JPH04337402A - Scanning type tunnel microscope - Google Patents

Scanning type tunnel microscope

Info

Publication number
JPH04337402A
JPH04337402A JP13827191A JP13827191A JPH04337402A JP H04337402 A JPH04337402 A JP H04337402A JP 13827191 A JP13827191 A JP 13827191A JP 13827191 A JP13827191 A JP 13827191A JP H04337402 A JPH04337402 A JP H04337402A
Authority
JP
Japan
Prior art keywords
sample
probe electrode
probe
electrode
cleaning tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13827191A
Other languages
Japanese (ja)
Inventor
Masahiko Miyamoto
雅彦 宮本
Yasubumi Sato
佐藤 泰文
Toshimitsu Kawase
俊光 川瀬
Toshihiko Miyazaki
俊彦 宮▲崎▼
Katsunori Hatanaka
勝則 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13827191A priority Critical patent/JPH04337402A/en
Publication of JPH04337402A publication Critical patent/JPH04337402A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/10STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
    • G01Q60/16Probes, their manufacture, or their related instrumentation, e.g. holders

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To improve reproducibility of an observational region by carrying out regeneration process and inspection of the resolution of the end of a probe electrode degraded in the course of observation with good operability. CONSTITUTION:A sample 4, an electric field polishing tank 6, a pure water cleaning tank 7, an ethanol cleaning tank 8, and a reference sample 9 are put on a rotational sample stage 3 rotated by a rotational driving control mechanism 2. A probe electrode 13 fixed to a coarse adjustment mechanism 10 through a probe holding tube 14 is arranged in opposition to the sample 4 during observation, and when the end of the probe electrode 13 is degraded, it is impregnated in the electric field polishing tank 6 and etching polishing is carried out through current flow in a platinum electrode 5 as well as the probe electrode 13 by the vertical movement of the coarse adjustment mechanism 10 and the rotation of the rotational driving control mechanism 2, and after it is cleaned in the pure water cleaning tank 7 and in the ethanol cleaning tank 8, inspection of the resolution is carried out on the reference sample 9.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、物質表面を非接触で高
精度に観察するための走査型トンネル顕微鏡に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning tunneling microscope for observing the surface of a substance in a non-contact manner with high precision.

【0002】0002

【従来の技術】近年、物質表面及び表面近傍の電子構造
を直接観察できる走査型トンネル顕微鏡(以下STMと
云う)が開発され[G. Binnig etal.,
Helvetica Physica acta, 5
5,726(1982)]、単結晶、非結晶を問わず高
分解能で実空間像の観測ができるようになり、しかも試
料物質に電流による損傷を殆ど与えずに低電力で測定で
きる利点をも有し、更には超高真空中のみならず大気中
、溶液中でも動作し、種々の材料に対して適用できるた
め広汎な応用が期待されている。
BACKGROUND OF THE INVENTION In recent years, a scanning tunneling microscope (hereinafter referred to as STM) that can directly observe the electronic structure on and near the surface of a material has been developed [G. Binnig et al. ,
Helvetica Physica acta, 5
5, 726 (1982)], it has become possible to observe real space images with high resolution regardless of whether it is single crystal or amorphous, and it also has the advantage of being able to perform measurements with low power while causing almost no damage to the sample material due to the current. Furthermore, it is expected to have a wide range of applications because it can operate not only in ultra-high vacuum but also in the atmosphere and in solutions, and can be applied to various materials.

【0003】このSTMは金属のプローブ電極と導電性
試料との間に電圧を印加して、約1nm程度の距離まで
近付けると、トンネル電流が発生する現象を利用してお
り、面内方向の分解能は1オングストローム以上である
。この分解能はプローブ電極先端部の曲率半径で決定す
るため、一般的には白金やタングステンの先端を機械的
研摩や電界研摩によって円錐状に尖鋭化したものが使用
される。プローブ電極の先端は尖鋭であるために壊れ易
く、動作中に誤ってプローブ電極と試料面とが接触する
と、プローブ電極の先端形状が破壊し、トンネル電流が
流れ難くなって分解能の低下や、場合によってはSTM
像そのものが得られなくなることがある。
[0003] This STM utilizes the phenomenon that a tunnel current is generated when a voltage is applied between a metal probe electrode and a conductive sample and the sample is brought close to a distance of about 1 nm, and the in-plane resolution is is 1 angstrom or more. Since this resolution is determined by the radius of curvature of the tip of the probe electrode, the tip of platinum or tungsten is generally sharpened into a conical shape by mechanical polishing or electric field polishing. Because the tip of the probe electrode is sharp, it is easily broken. If the probe electrode accidentally comes into contact with the sample surface during operation, the shape of the tip of the probe electrode will be destroyed, making it difficult for tunnel current to flow, resulting in a decrease in resolution and Depending on the STM
The image itself may not be obtained.

【0004】こうした場合に、従来ではその都度予め先
端を先鋭化しておいた白金やタングステンのプローブ電
極に交換する必要があった。
In such cases, conventionally, it has been necessary to replace the probe electrode with a platinum or tungsten probe electrode whose tip has been sharpened in advance each time.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上述の従
来例においては、プローブ電極を交換する際に走査ユニ
ット全体を取り外さなければならないために操作性が悪
く、交換後の観察領域が交換前とは異なり再観察に時間
を要することになる。また、誤って落下、接触してプロ
ーブ電極の先端に損傷を与える危険性が大きく、装着後
のプローブ電極の分解能を検査するために、例えばHO
PG(高配向熱分解クラファイト)等の標準試料の観察
を行う必要があるという問題点を有する。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional example, the operability is poor because the entire scanning unit must be removed when replacing the probe electrode, and the observation area after replacement is different from that before replacement. It will take time to re-observe. In addition, there is a high risk of damaging the tip of the probe electrode by accidentally dropping or touching it, so in order to inspect the resolution of the probe electrode after attachment, for example, HO
This method has a problem in that it is necessary to observe a standard sample such as PG (highly oriented pyrolytic graphite).

【0006】本発明の目的は、上述の従来例の問題点を
解消し、劣化したプローブ電極の先端の再生、分解能検
査を操作性良く行えて、観察領域の再現性も良好な走査
型トンネル顕微鏡を提供することにある。
An object of the present invention is to provide a scanning tunneling microscope that solves the above-mentioned problems of the conventional method, allows regeneration of the tip of a deteriorated probe electrode, and performs resolution inspection with good operability, and also has good reproducibility of the observation area. Our goal is to provide the following.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係る走査型トンネル顕微鏡は、試料ステー
ジ上の試料とプローブ電極との間に電圧を印加して接近
させ、流れるトンネル電流を検流して試料面の表面を観
察する走査型トンネル顕微鏡において、前記試料ステー
ジ上に配置した電界研磨槽と、前記プローブ電極を電極
とする電界研磨用電源回路と、前記試料ステージ上に配
置した洗浄槽と、前記試料ステージ駆動機構とを備えた
ことを特徴とするものである。
[Means for Solving the Problems] A scanning tunneling microscope according to the present invention for achieving the above-mentioned object applies a voltage between a sample on a sample stage and a probe electrode to bring them closer together, and a tunneling current flows through the probe electrode. In a scanning tunneling microscope for observing the surface of a sample surface by galvanizing current, an electric field polishing tank placed on the sample stage, an electric field polishing power supply circuit using the probe electrode as an electrode, and a power supply circuit placed on the sample stage. The present invention is characterized by comprising a cleaning tank and the sample stage drive mechanism.

【0008】[0008]

【作用】上述の構成を有する走査型トンネル顕微鏡は、
試料ステージを移動して劣化したプローブ電極の先端を
電界研磨槽に浸漬し、電界研磨用電気回路によって電流
を流してエッチング研摩した後に、更に試料ステージを
移動して洗浄槽に浸漬し、洗浄してプローブ電極の先端
を再生する。
[Operation] The scanning tunneling microscope with the above configuration is
The sample stage is moved and the tip of the deteriorated probe electrode is immersed in an electrolytic polishing tank, and an electric current is passed through the electric field polishing circuit to perform etching polishing, and then the sample stage is further moved and the tip is immersed in a cleaning tank for cleaning. to regenerate the tip of the probe electrode.

【0009】[0009]

【実施例】本発明を図示の実施例に基づいて詳細に説明
する。図1は斜視図であり、円形状の除震機構1上には
円形状の回転駆動制御機構2、回転式試料ステージ3が
載置され、回転式試料ステージ3は中心を回転軸として
矢印方向に回転可能とされている。回転式試料ステージ
3上の同心円上には試料4、NaNO2 等の水溶液と
白金電極5とを入れた電界研磨槽6、純水洗浄槽7、エ
タノール洗浄槽8、HOPG等の標準試料9が順次に配
置されている。回転式試料ステージ3の上方には粗動機
構10が設けられ、この粗動機構10には三次元ピエゾ
スキャナ11が取り付けられ、三次元ピエゾスキャナ1
1にはプローブ保持管駆動機構12が取り付けられ、タ
ングステンから成るプローブ電極13を保持したプロー
ブ保持管14がプローブ保持管駆動機構12に取り付け
られている。そして、プローブ保持管駆動機構12によ
ってプローブ保持管14、プローブ電極13の固定、解
除が可能とされている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail based on the illustrated embodiments. FIG. 1 is a perspective view, in which a circular rotational drive control mechanism 2 and a rotating sample stage 3 are placed on a circular vibration isolation mechanism 1, and the rotating sample stage 3 is rotated in the direction of the arrow with the center as the rotation axis. It is said that it can be rotated. A sample 4, an electrolytic polishing bath 6 containing an aqueous solution such as NaNO2 and a platinum electrode 5, a pure water cleaning bath 7, an ethanol cleaning bath 8, and a standard sample 9 such as HOPG are sequentially placed on a concentric circle on a rotating sample stage 3. It is located in A coarse movement mechanism 10 is provided above the rotary sample stage 3, and a three-dimensional piezo scanner 11 is attached to this coarse movement mechanism 10.
A probe holding tube drive mechanism 12 is attached to the probe holding tube drive mechanism 1, and a probe holding tube 14 holding a probe electrode 13 made of tungsten is attached to the probe holding tube drive mechanism 12. The probe holding tube 14 and the probe electrode 13 can be fixed and released by the probe holding tube drive mechanism 12.

【0010】図2は制御回路の構成図であり、全体の制
御のためにCPU15が設けられ、プローブ電極13に
はトンネル電流増幅回路16が接続され、試料4にはバ
イアス電圧発生回路17が接続され、トンネル電流増幅
回路16とバイアス電圧発生回路17が接続されていて
、プローブ電極13、試料4間に一定電圧を印加した状
態で両者間に流れるトンネル電流を検出するようになっ
ている。また、回転駆動制御機構2には回転駆動制御回
路18の出力が接続され、粗動機構10には粗動機構駆
動回路19の出力が接続され、三次元ピエゾスキャナ1
1にはX−Y走査駆動回路20、サーボ回路22の出力
が接続され、プローブ保持管駆動機構12にはプローブ
保持管駆動回路21の出力が接続されている。更に、サ
ーボ回路22のの出力はトンネル電流増幅回路16に接
続されていて、一定のトンネル電流が流れるように三次
元ピエゾスキャナ11によって、プローブ電極13、試
料4間の距離を所定間隔に保持するようにされている。 また、プローブ電極13、白金電極5には電界研磨用電
源回路23が接続されていて、CPU15はトンネル電
流増幅回路16、バイアス電圧発生回路17、回転駆動
制御回路18、粗動機構駆動回路19、X−Y走査駆動
回路20、プローブ保持管駆動回路21、サーボ回路2
2、電界研磨用電源回路23、テレビモニタ24の全て
と接続されている。なお、図示を省略しているが、バイ
アス電圧発生回路17を切換えて試料4から標準試料9
に接続することも可能である。
FIG. 2 is a configuration diagram of the control circuit, in which a CPU 15 is provided for overall control, a tunnel current amplification circuit 16 is connected to the probe electrode 13, and a bias voltage generation circuit 17 is connected to the sample 4. A tunnel current amplification circuit 16 and a bias voltage generation circuit 17 are connected, and a tunnel current flowing between the probe electrode 13 and the sample 4 is detected while a constant voltage is applied between the probe electrode 13 and the sample 4. Further, the output of the rotational drive control circuit 18 is connected to the rotational drive control mechanism 2, the output of the coarse movement mechanism drive circuit 19 is connected to the coarse movement mechanism 10, and the three-dimensional piezo scanner 1
1 is connected to the outputs of an X-Y scan drive circuit 20 and a servo circuit 22, and the probe holding tube drive mechanism 12 is connected to the output of a probe holding tube drive circuit 21. Further, the output of the servo circuit 22 is connected to a tunnel current amplification circuit 16, and the distance between the probe electrode 13 and the sample 4 is maintained at a predetermined interval by the three-dimensional piezo scanner 11 so that a constant tunnel current flows. It is like that. Further, an electric field polishing power supply circuit 23 is connected to the probe electrode 13 and the platinum electrode 5, and the CPU 15 includes a tunnel current amplification circuit 16, a bias voltage generation circuit 17, a rotational drive control circuit 18, a coarse movement mechanism drive circuit 19, X-Y scan drive circuit 20, probe holding tube drive circuit 21, servo circuit 2
2. It is connected to the electric field polishing power supply circuit 23 and the television monitor 24. Although not shown in the figure, the bias voltage generation circuit 17 is switched from sample 4 to standard sample 9.
It is also possible to connect to

【0011】試料4の表面状態観察方法は周知の方法で
あり、粗動機構駆動回路19によって粗動機構10を駆
動して、プローブ電極13を試料4にほぼ接近させた後
に、三次元ピエゾスキャナ11によって更に接近させ、
バイアス電圧発生回路17によってプローブ電極13、
試料4間に一定電圧を印加して、両者間にトンネル電流
を流す。このトンネル電流をトンネル電流増幅回路16
により増幅して検出し、それが一定値となるように、即
ち両者の間隔を一定とするようにサーボ回路22で三次
元ピエゾスキャナ11を駆動し、X−Y走査駆動回路2
0によって水平面でのXY走査を行って得られた観察像
をテレビモニタ24に表示する。
The method for observing the surface state of the sample 4 is a well-known method, in which the coarse movement mechanism drive circuit 19 drives the coarse movement mechanism 10 to bring the probe electrode 13 almost close to the sample 4, and then the three-dimensional piezo scanner 11 to bring it even closer,
The bias voltage generation circuit 17 generates a probe electrode 13,
A constant voltage is applied between the samples 4 to cause a tunnel current to flow between them. This tunnel current is converted into a tunnel current amplification circuit 16.
The three-dimensional piezo scanner 11 is driven by the servo circuit 22 so that the amplified and detected value becomes a constant value, that is, the distance between the two is constant, and the X-Y scan drive circuit 2
0, an observed image obtained by performing XY scanning on the horizontal plane is displayed on the television monitor 24.

【0012】観察中に、例えば試料4上の局所的突出部
にプローブ電極13が接触して、その先端が破壊される
と分解能が低下する。その場合には、プローブ電極13
とトンネル電流増幅回路16間の接続を切って、粗動機
構駆動回路19によってプローブ電極13を鉛直方向に
引き上げ、劣化したプローブ電極13の先端部をニッパ
等で適宜切断した後に、プローブ保持管駆動回路21に
よってプローブ保持管駆動機構12を駆動し、プローブ
保持管14の管径を大きくして、プローブ電極13を切
り落とした長さ分引き下げて再び固定する。
During observation, if the probe electrode 13 comes into contact with, for example, a local protrusion on the sample 4 and its tip is destroyed, the resolution will be reduced. In that case, the probe electrode 13
The probe electrode 13 is pulled up in the vertical direction by the coarse movement mechanism drive circuit 19, and the deteriorated tip of the probe electrode 13 is appropriately cut with nippers, etc., and then the probe holding tube is driven. The probe holding tube drive mechanism 12 is driven by the circuit 21, the diameter of the probe holding tube 14 is increased, and the probe electrode 13 is pulled down by the cut length and fixed again.

【0013】次に、図3に示すように回転駆動制御回路
18によって回転式試料ステージ3を矢印方向に回転し
て、プローブ電極13を電界研磨槽6の上方に移動し、
粗動機構10によってプローブ電極13を下げて電界研
磨槽6の液面下1mm程度浸漬し、電界研磨用電源回路
23によってプローブ電極13、白金電極5間に30V
程度の交流電流を流して、エッチングによる電解研磨を
数分間行う。プローブ電極13からの気泡発生が終了し
たら、プローブ電極13を引き上げ、更に回転式試料ス
テージ3を回転して、プローブ電極13を純水洗浄槽7
、エタノール洗浄槽8に順次に浸漬して洗浄を行う。 この際に、三次元ピエゾスキャナ11によって、プロー
ブ電極13をXY方向に適当な振幅で移動すれば効果的
であり、この洗浄によって先端の再生処理が終了する。
Next, as shown in FIG. 3, the rotary sample stage 3 is rotated in the direction of the arrow by the rotation drive control circuit 18 to move the probe electrode 13 above the electropolishing tank 6.
The probe electrode 13 is lowered by the coarse movement mechanism 10 and immersed approximately 1 mm below the liquid level in the electropolishing tank 6, and 30V is applied between the probe electrode 13 and the platinum electrode 5 by the electropolishing power supply circuit 23.
Electropolishing by etching is performed for several minutes by passing a moderate amount of alternating current. When bubble generation from the probe electrode 13 is finished, pull up the probe electrode 13, further rotate the rotary sample stage 3, and transfer the probe electrode 13 to the pure water cleaning tank 7.
, and are sequentially immersed in an ethanol cleaning tank 8 for cleaning. At this time, it is effective to move the probe electrode 13 in the X and Y directions with an appropriate amplitude using the three-dimensional piezo scanner 11, and this cleaning completes the regeneration process of the tip.

【0014】処理されたプローブ電極13は図4に示す
ように標準試料9の上方に移動され、そこで先述の動作
が行われ、標準試料9の原子配列像が得られるか否かに
よってその分解能が検査される。分解能が低い場合には
、再びエッチング、洗浄の再生処理が行われるが、実験
では1回又は2回の再生処理で十分であることが確認さ
れた。その後に、プローブ電極13を試料4の上方に戻
して、トンネル電流増幅回路16をプローブ電極13に
接続し、再び測定を開始する。
The processed probe electrode 13 is moved above the standard sample 9 as shown in FIG. be inspected. If the resolution is low, regeneration processing such as etching and cleaning is performed again, but experiments have confirmed that regeneration processing once or twice is sufficient. After that, the probe electrode 13 is returned above the sample 4, the tunnel current amplification circuit 16 is connected to the probe electrode 13, and measurement is started again.

【0015】回転駆動制御機構2及び粗動機構10を、
高精度光学式ロータリーエンコーダ、高精度軸受機構、
ステッピングモータとを組合わせて構成した場合に、回
転式試料ステージ3は±0.2秒の位置再現性が達成さ
れ、プローブ電極13の試料4上の位置は水平方向で±
2μmの位置再現性が達成される。従って、本実施例で
用いた三次元ピエゾスキャナ11の最大走査幅が水平面
内で5μmであることを考慮すると、測定中断前の観察
領域、或いはその非常に近傍の領域で測定を再開するこ
とが可能である。なお、試料ステージは回転式に限らず
、直線上を往復動するものであってもよい。
[0015] The rotational drive control mechanism 2 and the coarse movement mechanism 10 are
High-precision optical rotary encoder, high-precision bearing mechanism,
When configured in combination with a stepping motor, the rotary sample stage 3 achieves a position repeatability of ±0.2 seconds, and the position of the probe electrode 13 on the sample 4 is within ±0.2 seconds in the horizontal direction.
A position repeatability of 2 μm is achieved. Therefore, considering that the maximum scanning width of the three-dimensional piezo scanner 11 used in this example is 5 μm in the horizontal plane, it is possible to restart the measurement in the observation area before the measurement was interrupted or in an area very close to it. It is possible. Note that the sample stage is not limited to a rotary type, but may be one that reciprocates in a straight line.

【0016】プローブ保持管駆動機構12及び粗動機構
10は、例えば磁気式ロータリエンコーダ等の検出方法
、超音波モータ等の駆動方法を用いてもよく、試料ステ
ージ3は回転式でなく直進式でもよい。また、トンネル
電流増幅回路16の接続、切断動作もCPU15によっ
て行うと操作性が良い。
The probe holding tube drive mechanism 12 and the coarse movement mechanism 10 may use a detection method such as a magnetic rotary encoder or a drive method such as an ultrasonic motor, and the sample stage 3 may be a linear type instead of a rotation type. good. Further, if the connection and disconnection operations of the tunnel current amplification circuit 16 are also performed by the CPU 15, operability is improved.

【0017】プローブ電極13はタングステンの他に白
金、白金−イリジウム、白金−ロジウム、或いは他の純
金属、合金でもよく、その材質によって電解研磨溶液条
件を変えればよい。また、標準試料9はHOPGの劈開
面を用いているが、プローブ電極13の対称性評価のた
めにグレーディングサンプル併用等により複数の標準試
料を使用してもよい。
The probe electrode 13 may be made of platinum, platinum-iridium, platinum-rhodium, or other pure metals or alloys in addition to tungsten, and the conditions of the electrolytic polishing solution may be changed depending on the material. Further, although the standard sample 9 uses a cleavage plane of HOPG, a plurality of standard samples may be used in combination with a grading sample to evaluate the symmetry of the probe electrode 13.

【0018】[0018]

【発明の効果】以上説明したように本発明に係る走査型
トンネル顕微鏡は、試料を載置した可動式試料ステージ
上に載置された電界研磨槽、洗浄槽を移動して、劣化し
たプローブ電極の先端をエッチング、洗浄するので、再
生処理の操作性が良く、観察領域の再現性も良好である
。また、試料ステージ上に標準試料を載置して分解能検
査を行うことも可能である。
Effects of the Invention As explained above, the scanning tunneling microscope according to the present invention removes deteriorated probe electrodes by moving the electropolishing tank and the cleaning tank placed on the movable sample stage on which the sample is placed. Since the tip of the probe is etched and cleaned, the operability of the regeneration process is good and the reproducibility of the observation area is also good. It is also possible to perform a resolution test by placing a standard sample on the sample stage.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例の斜視図である。FIG. 1 is a perspective view of an embodiment.

【図2】ブロック回路構成図である。FIG. 2 is a block circuit configuration diagram.

【図3】プローブ電極のエッチング方法の説明図である
FIG. 3 is an explanatory diagram of a probe electrode etching method.

【図4】プローブ電極の分解能検査方法の説明図である
FIG. 4 is an explanatory diagram of a probe electrode resolution testing method.

【符号の説明】[Explanation of symbols]

2  回転駆動制御機構 3  回転式試料ステージ 4  試料 5  白金電極 6  電界研磨槽 7  純水洗浄槽 8  エタノール洗浄槽 9  標準試料 10  粗動機構 11  三次元ピエゾスキャナ 13  プローブ電極 15  CPU 16  トンネル電流増幅回路 17  バイアス電圧発生回路 24  テレビモニタ 2 Rotation drive control mechanism 3 Rotating sample stage 4 Sample 5 Platinum electrode 6 Electric polishing tank 7 Pure water cleaning tank 8 Ethanol cleaning tank 9 Standard sample 10 Coarse movement mechanism 11 3D piezo scanner 13 Probe electrode 15 CPU 16 Tunnel current amplification circuit 17 Bias voltage generation circuit 24 TV monitor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  試料ステージ上の試料とプローブ電極
との間に電圧を印加して接近させ、流れるトンネル電流
を検流して試料面の表面を観察する走査型トンネル顕微
鏡において、前記試料ステージ上に配置した電界研磨槽
と、前記プローブ電極を電極とする電界研磨用電源回路
と、前記試料ステージ上に配置した洗浄槽と、前記試料
ステージ駆動機構とを備えたことを特徴とする走査型ト
ンネル顕微鏡。
1. A scanning tunneling microscope in which a voltage is applied between a sample on a sample stage and a probe electrode to bring them close to each other, and a flowing tunnel current is galvanized to observe the surface of the sample surface. A scanning tunneling microscope characterized by comprising: an electropolishing tank arranged above, a power supply circuit for electropolishing using the probe electrode as an electrode, a cleaning tank arranged above the sample stage, and the sample stage drive mechanism. .
【請求項2】  前記試料ステージ上に少なくとも1種
類の標準試料を配置した請求項1に記載の走査型トンネ
ル顕微鏡。
2. The scanning tunneling microscope according to claim 1, wherein at least one type of standard sample is placed on the sample stage.
JP13827191A 1991-05-13 1991-05-13 Scanning type tunnel microscope Pending JPH04337402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13827191A JPH04337402A (en) 1991-05-13 1991-05-13 Scanning type tunnel microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13827191A JPH04337402A (en) 1991-05-13 1991-05-13 Scanning type tunnel microscope

Publications (1)

Publication Number Publication Date
JPH04337402A true JPH04337402A (en) 1992-11-25

Family

ID=15218025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13827191A Pending JPH04337402A (en) 1991-05-13 1991-05-13 Scanning type tunnel microscope

Country Status (1)

Country Link
JP (1) JPH04337402A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0736746A1 (en) * 1995-04-04 1996-10-09 Ryoden Semiconductor System Engineering Corporation Method of using scanning probe microscope permitting cleaning of probe microscope or of probe tip in ambient atmosphere
JP2002323429A (en) * 2001-04-26 2002-11-08 Seiko Instruments Inc Scanning probe microscope
WO2006004064A1 (en) * 2004-07-02 2006-01-12 Honda Motor Co., Ltd. Scanning probe microscope system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0736746A1 (en) * 1995-04-04 1996-10-09 Ryoden Semiconductor System Engineering Corporation Method of using scanning probe microscope permitting cleaning of probe microscope or of probe tip in ambient atmosphere
US5652428A (en) * 1995-04-04 1997-07-29 Mitsubishi Denki Kabushiki Kaisha Method of using scanning probe microscope allowing cleaning of probe tip in ambient atmosphere
JP2002323429A (en) * 2001-04-26 2002-11-08 Seiko Instruments Inc Scanning probe microscope
JP4598300B2 (en) * 2001-04-26 2010-12-15 エスアイアイ・ナノテクノロジー株式会社 Scanning probe microscope and physical property measurement method using the same
WO2006004064A1 (en) * 2004-07-02 2006-01-12 Honda Motor Co., Ltd. Scanning probe microscope system
US7578853B2 (en) 2004-07-02 2009-08-25 Honda Motor Co., Ltd. Scanning probe microscope system

Similar Documents

Publication Publication Date Title
Ballesteros Katemann et al. Constant‐Distance Mode Scanning Electrochemical Microscopy. Part II: High‐Resolution SECM Imaging Employing Pt Nanoelectrodes as Miniaturized Scanning Probes
Musselman et al. Platinum/iridium tips with controlled geometry for scanning tunneling microscopy
US8650661B2 (en) Method and apparatus for characterizing a probe tip
JPH08278315A (en) Method for using scanning probe microscope
Grigg et al. Probe characterization for scanning probe metrology
JPH04337402A (en) Scanning type tunnel microscope
Iwata et al. Operation of self-sensitive cantilever in liquid for multiprobe manipulation
Garfias‐Mesias et al. In Situ High‐Resolution Photoelectrochemical Imaging of Precursor Sites for Pitting in Polycrystalline Titanium
JP2875066B2 (en) Probe cleaning device for tunnel microscope
JP4354548B2 (en) How to make a silver probe for a scanning tunneling microscope
JPH03122514A (en) Observing apparatus for surface
JP2006300687A (en) Probe manufacturing method and apparatus and failure inspection system using it
WO2019008108A1 (en) Atomic force microscopy probes with an assembly of metal nanowires and dielectrophoretic method for attaching and detaching said metal nanowires to and from said probes
JP2000162114A (en) Scanning probe device
JP2006133089A (en) Ultrahigh vacuum scanning probe microscope
JP6998084B2 (en) Metal probe and manufacturing method of metal probe
JP2000155085A (en) Interatomic force microscope prober and interatomic force microscope
JP6675121B2 (en) Sample holding / scanning mechanism, scanning probe microscope, and method of manufacturing probe
Chu et al. Atomic force microscopy (AFM) statistical process control for microelectronics applications
JP2008089404A (en) Surface characteristic analysis apparatus, surface characteristic analysis method, and probe unit
JPH07159113A (en) Probe for scanning tunneling microscope and manufacture thereof
JPH01159954A (en) Scanning tunnel microscope for transmission electron microscope
JPH09325079A (en) Scanning temperature microscope
JPH04344405A (en) Probe, scanning type tunnel microscope and method for manufacturing probe
JPH06128800A (en) Production of metallic probe for scanning microscope