JPH04337425A - Infrared radiation detection element - Google Patents

Infrared radiation detection element

Info

Publication number
JPH04337425A
JPH04337425A JP3136966A JP13696691A JPH04337425A JP H04337425 A JPH04337425 A JP H04337425A JP 3136966 A JP3136966 A JP 3136966A JP 13696691 A JP13696691 A JP 13696691A JP H04337425 A JPH04337425 A JP H04337425A
Authority
JP
Japan
Prior art keywords
semiconductor fiber
fiber
infrared
plate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3136966A
Other languages
Japanese (ja)
Inventor
Hiroaki Yanagida
柳田 博明
Masaru Miyayama
勝 宮山
Norio Muto
武藤 範雄
Takeshi Notake
野竹 毅
Hiroshi Ichikawa
宏 市川
Giichi Imai
今井 義一
Akira Urano
章 浦野
Sadajiro Kajiwara
梶原 貞次郎
Norihisa Mori
森 憲寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Sohgo Security Services Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Sohgo Security Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd, Sohgo Security Services Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP3136966A priority Critical patent/JPH04337425A/en
Publication of JPH04337425A publication Critical patent/JPH04337425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To continuously detect a very small amount of infrared radiation that is emitted from human body at good sensitivity by integrating a light receiving element and a reference device together, and by arranging a reflection plate on a light receiving element side and a shade plate on a reference device side, respectively on a specific condition. CONSTITUTION:A detector element is provided with at least one semiconductor of varying electric resistance and an electrode connected to both ends of the fiber 1. A light receiving element 3 is provided with a reflection plate 2 for reflecting infrared radiation arranged on the reverse side of the irradiation of the fiber 1. An electrode is connected to both ends of a semiconductor fiber 1, and a reference element is provided with a shade plate 4 arranged on the infrared irradiation side of the fiber 1'. An interval (d) between the fiber 1 and the reflection plate 2 and an interval d' between the fiber 1' and the shape plate 4 are the same. The reflection plate 2 and the shade plate 4 are of the same material. The fiber 1 of the light receiving element 3 and the fiber 1' of the reference element 5 are arranged in proximity to one another. By forming such a structure, a very small amount of infrared radiation of the level emitted from human body can thus be continuously detected by a detector element at good sensitivity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は赤外線検出素子に関し、
詳しくは赤外線照射により電気抵抗が変化する半導体繊
維を用いた赤外線検出素子に関する。
[Industrial Application Field] The present invention relates to an infrared detection element,
Specifically, the present invention relates to an infrared detection element using semiconductor fibers whose electrical resistance changes upon irradiation with infrared rays.

【0002】0002

【従来の技術】従来、赤外線検出素子としては、焦電効
果を利用した焦電素子や熱電対を集積したサーモパイル
等を用いたものが知られている。
2. Description of the Related Art Hitherto, as infrared detecting elements, devices using a pyroelectric element utilizing the pyroelectric effect, a thermopile in which thermocouples are integrated, and the like are known.

【0003】しかしこれらの赤外線検出素子は、高度の
応答速度が要求される用途には応答時間の点で難点があ
り、また被検出赤外線源の位置検出への利用にも限界が
あった。さらに、上記従来の赤外線検出素子は価格の点
でも不利であった。
However, these infrared detection elements have a drawback in terms of response time for applications that require a high response speed, and there are also limits to their use in detecting the position of an infrared source to be detected. Furthermore, the conventional infrared detection element described above is disadvantageous in terms of cost.

【0004】本発明者らは先に、赤外線照射により電気
抵抗が変化する半導体繊維を用いた赤外線検出素子を提
案し(特開平2−71121号[特願昭63−2225
06号])、さらに前記半導体繊維として特定の炭化ケ
イ素繊維を用いた赤外線検出素子(特開平2−3104
30号[特願平1−131435号])、特定の炭素繊
維を用いた赤外線検出素子(特願平1−232888号
、特願平1−277050号)、並びに半導体繊維の配
置を特定した赤外線検出素子(特願平2−297066
号)を提案してきた。
The present inventors previously proposed an infrared detection element using a semiconductor fiber whose electrical resistance changes upon irradiation with infrared rays (Japanese Patent Application Laid-Open No. 71121/1999 [Patent Application No. 2225/1989]).
No. 06]), and an infrared detection element using a specific silicon carbide fiber as the semiconductor fiber (Japanese Patent Application Laid-Open No. 2-3104
No. 30 [Japanese Patent Application No. 1-131435]), infrared detection elements using specific carbon fibers (Japanese Patent Application No. 1-232888, Japanese Patent Application No. 1-277050), and infrared rays in which the arrangement of semiconductor fibers is specified. Detection element (Patent application Hei 2-297066
No.) was proposed.

【0005】上記の半導体繊維を用いた赤外線検出素子
は熱時定数(τ)が小さく、価格的にも有利であり、前
記の焦電素子やサーモパイル等を用いた赤外線検出素子
の欠点を解消し得るものであった。
[0005] The infrared detecting element using the above semiconductor fiber has a small thermal time constant (τ) and is advantageous in terms of cost, and eliminates the drawbacks of the infrared detecting element using the above-mentioned pyroelectric element, thermopile, etc. It was something to be gained.

【0006】ところで、上記従来の半導体繊維を用いた
赤外線検出素子は、図7または図8に示すような少なく
とも1本の半導体繊維1とその両端に導電性接着剤10
を介して接続した電極9とからなり、リード線11を介
して図9または図10に示すような赤外線検出回路に接
続するものであった。図9に示す赤外線検出回路は、赤
外線検出素子13の両端に電源16と抵抗18とを直列
に接続し、抵抗18の両端の出力端子17間の電圧変化
を検出することによって照射された赤外線IRを検出す
るものである。また、図10に示す赤外線検出回路は、
赤外線検出素子13と抵抗19、20、21とによりホ
イートストンブリッジ回路を構成したものであり、赤外
線IRをより感度よく検出できるものである。
By the way, the above-mentioned conventional infrared detection element using a semiconductor fiber has at least one semiconductor fiber 1 and a conductive adhesive 10 on both ends thereof, as shown in FIG. 7 or 8.
It consisted of an electrode 9 connected through a lead wire 11, and was connected to an infrared detection circuit as shown in FIG. 9 or 10 through a lead wire 11. The infrared detection circuit shown in FIG. This is to detect. Furthermore, the infrared detection circuit shown in FIG.
A Wheatstone bridge circuit is configured by the infrared detection element 13 and resistors 19, 20, and 21, and can detect infrared IR with higher sensitivity.

【0007】また、上記の赤外線検出回路に比べて雰囲
気温度や自己発熱の影響を受け難いものとして図11に
示す赤外線検出回路があった。この赤外線検出回路は、
2個の赤外線検出素子13、13′を直列に接続し、そ
れらと抵抗22、23とによりホイートストンブリッジ
回路を構成して、一方の赤外線検出素子13のみに赤外
線IRが照射されるようにしたものである。
Furthermore, there is an infrared detection circuit shown in FIG. 11 which is less susceptible to the effects of ambient temperature and self-heating than the above-mentioned infrared detection circuit. This infrared detection circuit is
Two infrared detection elements 13 and 13' are connected in series, and a Wheatstone bridge circuit is formed by them and resistors 22 and 23, so that only one infrared detection element 13 is irradiated with infrared IR. It is.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来の赤外線検出素子を用いた赤外線検出回路はいずれも
回路特性が測定中に経時的に変動するいわゆるドリフト
が生じやすいという問題を有するものであった。
[Problem to be Solved by the Invention] However, all of the above-mentioned conventional infrared detection circuits using infrared detection elements have a problem in that the circuit characteristics tend to change over time during measurement, which is called drift. .

【0009】すなわち、図9または図10に示すような
1つの赤外線検出素子を用いた赤外線検出回路は、半導
体繊維の温度変化に対応して補正することが困難で、気
温の変動等によってドリフトが発生し、検出精度の向上
が図れなかった。
In other words, it is difficult for an infrared detection circuit using one infrared detection element as shown in FIG. 9 or 10 to make corrections in response to temperature changes in semiconductor fibers, and drift occurs due to changes in temperature. occurred, and it was not possible to improve detection accuracy.

【0010】また、図11に示すような2個の赤外線検
出素子を一方は受光素子他方は参照素子として用いた赤
外線検出回路は、気温の変動等によるドリフトはかなり
減少するものの、単に参照素子側への赤外線を遮断した
だけでは受光素子と参照素子との間の微小な温度条件の
差の発生は避けられなかった。特に、赤外線を連続的に
照射された場合に参照素子の遮断部材による輻射熱等に
よってドリフトが発生し易かった。そのため、検出精度
の向上に限界があり、特に人体から発せられる程度の微
量な赤外線を連続的に検出することは困難であった。
In addition, in an infrared detection circuit using two infrared detection elements as shown in FIG. 11, one as a light receiving element and the other as a reference element, although drift due to changes in temperature etc. is considerably reduced, Merely blocking infrared rays to the light-receiving element and the reference element cannot avoid the occurrence of minute differences in temperature conditions between the light-receiving element and the reference element. In particular, when continuously irradiated with infrared rays, drift was likely to occur due to radiant heat from the blocking member of the reference element. Therefore, there is a limit to the improvement of detection accuracy, and in particular, it has been difficult to continuously detect infrared rays of such a small amount as emitted from the human body.

【0011】本発明はかかる従来技術の問題に鑑みてな
されたものであり、赤外線検出回路におけるドリフトの
発生を充分に抑制できしかも出力の増大が可能な赤外線
検出素子を提供し、人体から発せられる程度の微量な赤
外線を連続的にかつ感度よく検出できるようにすること
を目的とする。
The present invention has been made in view of the problems of the prior art, and provides an infrared detection element capable of sufficiently suppressing the occurrence of drift in an infrared detection circuit and increasing output. The purpose of this technology is to enable the continuous and sensitive detection of small amounts of infrared rays.

【0012】0012

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究した結果、受光素子側の半導体繊
維と参照素子側の半導体繊維とを近接させて受光素子と
参照素子とを一体化し、さらに受光素子側に反射板を、
参照素子側に遮光板をそれぞれ特定の条件で配置するこ
とによって上記問題が解決されることを見出し、本発明
に到達した。
[Means for Solving the Problems] As a result of intensive research aimed at achieving the above object, the present inventors have developed a method for connecting the light receiving element and the reference element by bringing the semiconductor fibers on the light receiving element side and the semiconductor fibers on the reference element side close to each other. In addition, a reflector is added on the photodetector side.
The inventors have discovered that the above problem can be solved by arranging a light shielding plate on the reference element side under specific conditions, and have arrived at the present invention.

【0013】すなわち、本発明の赤外線検出素子は、赤
外線照射により電気抵抗が変化する少なくとも一本の半
導体繊維と、該半導体繊維の両端に接続した電極と、該
半導体繊維の赤外線照射側の反対側に該半導体繊維から
所定間隔離して配置した反射板とを具備する受光素子と
、前記半導体繊維と同様の半導体繊維と、該半導体繊維
の両端に接続した電極と、該半導体繊維の赤外線照射側
に該半導体繊維から前記間隔と同一間隔離して配置した
、前記反射板と同材質の遮光板とを具備する参照素子と
を具備し、かつ該受光素子の半導体繊維と該参照素子の
半導体繊維とを近接して配置してなることを特徴とする
ものである。
That is, the infrared detecting element of the present invention includes at least one semiconductor fiber whose electrical resistance changes when irradiated with infrared rays, electrodes connected to both ends of the semiconductor fiber, and a side of the semiconductor fiber opposite to the infrared ray irradiated side. a light-receiving element comprising a reflector disposed at a predetermined distance from the semiconductor fiber, a semiconductor fiber similar to the semiconductor fiber, electrodes connected to both ends of the semiconductor fiber, and an infrared irradiation side of the semiconductor fiber; a reference element comprising a light-shielding plate made of the same material as the reflecting plate and spaced apart from the semiconductor fiber by the same distance as the interval, and the semiconductor fiber of the light-receiving element and the semiconductor fiber of the reference element are provided. It is characterized by being arranged close to each other.

【0014】また、本発明の他の赤外線検出素子は、赤
外線照射により電気抵抗が変化する少なくとも一本の半
導体繊維と、該半導体繊維の両端に接続した電極と、該
半導体繊維の赤外線照射側の反対側に該半導体繊維から
所定間隔離して配置した反射板とを具備する受光素子と
、前記半導体繊維と同様の半導体繊維と、該半導体繊維
の両端に接続した電極とを具備し、かつ該半導体繊維を
前記反射板の反対側に前記間隔と同一間隔離して配置し
てなる参照素子とを具備することを特徴とするものであ
る。
Another infrared detecting element of the present invention includes at least one semiconductor fiber whose electrical resistance changes when irradiated with infrared rays, electrodes connected to both ends of the semiconductor fiber, and an infrared ray irradiated side of the semiconductor fiber. a light-receiving element having a reflection plate arranged at a predetermined distance from the semiconductor fiber on the opposite side; a semiconductor fiber similar to the semiconductor fiber; and electrodes connected to both ends of the semiconductor fiber; The present invention is characterized by comprising a reference element in which fibers are arranged on the opposite side of the reflecting plate and spaced apart from each other by the same distance as the above-mentioned interval.

【0015】以下、図面を参照して本発明をより詳細に
説明する。
The present invention will be explained in more detail below with reference to the drawings.

【0016】図1(a)〜(e)はそれぞれ本発明の赤
外線検出素子の一例を示す模式断面図である。同図中、
1、1′は半導体繊維、2は反射板、3は受光素子、4
は遮光板、5は参照素子、6は採光口、7は放熱口、d
は半導体繊維1と反射板2との間隔、d′は半導体繊維
1′と遮光板4との間隔、xは半導体繊維1と半導体繊
維1′との間隔、θは視野角度、矢線は赤外線(IR)
の照射方向をそれぞれ示す。なお、同じ部材を受光素子
と参照素子の両方に用いる場合、区別するために参照素
子側にダッシュを付けた。
FIGS. 1(a) to 1(e) are schematic cross-sectional views showing an example of the infrared detecting element of the present invention. In the same figure,
1 and 1' are semiconductor fibers, 2 is a reflection plate, 3 is a light receiving element, 4
is a light shielding plate, 5 is a reference element, 6 is a lighting opening, 7 is a heat radiation opening, d
is the distance between the semiconductor fiber 1 and the reflection plate 2, d' is the distance between the semiconductor fiber 1' and the light shielding plate 4, x is the distance between the semiconductor fiber 1 and the semiconductor fiber 1', θ is the viewing angle, and the arrow indicates the infrared rays. (IR)
The irradiation directions are shown respectively. Note that when the same member is used for both the light receiving element and the reference element, a dash is added to the reference element side to distinguish them.

【0017】本発明の赤外線検出素子は、図1(a)に
示すように、半導体繊維1と、半導体繊維1の両端に接
続した電極(図示せず)と、半導体繊維1の赤外線照射
側の反対側に配置した赤外線を反射する反射板2とを具
備する受光素子3、並びに半導体繊維1′と、半導体繊
維1′の両端に接続した電極(図示せず)と、半導体繊
維1′の赤外線照射側に配置した赤外線を遮断する遮光
板4とを具備する参照素子5を具備するものである。
As shown in FIG. 1(a), the infrared detecting element of the present invention comprises a semiconductor fiber 1, electrodes (not shown) connected to both ends of the semiconductor fiber 1, and an infrared ray irradiation side of the semiconductor fiber 1. A light-receiving element 3 comprising a reflector 2 disposed on the opposite side that reflects infrared rays, a semiconductor fiber 1', electrodes (not shown) connected to both ends of the semiconductor fiber 1', and an infrared rays of the semiconductor fiber 1'. The reference element 5 includes a light shielding plate 4 disposed on the irradiation side for blocking infrared rays.

【0018】本発明に使用する半導体繊維1、1′は赤
外線により電気抵抗が変化するものであればよいが、受
光素子3の半導体繊維1と参照素子5の半導体繊維1′
とを同様に、すなわち材質、径、長さ、本数および配列
を同一にする必要がある。
The semiconductor fibers 1 and 1' used in the present invention may be of any type as long as their electrical resistance changes with infrared rays;
It is necessary to make the material, diameter, length, number and arrangement the same.

【0019】半導体繊維1、1′としては炭化ケイ素繊
維、炭素繊維およびそれらの前駆体繊維からなる群から
選ばれる少なくとも一種が好ましく、特に常温比抵抗が
102〜106Ω・cm、サーミスタ定数Bが1000
〜3000kのものが好ましい。また、半導体繊維1、
1′の径、長さ、配列方法、本数も特に制限されず、直
径は10〜100μm、長さは0.5〜4mm、本数は
1〜100本、配列方法は繊維間隔20〜1000μm
で引き揃える方法がそれぞれ好ましい。
The semiconductor fibers 1 and 1' are preferably at least one selected from the group consisting of silicon carbide fibers, carbon fibers, and their precursor fibers, particularly those having a specific resistance at room temperature of 102 to 106 Ω·cm and a thermistor constant B of 1000.
~3000k is preferred. In addition, semiconductor fiber 1,
The diameter, length, arrangement method, and number of fibers 1' are not particularly limited.
It is preferable to align them with each other.

【0020】本発明の赤外線検出素子においては、半導
体繊維1と反射板2との間隔dと半導体繊維1′と遮光
板4との間隔d′とを同一にする必要がある。反射板2
から半導体繊維1への輻射条件と遮光板4から半導体繊
維1′への輻射条件とを一致させるためである。また、
間隔d、d′は0.1〜1.5mmが好ましく、0.5
〜1.0mmが特に好ましい。間隔d、d′が0.1m
m未満では上記輻射エネルギー量が大きくなって赤外線
検出精度に悪影響が生じる傾向にあり、他方1.5mm
超では視野角度θが小さくなるので半導体繊維1への赤
外線照射量が小さくなり、出力が低下する傾向にあるか
らである。
In the infrared detecting element of the present invention, it is necessary that the distance d between the semiconductor fiber 1 and the reflecting plate 2 and the distance d' between the semiconductor fiber 1' and the light shielding plate 4 be the same. Reflector 2
This is to match the radiation conditions from the light shielding plate 4 to the semiconductor fiber 1 with the radiation conditions from the light shielding plate 4 to the semiconductor fiber 1'. Also,
The distance d, d' is preferably 0.1 to 1.5 mm, and 0.5
~1.0 mm is particularly preferred. Spacing d, d' is 0.1m
If it is less than 1.5 mm, the amount of radiant energy increases and the infrared detection accuracy tends to be adversely affected.
This is because the viewing angle θ becomes smaller when the angle of view is larger than 1, so that the amount of infrared rays irradiated to the semiconductor fiber 1 becomes smaller, and the output tends to decrease.

【0021】さらに、本発明の赤外線検出素子において
は、反射板2および遮光板4を同材質にする必要があり
、好ましくは同じ厚さのものである。反射板2と遮光板
4との赤外線による加熱条件を一致させるためである。 また、反射板2および遮光板4の厚さは200μm以下
が好ましく、50〜200μmが特に好ましい。反射板
2および遮光板4の厚さが200μm超では赤外線照射
時に各板の表裏の温度が一致せず、赤外線検出精度に悪
影響が生じる傾向にあるからである。また、厚さが50
μm未満の反射板2および遮光板4は一般に取扱いが困
難である。上記の反射板2および遮光板4としては、赤
外線の反射率が高くかつ輻射率が低いものが好ましく採
用され、金板、アルミニウム板、銀板、亜鉛板またはこ
れら金属のメッキ板が特に好ましい。
Furthermore, in the infrared detecting element of the present invention, the reflecting plate 2 and the light shielding plate 4 need to be made of the same material, and preferably have the same thickness. This is to match the heating conditions of the reflection plate 2 and the light shielding plate 4 by infrared rays. Further, the thickness of the reflecting plate 2 and the light shielding plate 4 is preferably 200 μm or less, particularly preferably 50 to 200 μm. This is because if the thickness of the reflecting plate 2 and the light shielding plate 4 exceeds 200 μm, the temperatures on the front and back sides of each plate will not match when irradiated with infrared rays, which tends to adversely affect the accuracy of infrared detection. Also, the thickness is 50
The reflecting plate 2 and the light shielding plate 4 having a diameter of less than μm are generally difficult to handle. As the reflecting plate 2 and the light shielding plate 4, those having a high infrared reflectance and a low emissivity are preferably employed, and gold plates, aluminum plates, silver plates, zinc plates, or plated plates of these metals are particularly preferable.

【0022】本発明の赤外線検出素子において半導体繊
維1、1′の両端に接続する電極は特に制限されず、金
メッキ、銅メッキ等の通常用いられているもので良い。
[0022] In the infrared detecting element of the present invention, the electrodes connected to both ends of the semiconductor fibers 1, 1' are not particularly limited, and commonly used electrodes such as gold plating or copper plating may be used.

【0023】本発明においては、受光素子3の半導体繊
維1と参照素子5の半導体繊維1′とを近接して配置す
る必要があり、半導体繊維1と半導体繊維1′との間隔
xが好ましくは5mm以下、特に好ましくは0.5〜5
mmである。間隔xが5mm超では赤外線照射以外の条
件を半導体繊維1と半導体繊維1′との間で一致させる
ことが困難となって赤外線検出精度に悪影響が生じる傾
向にあるからである。また、間隔xを0.5mm未満に
してかつ半導体繊維1のみに赤外線が照射されるように
することは一般的に技術的に困難である。さらに、受光
素子3と参照素子5とを配置するにあたって、反射板2
と遮光板4とが平行になりかつ遮光板4により受光素子
3の半導体繊維1への赤外線照射が遮断されないように
することが好ましい。
In the present invention, it is necessary to arrange the semiconductor fiber 1 of the light-receiving element 3 and the semiconductor fiber 1' of the reference element 5 close to each other, and the distance x between the semiconductor fiber 1 and the semiconductor fiber 1' is preferably 5 mm or less, particularly preferably 0.5 to 5
It is mm. This is because if the distance x exceeds 5 mm, it becomes difficult to match conditions other than infrared irradiation between semiconductor fibers 1 and semiconductor fibers 1', which tends to adversely affect infrared detection accuracy. Further, it is generally technically difficult to make the distance x less than 0.5 mm and to irradiate only the semiconductor fiber 1 with infrared rays. Furthermore, when arranging the light receiving element 3 and the reference element 5, the reflection plate 2
It is preferable that the light-shielding plate 4 and the light-shielding plate 4 are parallel to each other, and that the light-shielding plate 4 does not block infrared irradiation of the semiconductor fiber 1 of the light-receiving element 3.

【0024】本発明の赤外線検出素子は上記構成を有す
るものであればよく、他の条件は特に制限されない。
The infrared detecting element of the present invention may have the above configuration, and other conditions are not particularly limited.

【0025】例えば、図1(b)に示すように、反射板
2と遮光板4とが一体化しており、反射板2と遮光板4
との間の部材が半導体繊維1と半導体繊維1′との中間
を通っているものでもよい。また、図1(c)に示すよ
うに、反射板2と遮光板4とを具備しかつ採光口6を有
する箱の中に半導体繊維1および半導体繊維1′を配置
してもよい。この場合、半導体繊維1′の近傍の熱を逃
がすために、図1(d)に示すように半導体繊維1′の
裏側にも放熱口7を設けることが好ましく、採光口6と
同じ大きさの放熱口7が特に好ましい。
For example, as shown in FIG. 1(b), the reflection plate 2 and the light shielding plate 4 are integrated, and the reflection plate 2 and the light shielding plate 4 are integrated.
The member between the semiconductor fibers 1 and 1' may pass through the middle of the semiconductor fibers 1 and 1'. Alternatively, as shown in FIG. 1(c), the semiconductor fibers 1 and the semiconductor fibers 1' may be placed in a box that includes a reflection plate 2 and a light shielding plate 4 and has a light opening 6. In this case, in order to dissipate heat near the semiconductor fiber 1', it is preferable to provide a heat dissipation hole 7 on the back side of the semiconductor fiber 1' as shown in FIG. 1(d). The heat sink 7 is particularly preferred.

【0026】さらに、本発明の赤外線検出素子にあって
は、図1(e)に示すように、受光素子3の反射板2の
裏側に半導体繊維1′を配置するようにしてもよい。こ
のようにすると、反射板2は参照素子5の遮光板4とし
ての役割も兼ねることになり、遮光板4を別設する必要
がないので好ましい。この場合も半導体繊維1と反射板
2との間隔dと半導体繊維1′と反射板2(遮光板4)
との間隔d′とを同一にする必要があり、間隔d、d′
は0.1〜1.5mmが好ましく、0.5〜1.0mm
が特に好ましい。
Furthermore, in the infrared detecting element of the present invention, a semiconductor fiber 1' may be arranged on the back side of the reflecting plate 2 of the light receiving element 3, as shown in FIG. 1(e). This is preferable because the reflection plate 2 also serves as the light shielding plate 4 of the reference element 5, and there is no need to separately provide the light shielding plate 4. In this case as well, the distance d between the semiconductor fiber 1 and the reflector 2 and the distance between the semiconductor fiber 1' and the reflector 2 (shading plate 4)
It is necessary to make the interval d' and the interval d, d' the same.
is preferably 0.1 to 1.5 mm, and 0.5 to 1.0 mm
is particularly preferred.

【0027】本発明の赤外線検出素子を用いて赤外線を
検出するための検出回路は、受光素子3の半導体繊維1
の電気抵抗変化を参照素子5の半導体繊維1′のそれを
参照にして半導体繊維1の赤外線照射による電気抵抗変
化のみを検出できる回路であればよく、ホイートストン
ブリッジ回路が好ましい。
A detection circuit for detecting infrared rays using the infrared detection element of the present invention includes a detection circuit for detecting infrared rays using the semiconductor fiber 1 of the light receiving element 3.
Any circuit may be used as long as it can detect only the change in the electric resistance of the semiconductor fiber 1 due to infrared irradiation by referring to the change in the electric resistance of the semiconductor fiber 1' of the reference element 5, and a Wheatstone bridge circuit is preferable.

【0028】[0028]

【作用】本発明の赤外線検出素子においては、受光素子
における半導体繊維への反射板からの輻射熱と、参照素
子における半導体繊維への遮光板からの輻射熱とが均一
になる。そのため、本発明の赤外線検出素子を用いるこ
とによって、赤外線照射による半導体繊維の抵抗変化の
みを他の要因の影響を一切受けること無く検出可能な、
すなわちドリフトが殆ど発生しない赤外線検出回路が得
られる。
[Function] In the infrared detecting element of the present invention, the radiant heat from the reflector to the semiconductor fiber in the light receiving element and the radiant heat from the light shielding plate to the semiconductor fiber in the reference element are made uniform. Therefore, by using the infrared detection element of the present invention, it is possible to detect only the resistance change of the semiconductor fiber due to infrared irradiation without being influenced by other factors.
In other words, an infrared detection circuit in which almost no drift occurs can be obtained.

【0029】また、本発明の赤外線検出素子においては
照射された赤外線が反射板で反射して再度半導体繊維に
当たるので、反射板が無い場合より出力が増大する。
Furthermore, in the infrared detecting element of the present invention, the irradiated infrared rays are reflected by the reflector and hit the semiconductor fiber again, so the output is increased compared to the case without the reflector.

【0030】[0030]

【実施例】以下、実施例および比較例に基づいて本発明
をより詳細に説明する。
EXAMPLES The present invention will be explained in more detail below based on Examples and Comparative Examples.

【0031】実施例1 直径50μm、長さ4mmの炭化ケイ素繊維(常温比抵
抗:300Ω・cm、サーミスタ定数:1500k)を
用いて図2に示す本発明の赤外線検出素子を作成した。 同図中、8は基板、9、9′は電極、10、10′は導
電性接着剤、11、11′はリード線、12はスペーサ
ー、白抜矢線は積層方向をそれぞれ示し、他の記号は図
1中と同じものを示す。なお、同じ部材を受光素子と参
照素子の両方に用いる場合、区別するために参照素子側
にダッシュを付けた。
Example 1 An infrared detecting element of the present invention shown in FIG. 2 was prepared using silicon carbide fibers (specific resistance at room temperature: 300 Ω·cm, thermistor constant: 1500 k) having a diameter of 50 μm and a length of 4 mm. In the figure, 8 is a substrate, 9, 9' are electrodes, 10, 10' are conductive adhesives, 11, 11' are lead wires, 12 is a spacer, the white arrows indicate the stacking direction, and the other The symbols indicate the same things as in FIG. Note that when the same member is used for both the light receiving element and the reference element, a dash is added to the reference element side to distinguish them.

【0032】図2の赤外線検出素子において、基板8(
8mmL×5mmW×0.5mmT)は6mmL×3m
mWの開口部を有しているアルミナ板であり、その上面
に金メッキにより4個の電極9、9′を設けてある。 そして、一対の電極9の間に4本の炭化ケイ素繊維1を
0.5mm間隔で平行に配置し、導電性接着剤10を介
して接続してある。他の一対の電極9′の間にも4本の
炭化ケイ素繊維1′を同様にして接続してあり、炭化ケ
イ素繊維1と1′の間隔xは1mmとした。また、各電
極9、9′にはリード線11、11′を接続してある。
In the infrared detection element shown in FIG. 2, the substrate 8 (
8mmL x 5mmW x 0.5mmT) is 6mmL x 3m
It is an alumina plate having an opening of mW, and four electrodes 9, 9' are provided on its upper surface by gold plating. Four silicon carbide fibers 1 are arranged in parallel at intervals of 0.5 mm between a pair of electrodes 9 and connected via a conductive adhesive 10. Four silicon carbide fibers 1' were similarly connected between the other pair of electrodes 9', and the distance x between the silicon carbide fibers 1 and 1' was 1 mm. Furthermore, lead wires 11 and 11' are connected to each electrode 9 and 9'.

【0033】反射板2は8mmL×5mmW×0.1m
mTのアルミニウム箔であり、3mmL×3mmWの放
熱口7を設けてある。また、遮光板4も反射板2と同様
のアルミニウム箔であり、3mmL×3mmWの採光口
6を設けてある。さらに、スペーサー12は基板8と同
形状のアルミナ板である。
[0033] The reflector plate 2 has a size of 8 mm L x 5 mm W x 0.1 m.
It is made of mT aluminum foil, and is provided with a heat dissipation port 7 of 3 mm L x 3 mm W. Further, the light shielding plate 4 is also made of aluminum foil similar to the reflecting plate 2, and is provided with a light opening 6 of 3 mm L x 3 mm W. Further, the spacer 12 is an alumina plate having the same shape as the substrate 8.

【0034】次に、以上の遮光板4、スペーサー12、
基板8および反射板2を積層して得た赤外線検出素子を
用いて図3に示すホイートストンブリッジ回路を構成し
た。同図中、13は赤外線検出素子、14、15は抵抗
、16は電源、17は出力端子をそれぞれ示し、他の記
号は図2中と同じものを示す。この回路のブリッジ抵抗
は2MΩとし、印加電圧は  8Vの直流電圧とした。
Next, the above light shielding plate 4, spacer 12,
A Wheatstone bridge circuit shown in FIG. 3 was constructed using an infrared detection element obtained by laminating the substrate 8 and the reflection plate 2. In the figure, 13 is an infrared detection element, 14 and 15 are resistors, 16 is a power source, and 17 is an output terminal, and the other symbols are the same as those in FIG. 2. The bridge resistance of this circuit was 2 MΩ, and the applied voltage was 8 V DC.

【0035】そして、赤外線検出素子13を黒体炉(炉
温:50℃)から11cm離して配置し、赤外線IR(
ピーク波長λmax:9μm)を室温(21℃)で10
0秒間照射して、出力端子17間の電圧変化を測定した
(増幅度:40dB)。
The infrared detection element 13 is placed 11 cm away from the black body furnace (furnace temperature: 50°C), and the infrared IR (
Peak wavelength λmax: 9 μm) at room temperature (21°C)
It was irradiated for 0 seconds, and the voltage change between the output terminals 17 was measured (amplification degree: 40 dB).

【0036】その結果を図4に示す。The results are shown in FIG.

【0037】図4から明らかなように、実施例1の赤外
線検出素子は出力電圧は113mVと良好で、しかもド
リフトが全く発生することはなかった。従って、この赤
外線検出素子を用いることによって微量な赤外線を連続
的にかつ感度よく検出できることが分かった。
As is clear from FIG. 4, the infrared detection element of Example 1 had a good output voltage of 113 mV, and no drift occurred at all. Therefore, it has been found that by using this infrared detecting element, trace amounts of infrared rays can be detected continuously and with high sensitivity.

【0038】実施例2 放熱口7を設けていない反射板2を使用した以外は実施
例1と同様にして赤外線検出素子を作成し、ホイートス
トンブリッジ回路を構成して赤外線照射による出力端子
17間の電圧変化を測定した。
Example 2 An infrared detecting element was produced in the same manner as in Example 1 except that a reflector 2 without a heat dissipation port 7 was used, and a Wheatstone bridge circuit was constructed to detect the difference between output terminals 17 by infrared irradiation. The voltage change was measured.

【0039】その結果を図4に示す。The results are shown in FIG.

【0040】図4から明らかなように、実施例2の赤外
線検出素子は実施例1の赤外線検出素子に比べてドリフ
トが僅かに発生したものの、赤外線検出に重大な支障と
なるほどではなかった。また、出力電圧は100mV程
度と良好であった。従って、この赤外線検出素子を用い
ることによって微量な赤外線を連続的にかつある程度感
度よく検出できることが分かった。
As is clear from FIG. 4, although the infrared detecting element of Example 2 slightly drifted compared to the infrared detecting element of Example 1, it did not cause a serious problem in infrared detection. Further, the output voltage was good at about 100 mV. Therefore, it has been found that by using this infrared detection element, it is possible to detect a small amount of infrared rays continuously and with a certain degree of sensitivity.

【0041】実施例3 直径50μm、長さ4mmのピッチ系炭素繊維(常温比
抵抗:340Ω・cm、サーミスタ定数:1800k)
を用いて図5に示す本発明の赤外線検出素子を作成した
。同図中の記号は図2中と同じものを示す。
Example 3 Pitch-based carbon fiber with a diameter of 50 μm and a length of 4 mm (specific resistance at room temperature: 340 Ω·cm, thermistor constant: 1800 k)
Using this method, an infrared detection element of the present invention shown in FIG. 5 was created. The symbols in the figure indicate the same things as in FIG. 2.

【0042】図5の赤外線検出素子において、基板8は
厚さ0.5mmのアルミナ板を同図に示す形状に成形し
たものであり、その上面に金メッキにより4個の電極9
、9′を設けてある。そして、一対の電極9の間に3本
のピッチ系炭素繊維1を1mm間隔で平行に配置し、導
電性接着剤10を介して接続してある。他の一対の電極
9′の間にも3本のピッチ系炭素繊維1′を同様にして
接続してある。また、各電極9、9′にはリード線11
、11′を接続してある。
In the infrared detecting element shown in FIG. 5, the substrate 8 is an alumina plate with a thickness of 0.5 mm formed into the shape shown in the figure, and four electrodes 9 are plated with gold on the top surface.
, 9' are provided. Three pitch-based carbon fibers 1 are arranged in parallel at intervals of 1 mm between a pair of electrodes 9 and connected via a conductive adhesive 10. Three pitch-based carbon fibers 1' are similarly connected between the other pair of electrodes 9'. In addition, each electrode 9, 9' has a lead wire 11.
, 11' are connected.

【0043】反射板2は5mmL×3mmW×0.1m
mTのアルミニウム箔であり、ピッチ系炭素繊維1と1
′との中間に挿入される。図5の赤外線検出素子におけ
る反射板2は遮光板4としての機能も併せ持つものであ
り、ピッチ系炭素繊維1と反射板2の間隔並びにピッチ
系炭素繊維1′と反射板2(遮光板4)との間隔はどち
らも0.75mmである。
[0043] The reflector plate 2 has a size of 5 mm L x 3 mm W x 0.1 m.
mT aluminum foil, pitch-based carbon fiber 1 and 1
’ is inserted between. The reflector 2 in the infrared detection element shown in FIG. 5 also has the function of a light shielding plate 4, and the distance between the pitch-based carbon fiber 1 and the reflector 2 and the distance between the pitch-based carbon fiber 1' and the reflector 2 (light-shielding plate 4) The distance between both is 0.75 mm.

【0044】次に、上記の赤外線検出素子を用いて実施
例1と同様にホイートストンブリッジ回路を構成し、赤
外線照射による出力端子17間の電圧変化を測定した。
Next, a Wheatstone bridge circuit was constructed using the above infrared detection element in the same manner as in Example 1, and the voltage change between the output terminals 17 due to infrared irradiation was measured.

【0045】その結果を図4に示す。The results are shown in FIG.

【0046】図4から明らかなように、実施例1の赤外
線検出素子は出力電圧は124mVと良好で、しかもド
リフトが全く発生することはなかった。従って、この赤
外線検出素子を用いることによって微量な赤外線を連続
的にかつ感度よく検出できることが分かった。
As is clear from FIG. 4, the infrared detection element of Example 1 had a good output voltage of 124 mV, and no drift occurred. Therefore, it has been found that by using this infrared detecting element, trace amounts of infrared rays can be detected continuously and with high sensitivity.

【0047】比較例1   反射板2を設けなかった以外は実施例1と同様にし
て赤外線検出素子13を作成し、ホイートストンブリッ
ジ回路を構成して赤外線照射による出力端子17間の電
圧変化を測定した。
Comparative Example 1 An infrared detection element 13 was prepared in the same manner as in Example 1 except that the reflector 2 was not provided, a Wheatstone bridge circuit was constructed, and the voltage change between the output terminals 17 due to infrared irradiation was measured. .

【0048】その結果を図4に示す。The results are shown in FIG.

【0049】図4から明らかなように、比較例1の赤外
線検出素子はドリフトが激しく、出力電圧も低いもので
あった。従って、この赤外線検出素子では赤外線を連続
的に感度よく検出することはできないことが分かった。
As is clear from FIG. 4, the infrared detection element of Comparative Example 1 had severe drift and low output voltage. Therefore, it has been found that this infrared detection element cannot continuously detect infrared rays with high sensitivity.

【0050】比較例2 実施例1と同様の炭化ケイ素繊維を用いて図6に示す赤
外線検出素子を作成した。同図中の記号は図1中と同じ
ものを示す。
Comparative Example 2 Using the same silicon carbide fiber as in Example 1, an infrared detecting element shown in FIG. 6 was produced. The symbols in the figure indicate the same things as in FIG.

【0051】図6の赤外線検出素子における基板8は実
施例1で用いた基板を半分に切ったものであり、その上
面に金メッキにより2個の電極9を設けてある。そして
、一対の電極9の間に4本の炭化ケイ素繊維1を0.5
mm間隔で平行に配置し、導電性接着剤10を介して接
続してあり、各電極9にはリード線11を接続してある
。また、反射板2は4mmL×5mmW×0.1mmT
のアルミニウム箔である。
A substrate 8 in the infrared detecting element shown in FIG. 6 is obtained by cutting the substrate used in Example 1 in half, and two electrodes 9 are provided on its upper surface by gold plating. Then, between a pair of electrodes 9, four silicon carbide fibers 1 are placed at 0.5
The electrodes 9 are arranged in parallel at mm intervals and connected via a conductive adhesive 10, and a lead wire 11 is connected to each electrode 9. In addition, the reflector plate 2 is 4mmL x 5mmW x 0.1mmT.
aluminum foil.

【0052】次に、以上の基板8および反射板2を積層
して得た赤外線検出素子を用いて図10に示すホイート
ストンブリッジ回路を構成し、この回路を用いて実施例
1と同様にして赤外線照射による出力端子17間の電圧
変化を測定した。上記回路のブリッジ抵抗は2MΩとし
、印加電圧は  8Vの直流電圧とした。
Next, a Wheatstone bridge circuit shown in FIG. 10 is constructed using the infrared detecting element obtained by laminating the substrate 8 and the reflector 2, and this circuit is used to detect infrared rays in the same manner as in Example 1. The voltage change between the output terminals 17 due to irradiation was measured. The bridge resistance of the above circuit was 2 MΩ, and the applied voltage was 8 V DC voltage.

【0053】その結果を図4に示す。The results are shown in FIG.

【0054】図4から明らかなように、比較例2の赤外
線検出素子はドリフトが著しいものであった。従って、
この赤外線検出素子では赤外線を連続的に感度よく検出
することはできないことが分かった。
As is clear from FIG. 4, the infrared detecting element of Comparative Example 2 had significant drift. Therefore,
It was found that this infrared detection element cannot continuously detect infrared rays with high sensitivity.

【0055】[0055]

【発明の効果】以上説明したように、本発明の赤外線検
出素子を用いることによってドリフトの発生が充分に抑
制されしかも出力の増大も可能な赤外線検出回路を得る
ことが可能となる。
As described above, by using the infrared detection element of the present invention, it is possible to obtain an infrared detection circuit in which the occurrence of drift can be sufficiently suppressed and the output can be increased.

【0056】従って、本発明の赤外線検出素子によって
、従来は非常に困難であった人体から発せられる程度の
微量な赤外線の検出を連続的にかつ感度よく行なえるよ
うになり、赤外線の検知を利用したセキュリティーシス
テム等の用途に極めて有用である。
Therefore, with the infrared detection element of the present invention, it has become possible to continuously and sensitively detect minute amounts of infrared rays emitted from the human body, which was extremely difficult in the past. It is extremely useful for applications such as security systems.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】(a)〜(e)はそれぞれ本発明の赤外線検出
素子の一例を示す模式断面図である。
FIGS. 1A to 1E are schematic cross-sectional views each showing an example of an infrared detection element of the present invention.

【図2】本発明の赤外線検出素子の一例を示す分解斜視
図である。
FIG. 2 is an exploded perspective view showing an example of the infrared detection element of the present invention.

【図3】本発明の赤外線検出素子を用いた赤外線検出回
路の一例を示す回路図である。
FIG. 3 is a circuit diagram showing an example of an infrared detection circuit using the infrared detection element of the present invention.

【図4】実施例および比較例における赤外線測定結果を
示すグラフである。
FIG. 4 is a graph showing infrared measurement results in Examples and Comparative Examples.

【図5】本発明の赤外線検出素子の他の一例を示す分解
斜視図である。
FIG. 5 is an exploded perspective view showing another example of the infrared detection element of the present invention.

【図6】本発明以外の赤外線検出素子の一例を示す分解
斜視図である。
FIG. 6 is an exploded perspective view showing an example of an infrared detection element other than the present invention.

【図7】従来の赤外線検出素子の一例を示す上面図であ
る。
FIG. 7 is a top view showing an example of a conventional infrared detection element.

【図8】従来の赤外線検出素子の他の一例を示す上面図
である。
FIG. 8 is a top view showing another example of a conventional infrared detection element.

【図9】従来の赤外線検出回路の一例を示す回路図であ
る。
FIG. 9 is a circuit diagram showing an example of a conventional infrared detection circuit.

【図10】従来の赤外線検出回路の他の一例を示す回路
図である。
FIG. 10 is a circuit diagram showing another example of a conventional infrared detection circuit.

【図11】従来の赤外線検出回路のさらに他の一例を示
す回路図である。
FIG. 11 is a circuit diagram showing still another example of a conventional infrared detection circuit.

【符号の説明】[Explanation of symbols]

1、1′  半導体繊維 2  反射板 3  受光素子 4  遮光板 5  参照素子 6  採光口 7  放熱口 8  基板 9、9′  電極 10、10′  導電性接着剤 11、11′  リード線 12  スペーサー 1, 1′ Semiconductor fiber 2 Reflector 3 Photo receiving element 4. Light shielding plate 5 Reference element 6. Lighting opening 7 Heat radiation vent 8 Board 9, 9' electrode 10, 10' Conductive adhesive 11, 11' Lead wire 12 Spacer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】  赤外線照射により電気抵抗が変化する
少なくとも一本の半導体繊維と、該半導体繊維の両端に
接続した電極と、該半導体繊維の赤外線照射側の反対側
に該半導体繊維から所定間隔離して配置した反射板とを
具備する受光素子と、前記半導体繊維と同様の半導体繊
維と、該半導体繊維の両端に接続した電極と、該半導体
繊維の赤外線照射側に該半導体繊維から前記間隔と同一
間隔離して配置した、前記反射板と同材質の遮光板とを
具備する参照素子とを具備し、かつ該受光素子の半導体
繊維と該参照素子の半導体繊維とを近接して配置してな
ることを特徴とする赤外線検出素子。
1. At least one semiconductor fiber whose electrical resistance changes when irradiated with infrared rays, electrodes connected to both ends of the semiconductor fiber, and an electrode separated from the semiconductor fiber for a predetermined period on the opposite side of the semiconductor fiber from the infrared irradiated side. a light-receiving element comprising a reflective plate arranged at a distance from the semiconductor fiber; a semiconductor fiber similar to the semiconductor fiber; an electrode connected to both ends of the semiconductor fiber; a reference element having a light-shielding plate made of the same material as the reflecting plate, which is spaced apart from each other; and a semiconductor fiber of the light-receiving element and a semiconductor fiber of the reference element are arranged close to each other. An infrared detection element characterized by:
【請求項2】  前記反射板と前記遮光板とが平行にな
りかつ該遮光板により前記受光素子の半導体繊維への赤
外線照射が遮断されないように前記受光素子と前記参照
素子とを配置してなる、請求項1に記載の赤外線検出素
子。
2. The light receiving element and the reference element are arranged such that the reflecting plate and the light shielding plate are parallel to each other and the light shielding plate does not block infrared irradiation to the semiconductor fiber of the light receiving element. , The infrared detection element according to claim 1.
【請求項3】  前記受光素子の半導体繊維と前記参照
素子の半導体繊維との間隔が5mm以下である、請求項
1または2に記載の赤外線検出素子。
3. The infrared detecting element according to claim 1, wherein a distance between the semiconductor fiber of the light receiving element and the semiconductor fiber of the reference element is 5 mm or less.
【請求項4】  前記反射板および遮光板が金板、アル
ミニウム板、銀板、亜鉛板またはこれら金属のメッキ板
であり、厚さが200μm以下でかつ同じ厚さのもので
ある、請求項1〜3のうちのいずれかに記載の赤外線検
出素子。
4. The reflecting plate and the light shielding plate are metal plates, aluminum plates, silver plates, zinc plates, or plated plates of these metals, and have a thickness of 200 μm or less and the same thickness. 3. The infrared detection element according to any one of 3 to 3.
【請求項5】  赤外線照射により電気抵抗が変化する
少なくとも一本の半導体繊維と、該半導体繊維の両端に
接続した電極と、該半導体繊維の赤外線照射側の反対側
に該半導体繊維から所定間隔離して配置した反射板とを
具備する受光素子と、前記半導体繊維と同様の半導体繊
維と、該半導体繊維の両端に接続した電極とを具備し、
かつ該半導体繊維を前記反射板の反対側に前記間隔と同
一間隔離して配置してなる参照素子とを具備することを
特徴とする赤外線検出素子。
5. At least one semiconductor fiber whose electrical resistance changes when irradiated with infrared rays, electrodes connected to both ends of the semiconductor fiber, and an electrode separated from the semiconductor fiber for a predetermined period on the opposite side of the semiconductor fiber from the infrared irradiation side. a light-receiving element equipped with a reflector arranged as above, a semiconductor fiber similar to the semiconductor fiber, and electrodes connected to both ends of the semiconductor fiber,
An infrared detecting element comprising: a reference element in which the semiconductor fibers are arranged on the opposite side of the reflecting plate and spaced apart from each other by the same distance as the spacing.
【請求項6】  前記反射板が金板、アルミニウム板、
銀板、亜鉛板またはこれら金属のメッキ板であり、厚さ
が200μm以下のものである、請求項5に記載の赤外
線検出素子。
6. The reflective plate is a metal plate, an aluminum plate,
The infrared detection element according to claim 5, which is a silver plate, a zinc plate, or a plated plate of these metals, and has a thickness of 200 μm or less.
【請求項7】  前記半導体繊維と反射板との間隔が0
.1〜1.5mmである、請求項1〜6のうちのいずれ
かに記載の赤外線検出素子。
7. The distance between the semiconductor fiber and the reflective plate is 0.
.. The infrared detecting element according to any one of claims 1 to 6, having a diameter of 1 to 1.5 mm.
JP3136966A 1991-05-14 1991-05-14 Infrared radiation detection element Pending JPH04337425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3136966A JPH04337425A (en) 1991-05-14 1991-05-14 Infrared radiation detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3136966A JPH04337425A (en) 1991-05-14 1991-05-14 Infrared radiation detection element

Publications (1)

Publication Number Publication Date
JPH04337425A true JPH04337425A (en) 1992-11-25

Family

ID=15187648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3136966A Pending JPH04337425A (en) 1991-05-14 1991-05-14 Infrared radiation detection element

Country Status (1)

Country Link
JP (1) JPH04337425A (en)

Similar Documents

Publication Publication Date Title
EP2811271B1 (en) Infrared sensor
JPH09507299A (en) Non-contact active temperature sensor
JP2011149920A (en) Infrared sensor
KR890004155A (en) A detector for aligning a high performance laser beam and a method for detecting misalignment of the laser beam
JP2012098088A (en) Temperature sensor
JP2011058929A (en) Infrared sensor
JPS637611B2 (en)
JPH04337425A (en) Infrared radiation detection element
JPH0249124A (en) Thermopile
JP3085830B2 (en) Radiant heat sensor
JPH09229853A (en) Detector for infrared gas analyser
JPS61259580A (en) Thermopile
WO2018101690A1 (en) Optical gas-sensor using multiple inner reflection
JP3182703B2 (en) Infrared detector
JP2856753B2 (en) Infrared sensor
US3802925A (en) Temperature compensating differential radiometer
JPH0755558A (en) Infrared detector
JP2014149300A (en) Temperature sensor
JP3390305B2 (en) Temperature sensing element
JPH0625695B2 (en) Infrared detector
US20240077358A1 (en) Thermal radiation source and method for measuring the exact temperature and/or radiated radiant flux of the thermal radiation source
JPH06213725A (en) Window material for infrared sensor
JPS6035016B2 (en) Thermistor bolometer
JP2002048646A5 (en)
JPS6262236A (en) Pyroelectric type detector

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001010