a)成分からなるマトリックスポリマー
を膜状物に成形し、該膜状物を陽極箔と陰極箔との間に
設置し、巻回してコンデンサ素子を形成した後、該素子
を(b)成分および(c)成分よりなる電解液に含浸す
ることを特徴とする、請求項1に記載の固体電解コンデ
ンサの製造法。
5. Forming a matrix polymer consisting of component (a) into a film-like material, placing the film-like material between an anode foil and a cathode foil, and winding it to form a capacitor element. 2. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the solid electrolytic capacitor is impregnated with an electrolytic solution consisting of component (b) and component (c).
【請求項6】(a)成分および(b)成分からなる膜状
成形物を陽極箔と陰極箔との間に設置し、巻回してコン
デンサ素子を形成した後、該素子を(c)成分よりなる
有機溶媒に含浸することを特徴とする、請求項1に記載
の固体電解コンデンサの製造法。
6. A film-like molded product consisting of component (a) and component (b) is placed between an anode foil and a cathode foil and wound to form a capacitor element. 2. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the solid electrolytic capacitor is impregnated in an organic solvent consisting of the following.
JP3109366A 1991-05-14 1991-05-14 Solid state electrolyte capacitor and manufacture thereof Pending JPH04337618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3109366A JPH04337618A (en) 1991-05-14 1991-05-14 Solid state electrolyte capacitor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3109366A JPH04337618A (en) 1991-05-14 1991-05-14 Solid state electrolyte capacitor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04337618A true JPH04337618A (en) 1992-11-25

Family

ID=14508417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3109366A Pending JPH04337618A (en) 1991-05-14 1991-05-14 Solid state electrolyte capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04337618A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243037A (en) * 1997-12-25 1999-09-07 Nippon Chemicon Corp Electrolyte solution for electrolytic capacitor and electrolytic capacitor using the electrolyte solution
JP2002217067A (en) * 2001-01-22 2002-08-02 Nichicon Corp Electrolyte for driving electrolytic capacitor
JP2006351579A (en) * 2005-06-13 2006-12-28 Nichicon Corp Electrolyte for driving electrolytic capacitor
JP2010245140A (en) * 2009-04-02 2010-10-28 Nippon Chemicon Corp Electrolytic capacitor
JP2011151410A (en) * 2011-03-29 2011-08-04 Panasonic Corp Electrolytic capacitor
WO2017026378A1 (en) * 2015-08-12 2017-02-16 日本ケミコン株式会社 Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP2022141927A (en) * 2020-07-22 2022-09-29 日本ケミコン株式会社 Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243037A (en) * 1997-12-25 1999-09-07 Nippon Chemicon Corp Electrolyte solution for electrolytic capacitor and electrolytic capacitor using the electrolyte solution
JP2002217067A (en) * 2001-01-22 2002-08-02 Nichicon Corp Electrolyte for driving electrolytic capacitor
JP4637374B2 (en) * 2001-01-22 2011-02-23 ニチコン株式会社 Electrolytic solution for electrolytic capacitor drive
JP2006351579A (en) * 2005-06-13 2006-12-28 Nichicon Corp Electrolyte for driving electrolytic capacitor
JP2010245140A (en) * 2009-04-02 2010-10-28 Nippon Chemicon Corp Electrolytic capacitor
JP2011151410A (en) * 2011-03-29 2011-08-04 Panasonic Corp Electrolytic capacitor
WO2017026378A1 (en) * 2015-08-12 2017-02-16 日本ケミコン株式会社 Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP2017038010A (en) * 2015-08-12 2017-02-16 日本ケミコン株式会社 Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
CN107851518A (en) * 2015-08-12 2018-03-27 日本贵弥功株式会社 The manufacture method of solid electrolytic capacitor and solid electrolytic capacitor
US10566142B2 (en) 2015-08-12 2020-02-18 Nippon Chemi-Con Corporation Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP2022141927A (en) * 2020-07-22 2022-09-29 日本ケミコン株式会社 Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP7462177B2 (en) Electrolytic capacitor
US4774011A (en) Electrolyte for aluminum electrolytic capacitor
US7004983B2 (en) Polymer electrolyte composite for driving an electrolytic capacitor, an electrolytic capacitor using the same, and a method of making the electrolytic capacitor
CN108461295A (en) High-energy solid-liquid mixed aluminum electrolytic capacitor and preparation method thereof
JP7340650B2 (en) Electrolytic solution for electrolytic capacitors and electrolytic capacitors using the electrolytic solution
JPH04337618A (en) Solid state electrolyte capacitor and manufacture thereof
JPH04184811A (en) Solid electrolyte film
JP2016171257A (en) Method for manufacturing electrolytic capacitor
JPWO2019088059A1 (en) Electrolytic capacitor
JP2008034257A (en) Electrolytic solution and electrochemical element
JPH0546693B2 (en)
US20060087798A1 (en) Electrolyte for electrochemical capacitor and electrochemical capacitor containing the same
TW201414759A (en) Polymer, gel electrolyte made of the polymer and the preparing method thereof
WO2023190203A1 (en) Electrolytic capacitor
US20210193394A1 (en) Electrolyte solution for electrolytic capacitor and electrolytic capacitor utilizing said electrolyte solution
TW201405606A (en) Electrolyte mixture for electrolytic capacitor, composition for conductive polymer synthesis and conductive polymer solid electrolytic capacitor formed by using the same
JP4412882B2 (en) Polymer electrolyte composite for driving electrolytic capacitor, electrolytic capacitor using the same, and manufacturing method thereof
JPH0436901A (en) Ionic conductive solid electrolyte
JP2004253537A (en) Solid electrolytic capacitor
JP3473291B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
WO2024162157A1 (en) Electrolytic capacitor and production method therefor
KR970005753B1 (en) Electrotype for aluminium electrolytic condenser
JP4449305B2 (en) Aluminum electrolytic capacitor
JPH0246714A (en) Electrolyte for electrolytic capacitor
JP2004193308A (en) Electrolytic capacitor and its manufacturing method