JPH0755558A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH0755558A
JPH0755558A JP21789793A JP21789793A JPH0755558A JP H0755558 A JPH0755558 A JP H0755558A JP 21789793 A JP21789793 A JP 21789793A JP 21789793 A JP21789793 A JP 21789793A JP H0755558 A JPH0755558 A JP H0755558A
Authority
JP
Japan
Prior art keywords
infrared
semiconductor fiber
semiconductor
light receiving
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21789793A
Other languages
Japanese (ja)
Inventor
Hiroshi Ichikawa
宏 市川
Giichi Imai
義一 今井
Akira Urano
章 浦野
Kenji Takahashi
健二 高橋
Hiroaki Yanagida
博明 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP21789793A priority Critical patent/JPH0755558A/en
Publication of JPH0755558A publication Critical patent/JPH0755558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To improve an output sensitivity without delaying a responding speed by setting a long axis/short axis of a semiconductor fiber sectional surface for constituting a photoreceiver, a compensator to a specific range. CONSTITUTION:An infrared receiving element 1 has a photoreceiver 2, a compensator 3 made of at least one semiconductor fiber in which its electric resistance is varied upon emitting of an infrared ray. The fibers are connected to electrodes to form a circuit, in which materials, diameters, lengths, number and arrays are necessarily set the same and a long axis/short axis of its section is necessarily set to 2-10. If the ratio is less than 2, a high output sensitivity is not obtained, and when the diameters, the lengths are regulated to raise the output sensitivity, a responding speed is decelerated. If the ratio exceeds 10, high output sensitivity cannot be obtained, and its sectional area is desirably 1500-15000mum<2>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は赤外線検出素子に関し、
詳しくは赤外線照射により電気抵抗が変化する半導体繊
維を用いた赤外線検出素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared detecting element,
Specifically, the present invention relates to an infrared detecting element using a semiconductor fiber whose electric resistance changes by irradiation with infrared rays.

【0002】[0002]

【従来の技術】従来、赤外線検出素子としては、焦電効
果を利用した焦電素子や熱電対を集積したサーモパイル
等を用いたものが知られている。
2. Description of the Related Art Conventionally, as an infrared detecting element, one using a pyroelectric element utilizing a pyroelectric effect or a thermopile in which a thermocouple is integrated is known.

【0003】しかし、これらの赤外線検出素子は、高度
の応答速度が要求される用途には応答時間の点で難点が
あり、また被検出赤外線源の位置検出への利用にも限界
があった。さらに、上記従来の赤外線検出素子は価格の
点でも不利であった。
However, these infrared detecting elements have a difficulty in response time in applications where a high response speed is required, and their use in detecting the position of an infrared source to be detected is also limited. Further, the above conventional infrared detecting element is also disadvantageous in terms of price.

【0004】本発明者らは先に、赤外線照射により電気
抵抗が変化する半導体繊維を用いた赤外線検出素子を提
案し(特開平2−71121号公報)、さらに前記半導
体繊維として特定の炭化ケイ素繊維を用いた赤外線検出
素子(特開平2−310430号公報)、特定の炭素繊
維を用いた赤外線検出素子(特開平3−96824号公
報、特開平3−140825号公報)、半導体繊維の配
置を特定した赤外線検出素子(特開平4−337425
号公報)、並びに半導体繊維の位置関係を調整し、かつ
反射板と遮光板とを具備した赤外線検出素子(特開平4
−337425号公報)を提案してきた。
The present inventors have previously proposed an infrared detecting element using a semiconductor fiber whose electric resistance is changed by infrared irradiation (Japanese Patent Laid-Open No. 2-71121), and further, a specific silicon carbide fiber as the semiconductor fiber. Infrared detecting element using JP-A-2-310430, infrared detecting element using specific carbon fiber (JP-A-3-96824, JP-A-3-140825), and arrangement of semiconductor fibers Infrared detecting element (Japanese Patent Laid-Open No. 4-337425)
(Japanese Patent Application Laid-Open No. 4) and an infrared detecting element that adjusts the positional relationship between semiconductor fibers and is equipped with a reflection plate and a light-shielding plate (Japanese Patent Application Laid-Open No. Hei 4)
No. 337425) has been proposed.

【0005】上記の半導体繊維を用いた赤外線検出素子
は熱時定数(τ)が小さく、価格的にも有利であり、前
記の焦電素子やサーモパイル等を用いた赤外線検出素子
の欠点を解消し得るものであった。
The infrared detecting element using the above-mentioned semiconductor fiber has a small thermal time constant (τ) and is advantageous in terms of cost, and solves the above-mentioned drawbacks of the infrared detecting element using a pyroelectric element or a thermopile. It was a reward.

【0006】しかしながら、上記従来の赤外線検出素子
は、出力感度が充分でないという問題があった。この出
力感度と熱時定数とは比例関係にあり、出力感度を向上
させるために、繊維径あるいは繊維長を大きくすると熱
時定数も増大し、応答速度が遅くなるという欠点があ
る。
However, the above conventional infrared detecting element has a problem that the output sensitivity is not sufficient. The output sensitivity and the thermal time constant are in a proportional relationship, and there is a drawback that if the fiber diameter or the fiber length is increased in order to improve the output sensitivity, the thermal time constant also increases and the response speed becomes slow.

【0007】一方、赤外線検出素子においては、受光部
の視野角度は採光口の寸法に依存しており、視野角度を
自在に変更することが困難であった。
On the other hand, in the infrared detecting element, the viewing angle of the light receiving portion depends on the size of the light collecting port, and it is difficult to freely change the viewing angle.

【0008】[0008]

【発明が解決しようとする課題】本発明は、かかる従来
技術の課題に鑑みてなされたものであり、応答速度を遅
らせることなく、出力感度を向上させ、さらには受光部
の視野角度を自在に変更できる赤外線検出素子を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and improves output sensitivity without delaying the response speed, and further allows the viewing angle of the light receiving portion to be adjusted freely. An object is to provide a changeable infrared detection element.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究した結果、受光部および補償部を
構成する半導体繊維の断面におけると長軸/単軸比を特
定範囲とすることによって達成される。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that the major axis / uniaxial ratio in a cross section of a semiconductor fiber constituting a light receiving portion and a compensating portion falls within a specific range. It is achieved by

【0010】すなわち、本発明の赤外線検出素子は、赤
外線照射により電気抵抗が変化する少なくとも一本の半
導体繊維からなる受光部と、上記と同様の少なくとも一
本の半導体繊維からなる補償部とを備えた赤外線検出素
子であって、かつ該受光部および補償部の半導体繊維の
断面におけると長軸/単軸比が2〜10であることを特
徴とする。
That is, the infrared detecting element of the present invention comprises a light receiving portion made of at least one semiconductor fiber whose electric resistance is changed by infrared irradiation, and a compensating portion made of at least one semiconductor fiber similar to the above. In addition, the long axis / uniaxial ratio is 2 to 10 in the cross section of the semiconductor fiber of the infrared detecting element and the light receiving section and the compensating section.

【0011】以下、本発明を図面に基づいて説明する。
図1は、本発明の赤外線検出素子の一例を示す斜視図で
ある。同図において、1は赤外線検出素子、2は受光
部、3は補償部、4は基板、5は反射板、dは受光部幅
をそれぞれ示す。
The present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view showing an example of the infrared detection element of the present invention. In the figure, 1 is an infrared detecting element, 2 is a light receiving part, 3 is a compensating part, 4 is a substrate, 5 is a reflecting plate, and d is the width of the light receiving part.

【0012】本発明の赤外線受光素子1は、図1に示さ
れるように、赤外線照射により電気抵抗が変化する少な
くとも一本の半導体繊維からなる受光部2と、上記と同
様の少なくとも一本の半導体繊維からなる補償部3とを
備える。この受光部と補償部の半導体繊維は、それぞれ
電極に接続され(図示せず)、回路を形成している。
As shown in FIG. 1, the infrared light receiving element 1 of the present invention includes a light receiving portion 2 made of at least one semiconductor fiber whose electric resistance changes by infrared irradiation, and at least one semiconductor similar to the above. And a compensator 3 made of fibers. The semiconductor fibers of the light receiving part and the compensating part are respectively connected to electrodes (not shown) to form a circuit.

【0013】ここにおける半導体繊維は赤外線により電
気抵抗が変化するものであればよく、また受光部と補償
部の半導体繊維は材質、径、長さ、本数および配列を同
一にする必要がある。
The semiconductor fibers here may be those whose electric resistance changes by infrared rays, and the semiconductor fibers of the light receiving part and the compensating part must be made of the same material, diameter, length, number and arrangement.

【0014】半導体繊維としては炭化ケイ素繊維、炭素
繊維およびそれらの前駆体繊維からなる群から選ばれる
少なくとも一種が好ましく、特に常温比抵抗が102
106Ω・cm、サーミスタ定数Bが1000〜300
0kのものが好ましい。この半導体繊維の径、長さ、配
列方法、本数も特に制限されず、直径は10〜100μ
m、長さは0.5〜4mm、本数は1〜100本、配列
方法は繊維間隔20〜1000μmで引き揃える方法が
それぞれ好ましい。また、受光部の幅(d)は1〜3m
m程度の幅であることが望ましい。
As the semiconductor fiber, at least one selected from the group consisting of silicon carbide fiber, carbon fiber and precursor fibers thereof is preferable, and the room temperature specific resistance is particularly 10 2 to.
10 6 Ω · cm, thermistor constant B is 1000-300
Those of 0k are preferable. The diameter, length, arrangement method, and number of the semiconductor fibers are not particularly limited, and the diameter is 10 to 100 μm.
m, the length is 0.5 to 4 mm, the number is 1 to 100, and the arrangement method is preferably a method in which the fibers are arranged with a fiber interval of 20 to 1000 μm. Further, the width (d) of the light receiving portion is 1 to 3 m.
A width of about m is desirable.

【0015】本発明の赤外線検出素子1においては、図
2に示されるように、半導体繊維の断面の長軸(a)と
短軸(b)の比(a/b)が2〜10であることが必要
である。この図2において、6は半導体繊維の断面形状
を示す。a/bが2未満では高い出力感度が得られず、
また繊維径、繊維長を調整して出力感度を上げると、応
答速度が遅くなる。また、a/bが10を超えると高い
出力感度は得られない。この半導体繊維の断面積は、1
500〜15000μm2であることが望ましい。
In the infrared detecting element 1 of the present invention, as shown in FIG. 2, the ratio (a / b) of the major axis (a) and the minor axis (b) of the cross section of the semiconductor fiber is 2 to 10. It is necessary. In FIG. 2, reference numeral 6 indicates the cross-sectional shape of the semiconductor fiber. When a / b is less than 2, high output sensitivity cannot be obtained,
If the output sensitivity is increased by adjusting the fiber diameter and the fiber length, the response speed becomes slow. If a / b exceeds 10, high output sensitivity cannot be obtained. The cross-sectional area of this semiconductor fiber is 1
It is desirable that the thickness is 500 to 15000 μm 2 .

【0016】さらに、本発明の赤外線検出素子1におい
ては、図1に示されるように、受光部2の半導体繊維の
赤外線照射側の反対側に、この半導体繊維から所定間隔
に離隔して反射板5を配置することが望ましい。この反
射板は図3に示されるように、半導体繊維6方向に対し
て凹状の曲面を有することが望ましく、この反射板5の
曲率半径(r)は受光部の幅(d)の2〜4倍であるこ
とが好ましい。また、反射板5の底面と半導体繊維6と
の距離(h)は反射板の曲率半径(r)の0.5〜1倍
が好ましい。反射板5の厚さは200μm以下が好まし
く、50〜200μmが特に好ましい。反射板5の厚さ
が200μm超では赤外線照射時に反射板の表裏の温度
が一致せず、赤外線検出精度に悪影響が生じる傾向にあ
るからである。また、厚さが50μm未満の反射板5は
一般に取扱いが困難である。上記の反射板5としては、
赤外線の輻射率が高く、かつ輻射率が低いものが好まし
く採用され、金板、アルミニウム板、銀板、亜鉛板また
はこれら金属のメッキ板が特に好ましい。
Further, in the infrared detecting element 1 of the present invention, as shown in FIG. 1, a reflecting plate is provided on the opposite side of the semiconductor fiber of the light receiving section 2 from the infrared irradiating side and spaced from the semiconductor fiber by a predetermined distance. Arrangement of 5 is desirable. As shown in FIG. 3, this reflection plate preferably has a concave curved surface in the direction of the semiconductor fiber 6, and the radius of curvature (r) of this reflection plate 5 is 2 to 4 of the width (d) of the light receiving portion. It is preferably double. The distance (h) between the bottom surface of the reflector 5 and the semiconductor fiber 6 is preferably 0.5 to 1 times the radius of curvature (r) of the reflector. The thickness of the reflection plate 5 is preferably 200 μm or less, and particularly preferably 50 to 200 μm. This is because if the thickness of the reflection plate 5 is more than 200 μm, the temperatures of the front and back surfaces of the reflection plate do not match at the time of infrared irradiation, and the infrared detection accuracy tends to be adversely affected. Further, the reflector 5 having a thickness of less than 50 μm is generally difficult to handle. As the above-mentioned reflector 5,
A material having a high infrared emissivity and a low emissivity is preferably used, and a gold plate, an aluminum plate, a silver plate, a zinc plate or a plated plate of these metals is particularly preferable.

【0017】このような反射板を用いることによって、
出力感度がさらに向上し、さらには受光部の視野角度を
自在に変更することができる。
By using such a reflector,
The output sensitivity is further improved, and the viewing angle of the light receiving section can be freely changed.

【0018】本発明の赤外線検出素子1において受光部
および補償部の半導体繊維の両端に接続する電極は特に
制限されず、金メッキ、銅メッキ等の通常用いられてい
るもので良い。
In the infrared detecting element 1 of the present invention, the electrodes connected to both ends of the semiconductor fiber of the light receiving portion and the compensating portion are not particularly limited and may be gold plating, copper plating or the like which is commonly used.

【0019】本発明においては、受光部2の半導体繊維
と補償部3の半導体繊維とを近接して配置する必要があ
り、両半導体繊維との間隔が好ましくは5mm以下、特
に好ましくは0.5〜5mmである。間隔が5mm超で
は赤外線照射以外の条件を両半導体繊維との間で一致さ
せることが困難となって赤外線検出精度に悪影響が生じ
る傾向にあるからである。また、間隔を0.5mm未満
にしてかつ受光部の半導体繊維のみに赤外線が照射され
るようにすることは一般的に技術的に困難である。
In the present invention, it is necessary to dispose the semiconductor fiber of the light receiving portion 2 and the semiconductor fiber of the compensating portion 3 close to each other, and the distance between both semiconductor fibers is preferably 5 mm or less, particularly preferably 0.5. ~ 5 mm. This is because if the distance exceeds 5 mm, it becomes difficult to match the conditions other than infrared irradiation with both semiconductor fibers, and the infrared detection accuracy tends to be adversely affected. Further, it is generally technically difficult to set the interval to less than 0.5 mm and to irradiate only the semiconductor fibers of the light receiving portion with infrared rays.

【0020】本発明の赤外線検出素子は上記構成を有す
るものであればよく、他の条件は特に制限されない。
The infrared detecting element of the present invention may be any one as long as it has the above constitution, and other conditions are not particularly limited.

【0021】本発明の赤外線検出素子を用いて赤外線を
検出するための検出回路は、受光部の半導体繊維の電気
抵抗変化を、補償部の半導体繊維のそれで補償して半導
体繊維の赤外線照射による電気抵抗変化のみを検出でき
る回路であればよく、ホイートストンブリッジ回路が好
ましい。
The detection circuit for detecting infrared rays using the infrared detecting element of the present invention compensates for a change in the electric resistance of the semiconductor fiber of the light receiving section with that of the semiconductor fiber of the compensating section, so that the semiconductor fiber can be electrically irradiated by infrared rays. A Wheatstone bridge circuit is preferable as long as the circuit can detect only the resistance change.

【0022】[0022]

【作用】本発明の赤外線検出素子においては、半導体繊
維の断面におけると長軸/単軸比を一定範囲に制御して
いるため、反応速度を遅らせることなく、出力感度を向
上させることができる。また、照射された赤外線が凹面
を有する反射板で反射して再度半導体繊維に当たるの
で、反射板が無い場合より出力がさらに増大し、また受
光部の視野角度を自在に変更できる。
In the infrared detecting element of the present invention, since the major axis / uniaxial ratio in the cross section of the semiconductor fiber is controlled within a certain range, the output sensitivity can be improved without delaying the reaction rate. Further, since the irradiated infrared rays are reflected by the reflecting plate having the concave surface and hit the semiconductor fiber again, the output is further increased as compared with the case without the reflecting plate, and the viewing angle of the light receiving portion can be freely changed.

【0023】[0023]

【実施例】以下、実施例および比較例に基づいて本発明
をより詳細に説明する。
The present invention will be described in more detail based on the following examples and comparative examples.

【0024】実施例1〜3および比較例1 表1に示す断面積、長軸、短軸、長軸/短軸比(a/
b)を有し、長さ4mmの炭化ケイ素繊維(常温比抵
抗:300Ω・cm、サーミスタ定数:1500k)を
用いて図1に示されるような赤外線検出素子を作成し
た。
Examples 1 to 3 and Comparative Example 1 The cross-sectional area, major axis, minor axis, major axis / minor axis ratio (a /
An infrared detecting element as shown in FIG. 1 was prepared by using silicon carbide fiber (b) and having a length of 4 mm (normal temperature resistivity: 300 Ω · cm, thermistor constant: 1500 k).

【0025】図1の赤外線検出素子において、基板(8
mmL×5mmW×0.5mmT)は6mmL×3mm
Wの開口部を有しているアルミナ板であり、その上面に
金メッキにより4個の電極を設けてある。そして、一対
の電極の間に4本の炭化ケイ素繊維を0.5mm間隔で
平行に配置し、導電性接着剤を介して接続し、受光部を
形成してある。他の一対の電極の間にも4本の炭化ケイ
素繊維を同様にして接続してあり、補償部を形成してあ
る。
In the infrared detecting element of FIG. 1, the substrate (8
mmL × 5mmW × 0.5mmT) is 6mmL × 3mm
It is an alumina plate having an opening of W, and four electrodes are provided on its upper surface by gold plating. Then, four silicon carbide fibers are arranged in parallel between the pair of electrodes at an interval of 0.5 mm and are connected via a conductive adhesive to form a light receiving portion. Four silicon carbide fibers are similarly connected between the other pair of electrodes to form a compensating portion.

【0026】次に、この赤外線検出素子を用いてホイー
トストンブリッジ回路を構成した。この回路のブリッジ
抵抗は2MΩとし、印加電圧は 8Vの直流電圧とし
た。
Next, a Wheatstone bridge circuit was constructed using this infrared detecting element. The bridge resistance of this circuit was 2 MΩ, and the applied voltage was a DC voltage of 8V.

【0027】そして、赤外線検出素子を黒体炉(炉温:
50℃)から11cm離して配置し、赤外線IR(ピー
ク波長λmax:9μm)を室温(21℃)で100秒
間照射して、出力端子間の電圧出力および熱時定数を測
定すると共に(増幅度:40dB)、得られた視野角を
評価した。その結果を表1に示す。
The infrared detecting element is replaced by a black body furnace (furnace temperature:
It is placed 11 cm away from 50 ° C.) and irradiated with infrared IR (peak wavelength λmax: 9 μm) at room temperature (21 ° C.) for 100 seconds to measure the voltage output between output terminals and thermal time constant (amplification degree: 40 dB), and the obtained viewing angle was evaluated. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】この表1の結果から明らかなように、実施
例1〜2は比較例1と比較して、出力感度が上昇してい
ることが解る。他方、実施例1〜2においては、出力感
度を向上させるためには、熱時定数の増加を伴い、応答
速度が遅れてしまうことが解る。
As is clear from the results shown in Table 1, the output sensitivity of Examples 1 and 2 is higher than that of Comparative Example 1. On the other hand, in Examples 1 and 2, it is understood that in order to improve the output sensitivity, the thermal time constant increases and the response speed is delayed.

【0030】実施例4〜15および比較例2〜5 平面反射板と下記3種類の曲面反射板を半導体繊維の赤
外線照射側の反対側にそれぞれ設けた以外は、実施例1
〜3および比較例1と同様の構成にして赤外線検出素子
を作成した。
Examples 4 to 15 and Comparative Examples 2 to 5 Example 1 except that a flat reflector and the following three types of curved reflectors were respectively provided on the opposite side of the semiconductor fiber from the infrared irradiation side.
3 and Comparative Example 1, the infrared detection element was prepared.

【0031】(1)曲面反射板1:曲率半径(r)2.
2mm、反射板の底面と半導体繊維との距離(h)1.
4mm。 (2)曲面反射板2:曲率半径(r)2.0mm、反射
板の底面と半導体繊維との距離(h)2.0mm。 (3)曲面反射板3:曲率半径(r)4.0mm、反射
板の底面と半導体繊維との距離(h)2.0mm。
(1) Curved reflector 1: radius of curvature (r) 2.
2 mm, distance between the bottom surface of the reflector and the semiconductor fiber (h) 1.
4 mm. (2) Curved reflector 2: radius of curvature (r) 2.0 mm, distance (h) 2.0 mm between the bottom surface of the reflector and the semiconductor fiber. (3) Curved reflector 3: radius of curvature (r) 4.0 mm, distance (h) 2.0 mm between bottom of reflector and semiconductor fiber.

【0032】これらの赤外線検出素子を用い、実施例1
〜3および比較例1と同様にホイートストンブリッジ回
路を構成して赤外線照射による出力端子間の電圧出力を
測定すると共に、得られる視野角を評価し、結果を表2
に示す。
Example 1 using these infrared detecting elements
3 to 3 and Comparative Example 1, the Wheatstone bridge circuit is configured to measure the voltage output between the output terminals by infrared irradiation, the obtained viewing angle is evaluated, and the results are shown in Table 2.
Shown in.

【0033】[0033]

【表2】 [Table 2]

【0034】表2から明らかなように、反射板を設ける
ことによって出力感度がさらに向上する。また、凹状の
曲面を有する反射板を用いることによって、受光部の視
野角度を自在に変更することができる。
As is clear from Table 2, the output sensitivity is further improved by providing the reflection plate. Further, by using the reflection plate having the concave curved surface, the viewing angle of the light receiving portion can be freely changed.

【0035】[0035]

【発明の効果】以上説明したように、本発明の赤外線検
出素子を用いることによって、応答速度を遅らせること
なく、出力感度を向上させることができる。さらには一
定の反射板を用いることによって、出力感度をさらに向
上させると共に、受光部の視野角度を自在に変更でき。
As described above, by using the infrared detecting element of the present invention, the output sensitivity can be improved without delaying the response speed. Furthermore, by using a fixed reflector, the output sensitivity can be further improved and the viewing angle of the light receiving part can be freely changed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の赤外線検出素子の一例を示す斜視
図。
FIG. 1 is a perspective view showing an example of an infrared detection element of the present invention.

【図2】 本発明の赤外線検出素子に用いられる半導体
繊維の断面図。
FIG. 2 is a cross-sectional view of a semiconductor fiber used in the infrared detection element of the present invention.

【図3】 本発明の赤外線検出素子における受光部の半
導体繊維と反射板との位置関係を示す概念図。
FIG. 3 is a conceptual diagram showing a positional relationship between a semiconductor fiber and a reflector of a light receiving section in the infrared detection element of the present invention.

【符号の説明】[Explanation of symbols]

1:赤外線検出素子、2:受光部、3:補償部、4:基
板、5:反射板、6:半導体繊維。
1: infrared detection element, 2: light receiving part, 3: compensating part, 4: substrate, 5: reflector, 6: semiconductor fiber.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 赤外線照射により電気抵抗が変化する少
なくとも一本の半導体繊維からなる受光部と、上記と同
様の少なくとも一本の半導体繊維からなる補償部とを備
えた赤外線検出素子であって、かつ該受光部および補償
部の半導体繊維の断面におけると長軸/単軸比が2〜1
0であることを特徴とする赤外線検出素子。
1. An infrared detection element comprising: a light receiving section made of at least one semiconductor fiber whose electric resistance changes by irradiation of infrared rays; and a compensating section made of at least one semiconductor fiber similar to the above. And, in the cross section of the semiconductor fiber of the light receiving part and the compensating part, the major axis / uniaxial ratio is 2-1.
An infrared detection element characterized by being 0.
【請求項2】 前記受光部の半導体繊維の赤外線照射側
の反対側に、該半導体繊維から所定間隔に離隔して配置
された反射板を有し、該反射板が該半導体繊維方向に対
して凹状の曲面を有する請求項1に記載の赤外線検出素
子。
2. A reflecting plate disposed on the opposite side of the semiconductor fiber of the light receiving portion from the infrared irradiation side, the reflecting plate being arranged at a predetermined distance from the semiconductor fiber, and the reflecting plate with respect to the semiconductor fiber direction. The infrared detection element according to claim 1, which has a concave curved surface.
JP21789793A 1993-08-11 1993-08-11 Infrared detector Pending JPH0755558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21789793A JPH0755558A (en) 1993-08-11 1993-08-11 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21789793A JPH0755558A (en) 1993-08-11 1993-08-11 Infrared detector

Publications (1)

Publication Number Publication Date
JPH0755558A true JPH0755558A (en) 1995-03-03

Family

ID=16711475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21789793A Pending JPH0755558A (en) 1993-08-11 1993-08-11 Infrared detector

Country Status (1)

Country Link
JP (1) JPH0755558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7495220B2 (en) 1995-10-24 2009-02-24 Bae Systems Information And Electronics Systems Integration Inc. Uncooled infrared sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7495220B2 (en) 1995-10-24 2009-02-24 Bae Systems Information And Electronics Systems Integration Inc. Uncooled infrared sensor

Similar Documents

Publication Publication Date Title
AU696883B2 (en) Noncontact active temperature sensor
US4896039A (en) Active infrared motion detector and method for detecting movement
US6626835B1 (en) Infrared sensor stabilizable in temperature, and infrared thermometer with a sensor of this type
JP2001527644A (en) Thermopile sensor and radiation thermometer equipped with thermopile sensor
US5695283A (en) Compensating infrared thermopile detector
US5783805A (en) Electrothermal conversion elements, apparatus and methods for use in comparing, calibrating and measuring electrical signals
EP0474700B1 (en) Pulsating infrared radiation source
JPH08278192A (en) Infrared detector
JPH0755558A (en) Infrared detector
JP3085830B2 (en) Radiant heat sensor
JP3287729B2 (en) Radiation detector
JPH0249124A (en) Thermopile
JPS63149525A (en) Heat radiation detector
CA1132811A (en) Process and device for measuring by infrared thermometry the temperature of a wire, bar or tube, or a metal
US6437331B1 (en) Bolometer type infrared sensor with material having hysterisis
JPS61259580A (en) Thermopile
US6408651B1 (en) Method of manufacturing optical fibers using thermopiles to measure fiber energy
JPH04337425A (en) Infrared radiation detection element
EP1734350A1 (en) Device for detecting optical parameters of a laser beam.
USRE23615E (en) Compensated thermopile
JPS6215416A (en) Laser beam energy distribution measuring instrument
JP3176798B2 (en) Radiant heat sensor
JP3182703B2 (en) Infrared detector
RU2227905C1 (en) Thermal radiation receiver
JP4400156B2 (en) Laser output monitor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010807