JP6675121B2 - Sample holding / scanning mechanism, scanning probe microscope, and method of manufacturing probe - Google Patents

Sample holding / scanning mechanism, scanning probe microscope, and method of manufacturing probe Download PDF

Info

Publication number
JP6675121B2
JP6675121B2 JP2015192365A JP2015192365A JP6675121B2 JP 6675121 B2 JP6675121 B2 JP 6675121B2 JP 2015192365 A JP2015192365 A JP 2015192365A JP 2015192365 A JP2015192365 A JP 2015192365A JP 6675121 B2 JP6675121 B2 JP 6675121B2
Authority
JP
Japan
Prior art keywords
sample
probe
holding
probes
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015192365A
Other languages
Japanese (ja)
Other versions
JP2017067570A (en
Inventor
慎 芦野
慎 芦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Original Assignee
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT) filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2015192365A priority Critical patent/JP6675121B2/en
Publication of JP2017067570A publication Critical patent/JP2017067570A/en
Application granted granted Critical
Publication of JP6675121B2 publication Critical patent/JP6675121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、試料固定用として従来使用していた基板による悪影響を無くし、高い空間自由度で試料の三次元立体画像を取得できる試料保持・走査機構、この試料保持・走査機構を備えた走査型プローブ顕微鏡及び試料保持・走査機構で用いる探針の製造方法に関する。   The present invention provides a sample holding / scanning mechanism capable of obtaining a three-dimensional stereoscopic image of a sample with a high degree of freedom of freedom by eliminating the adverse effects of a substrate conventionally used for fixing a sample, and a scanning type equipped with the sample holding / scanning mechanism. The present invention relates to a method for manufacturing a probe used in a probe microscope and a sample holding / scanning mechanism.

走査型プローブ顕微鏡(SPM)を用いて各種試料の構造解析が行われている。
走査型プローブ顕微鏡は探針を試料に対して相対的に走査させて試料の形状や性状等の情報を得る装置の総称であり、例えば原子間力顕微鏡(AFM)は、探針をその自由端に持つカンチレバーと、カンチレバーの変位を検出する光学式変位センサーと、探針と試料とを相対的に走査するスキャナとを備えている。
そして、スキャナによって基板上の試料に対して探針を相対的にXY方向(基板の水平方向)に走査しながら、光学式変位センサーの出力を一定に保つように探針のZ方向(基板の垂直方向)の位置を制御し、これをマッピングすることによって、試料表面の画像を得る仕組みになっている。
近年、試料の三次元立体画像を取得することを目的とした走査型プローブ顕微鏡の開発が進められており、例えば、平坦基板上に固定した立体試料に対し、一本の探針を基板面に対して順方向と逆方向の2方向に傾斜させてそれぞれ画像を取得し、これら2枚の画像と、探針を傾斜させずに取得した画像の計3枚の画像を合成処理して立体画像を構築する手法が知られている(非特許文献1及び2)。
Structural analysis of various samples is performed using a scanning probe microscope (SPM).
A scanning probe microscope is a general term for a device that scans a probe relative to a sample to obtain information such as the shape and properties of the sample. For example, an atomic force microscope (AFM) , An optical displacement sensor for detecting the displacement of the cantilever, and a scanner for relatively scanning the probe and the sample.
Then, while scanning the probe relatively in the XY direction (horizontal direction of the substrate) with respect to the sample on the substrate by the scanner, the Z direction of the probe (substrate of the substrate) is maintained so that the output of the optical displacement sensor is kept constant. The vertical position) is controlled, and an image of the sample surface is obtained by mapping the position.
In recent years, the development of a scanning probe microscope aiming at obtaining a three-dimensional stereoscopic image of a sample has been advanced.For example, for a three-dimensional sample fixed on a flat substrate, one probe is attached to the substrate surface. Images are acquired by tilting the probe in two directions, forward and reverse, respectively, and a three-dimensional image is obtained by combining these two images and an image acquired without tilting the probe, for a total of three images. Are known (Non-Patent Documents 1 and 2).

“New three-dimensional AFM for CD measurement and sidewall characterization”, Proc. SPIE 7971, Metrology, Inspection, and Process Control for Microlithography XXV, 797118 (April 20, 2011)“New three-dimensional AFM for CD measurement and sidewall characterization”, Proc. SPIE 7971, Metrology, Inspection, and Process Control for Microlithography XXV, 797118 (April 20, 2011) “Three-dimensional imaging of undercut and sidewall structures by atomic force microscopy”, Review of Scientific Instruments Volume 82, Issue 2, 023707 (February 2011)“Three-dimensional imaging of undercut and sidewall structures by atomic force microscopy”, Review of Scientific Instruments Volume 82, Issue 2, 023707 (February 2011)

ところが、上述したような試料の三次元立体画像を取得するための従来手法では以下のような問題があった。
すなわち、試料が柔らかい場合、平坦基板上に固定した試料は基板からの引力等の強い作用を受けて平面方向に広がってしまい、立体形状が崩れてしまうという問題があった。
また、基板の表面側しか走査できないため、試料と基板との接触面積が大きい場合には、当該接触箇所の画像を得ることができないという問題もあった。
このように、従来手法では画像取得時の空間自由度が基板の存在により大きく制限されてしまうという問題があった。
However, the conventional method for acquiring a three-dimensional stereoscopic image of a sample as described above has the following problems.
That is, when the sample is soft, the sample fixed on the flat substrate spreads in a plane direction due to a strong action such as an attractive force from the substrate, and there is a problem that the three-dimensional shape is broken.
In addition, since only the front side of the substrate can be scanned, there is a problem that when the contact area between the sample and the substrate is large, an image of the contacted portion cannot be obtained.
As described above, the conventional method has a problem in that the degree of spatial freedom at the time of image acquisition is greatly limited by the presence of the substrate.

本発明はこのような問題に鑑み、試料固定用として従来使用していた基板による悪影響を無くし、高い空間自由度で試料の三次元立体画像を取得できる試料保持・走査機構、この試料保持・走査機構を備えた走査型プローブ顕微鏡及び試料保持・走査機構で用いる探針の製造方法を提供することを課題とする。   In view of such a problem, the present invention eliminates the adverse effects of a substrate conventionally used for fixing a sample, and a sample holding / scanning mechanism capable of acquiring a three-dimensional stereoscopic image of a sample with a high degree of spatial freedom. It is an object of the present invention to provide a scanning probe microscope having a mechanism and a method for manufacturing a probe used in a sample holding / scanning mechanism.

本発明の試料保持・走査機構は、X軸方向に沿って対向配置した2つの探針で構成されるX軸方向探針組と、Y軸方向に沿って対向配置した2つの探針で構成されるY軸方向探針組と、Z軸方向に沿って対向配置した2つの探針で構成されるZ軸方向探針組と、前記6つの探針それぞれを少なくともXYZ軸方向に駆動させる6つの駆動機構を備えており、1つ以上の探針で試料を保持した状態で、他の探針が当該試料をXYZ軸方向に三次元走査することを特徴とする。
また、前記X軸方向探針組のうちの1つの探針と、前記Y軸方向探針組のうちの1つの探針と、前記Z軸方向探針組のうちの1つの探針の計3つの探針で試料を三点保持した状態で、他の探針が当該試料をXYZ軸方向に三次元走査することを特徴とする。
また、前記6つの駆動機構を、3軸回転自由度を持つジンバルに取り付けることを特徴とする。
また、前記6つの駆動機構のうち前記試料保持に供する探針を駆動させる駆動機構に関して、当該駆動機構をジンバルに取り付けず、別途支持することを特徴とする。
また、前記X軸方向探針組、Y軸方向探針組及びZ軸方向探針組のうち1つもしくは2つの探針組を取り外し、残りの探針組を構成する一方の探針を用いて試料を保持し、対向する他方の探針が備える駆動機構を、3軸回転自由度を持つジンバルに取り付け、当該対向する他方の探針が当該試料をXYZ軸方向に三次元走査することを特徴とする。
また、前記探針のうち前記試料保持に供する探針に関して、当該探針に前記試料を固着することを特徴とする。
また、上記試料保持・走査機構を備えており、更に、前記他の探針が前記試料を三次元走査することで得た画像を相補的に合成することで当該試料の三次元立体画像を得る画像合成手段を備えることを特徴とする。
また、上記試料保持・走査機構に用いる探針の製造方法において、探針材料となる柱状部材の両端を前記駆動機構に固定するステップと、当該柱状部材の両端から長手方向の中央に向かって断面積が小さくなるようにテーパー加工を施すステップと、前記断面積の最小位置において柱状部材を2つに切り離すことで、前記対向配置した2つの探針を製造するステップを備えることを特徴とする。


The sample holding / scanning mechanism of the present invention includes an X-axis direction probe set composed of two probes arranged oppositely along the X-axis direction, and two probes arranged oppositely along the Y-axis direction. Y-axis direction probe set to be performed, a Z-axis direction probe set composed of two probes arranged facing each other along the Z-axis direction, and each of the six probes is driven at least in the XYZ-axis direction. One driving mechanism is provided, and one or more probes hold a sample, and another probe scans the sample three-dimensionally in the XYZ axis directions.
In addition, a total of one probe of the X-axis direction probe set, one of the Y-axis direction probe sets, and one of the Z-axis direction probe sets is counted. In a state where the sample is held at three points by the three probes, another probe scans the sample three-dimensionally in the XYZ axis directions.
Further, the six driving mechanisms are mounted on a gimbal having three degrees of freedom of rotation.
Further, among the six drive mechanisms, a drive mechanism for driving the probe used for holding the sample is characterized in that the drive mechanism is separately attached to the gimbal without being attached to the gimbal.
Also, one or two of the X-axis direction probe set, the Y-axis direction probe set, and the Z-axis direction probe set are removed, and one of the remaining probe sets is used. The drive mechanism provided on the other opposing probe is attached to a gimbal having three degrees of freedom of rotation, and the other opposing probe scans the sample three-dimensionally in the XYZ axis directions. Features.
Further, regarding the probe used for holding the sample, the sample is fixed to the probe.
The apparatus further comprises the sample holding / scanning mechanism, and further obtains a three-dimensional three-dimensional image of the sample by complementarily synthesizing an image obtained by three-dimensionally scanning the sample with the other probe. It is characterized by comprising an image synthesizing means.
In the method for manufacturing a probe used for the sample holding / scanning mechanism, the step of fixing both ends of a columnar member serving as a probe material to the driving mechanism may include cutting the columnar member from both ends toward the center in the longitudinal direction. The method includes a step of performing a taper process to reduce an area, and a step of manufacturing the two opposed probes by separating the columnar member into two at the minimum position of the cross-sectional area.


本発明の試料保持・走査機構は探針を用いて試料を点で保持するので、従来のように試料を基板に載せる場合の立体形状が崩れてしまうという諸問題を本発明では解消でき、基板の影響を受けずに高い空間自由度で現実の立体形状により近い状態で三次元立体画像を取得できる。
特に、3つの探針で試料を三点保持することにすれば、試料を確実に保持できるので鮮明な三次元立体画像を取得できる。
また、6つの駆動機構を、3軸回転自由度を持つジンバルに取り付けることにすれば、試料保持に供していない探針を試料の周囲に移動させることができ、空間自由度をより高めることができる。
また、試料保持に供する探針を駆動させる駆動機構をジンバルに取り付けず、別途支持することにすれば、試料保持に供していない探針は、これに対向配置されている試料保持に供している探針から独立して移動できるので、探針を試料の周囲ほぼ360°の任意の位置まで移動させることができ、画像取得の自由度を更に向上できる。
また、対向配置した2つの探針を、探針材料となる柱状部材を加工して同時に製造することにすれば、当該2つの探針の位置決め作業を簡略化でき、作業効率を向上できる。
Since the sample holding / scanning mechanism of the present invention holds the sample at a point using a probe, the present invention can solve various problems that the three-dimensional shape of the conventional case where the sample is placed on the substrate is lost. A three-dimensional stereoscopic image can be obtained in a state close to the actual three-dimensional shape with a high degree of spatial freedom without being affected by the above.
In particular, if three points are used to hold the sample at three points, the sample can be held reliably, and a clear three-dimensional stereoscopic image can be obtained.
In addition, if the six drive mechanisms are mounted on a gimbal that has three degrees of freedom of rotation, the probe that is not holding the sample can be moved around the sample, further increasing the degree of spatial freedom. it can.
In addition, if the drive mechanism for driving the probe for holding the sample is not attached to the gimbal and is separately supported, the probe not used for holding the sample is used for holding the sample that is arranged to face the sample. Since the probe can be moved independently of the probe, the probe can be moved to an arbitrary position of approximately 360 ° around the sample, and the degree of freedom of image acquisition can be further improved.
Further, if two opposing probes are simultaneously manufactured by processing a columnar member serving as a probe material, the positioning operation of the two probes can be simplified and the operation efficiency can be improved.

第1の実施の形態の試料保持・走査機構の外観を示す斜視図FIG. 2 is a perspective view illustrating an appearance of a sample holding / scanning mechanism according to the first embodiment. 第1の実施の形態の試料保持・走査機構の外観を示す平面図FIG. 2 is a plan view illustrating an appearance of a sample holding / scanning mechanism according to the first embodiment. 第1の実施の形態の試料保持・走査機構の構造を示すブロック図FIG. 2 is a block diagram illustrating a structure of a sample holding / scanning mechanism according to the first embodiment. 第2の実施の形態の試料保持・走査機構の外観を示す斜視図FIG. 9 is a perspective view illustrating an appearance of a sample holding / scanning mechanism according to a second embodiment. 第2の実施の形態の試料保持・走査機構の外観を示す平面図FIG. 4 is a plan view illustrating an appearance of a sample holding / scanning mechanism according to a second embodiment. 第2の実施の形態の試料保持・走査機構の構造を示すブロック図FIG. 4 is a block diagram illustrating a structure of a sample holding / scanning mechanism according to a second embodiment. 第3の実施の形態の試料保持・走査機構の外観を示す上方からの斜視図Perspective view from above showing the appearance of a sample holding / scanning mechanism according to a third embodiment. 第3の実施の形態の試料保持・走査機構の外観を示す下方からの斜視図FIG. 9 is a perspective view from below showing an appearance of a sample holding / scanning mechanism according to a third embodiment. 第3の実施の形態の試料保持・走査機構の外観を示す平面図FIG. 9 is a plan view illustrating an appearance of a sample holding / scanning mechanism according to a third embodiment. 第3の実施の形態の試料保持・走査機構の構造を示すブロック図FIG. 9 is a block diagram illustrating a structure of a sample holding / scanning mechanism according to a third embodiment. 探針の製造方法を示す図Diagram showing manufacturing method of probe

[第1の実施の形態]
本発明の試料保持・走査機構の第1の実施の形態について図面を参照しながら説明する。なお、本発明の試料保持・走査機構は一般的な走査型プローブ顕微鏡に使用することができるものであり、走査型プローブ顕微鏡の動作原理は周知であるため詳細な説明は省略する。
図1及び図2に示すように、試料保持・走査機構1はX軸方向探針組10、Y軸方向探針組20、Z軸方向探針組30及び駆動機構40を備える。
X軸方向探針組10はX軸方向に沿って対向配置した2つの探針11,12で構成される。
具体的には、各探針11,12は円錐状であり、一方の探針11はX軸の正方向に沿ってその断面積が縮径するようにのびており、他方の探針12はX軸の負方向に沿ってその断面積が縮径するようにのびている。これにより、2つの探針はその先端の鋭利な部分同士が試料Sを挟んで対向するように配置されている。
Y軸方向探針組20はY軸方向に沿って対向配置した2つの探針21,22で構成される。
具体的には、各探針21,22は円錐状であり、一方の探針21はY軸の正方向に沿ってその断面積が縮径するようにのびており、他方の探針22はY軸の負方向に沿ってその断面積が縮径するようにのびている。これにより、2つの探針21,22はその先端の鋭利な部分同士が試料Sを挟んで対向するように配置されている。
Z軸方向探針組30はZ軸方向に沿って対向配置した2つの探針31,32で構成される。
具体的には、各探針31,32は円錐状であり、一方の探針31はZ軸の正方向に沿ってその断面積が縮径するようにのびており、他方の探針32はZ軸の負方向に沿ってその断面積が縮径するようにのびている。これにより、2つの探針31,32はその先端の鋭利な部分同士が試料Sを挟んで対向するように配置されている。
[First Embodiment]
A first embodiment of a sample holding / scanning mechanism according to the present invention will be described with reference to the drawings. The sample holding / scanning mechanism of the present invention can be used for a general scanning probe microscope, and the detailed description of the operation principle of the scanning probe microscope is omitted because it is well known.
As shown in FIGS. 1 and 2, the sample holding / scanning mechanism 1 includes an X-axis direction probe set 10, a Y-axis direction probe set 20, a Z-axis direction probe set 30, and a drive mechanism 40.
The X-axis direction probe set 10 is composed of two probes 11 and 12 arranged facing each other along the X-axis direction.
Specifically, each of the probes 11 and 12 has a conical shape, one of the probes 11 extends so as to reduce its cross-sectional area along the positive direction of the X axis, and the other Along the negative direction of the axis, the cross-sectional area extends so as to reduce the diameter. Thus, the two probes are arranged such that the sharp portions at the tips thereof face each other with the sample S interposed therebetween.
The Y-axis direction probe set 20 is composed of two probes 21 and 22 arranged facing each other along the Y-axis direction.
Specifically, each of the probes 21 and 22 has a conical shape, one of the probes 21 extends so as to reduce its cross-sectional area along the positive direction of the Y axis, and the other of the probes 22 has a Y shape. Along the negative direction of the axis, the cross-sectional area extends so as to reduce the diameter. Thus, the two probes 21 and 22 are arranged so that the sharp portions at the tips thereof face each other with the sample S interposed therebetween.
The Z-axis direction probe set 30 is composed of two probes 31 and 32 arranged facing each other along the Z-axis direction.
Specifically, each of the probes 31 and 32 has a conical shape, one of the probes 31 extends so as to reduce its cross-sectional area along the positive direction of the Z axis, and the other of the probes 32 has a Z shape. Along the negative direction of the axis, the cross-sectional area extends so as to reduce the diameter. Thus, the two probes 31 and 32 are arranged such that the sharp portions at the tips thereof face each other with the sample S interposed therebetween.

駆動機構40は6つの探針それぞれを少なくともXYZ軸方向に駆動させるために、一つの探針に対して一つ設けられる。
以下、一例としてX軸の正方向に沿ってその断面積が縮径するようにのびる探針11に取り付けられている駆動機構40について説明する。図1(b)に示すようにこの駆動機構40は、長手方向がX軸に沿ってのびる円柱形の本体部41を備えており、本体部41の側面であってY軸を貫く位置に2つの圧電素子42を備えており、Z軸を貫く位置にも2つの圧電素子43を備えており、更に本体部41の後端に1つの圧電素子44を備えている。圧電素子による探針の駆動制御は周知の技術であるため詳細な説明は省略するが、本体部41に設けたこれら圧電素子41〜44への印加電圧を制御して圧電素子41〜44の変位量を調節することで、探針11をXYZの3軸方向に移動させる仕組みになっている。また、円柱形の本体部41はこの場合X軸の正負両方向に大きく移動できるように粗動機構(図2参照)に取り付けられている。
各駆動機構40はX−Y平面、Y−Z平面及びZ−X平面にのびる3つの正方形の枠体51,52,53を立方体形状に組み上げて成るフレーム50に取り付けられている。
One drive mechanism 40 is provided for each probe in order to drive each of the six probes at least in the XYZ axis directions.
Hereinafter, as an example, a description will be given of the drive mechanism 40 attached to the probe 11 whose cross-sectional area is reduced in diameter along the positive direction of the X-axis. As shown in FIG. 1 (b), the drive mechanism 40 includes a cylindrical main body 41 whose longitudinal direction extends along the X axis. One piezoelectric element 42 is provided at a position penetrating the Z axis, and one piezoelectric element 44 is provided at the rear end of the main body 41. The drive control of the probe by the piezoelectric element is a well-known technique, and thus detailed description is omitted.However, the displacement of the piezoelectric elements 41 to 44 is controlled by controlling the voltage applied to the piezoelectric elements 41 to 44 provided in the main body 41. By adjusting the amount, the probe 11 is moved in three XYZ axes. Further, in this case, the cylindrical main body 41 is attached to a coarse movement mechanism (see FIG. 2) so as to be able to largely move in both positive and negative directions of the X axis.
Each drive mechanism 40 is attached to a frame 50 formed by assembling three square frames 51, 52, 53 extending in an XY plane, a YZ plane, and a ZX plane into a cubic shape.

本実施の形態では、6つの探針のうち3つの探針11,21,31で試料Sを三点保持し、他の3つの探針12,22,32で試料SをXYZ軸方向に三次元走査する。
具体的には、XYZ軸の正方向に沿って断面積が縮径するようにのびる3つの探針11,21,31を利用し、これら3つの探針11,21,31を試料Sに固着させることで試料Sを三点保持している。探針11,21,31を試料に固着させる方法としては電子ビームによる溶接法や炭化物による接着法等の周知の技術を用いればよい。
In the present embodiment, the sample S is held at three points by three of the six probes 11, 21, and 31, and the sample S is three-dimensionally moved in the XYZ axis directions by the other three probes 12, 22, and 32. Original scan.
Specifically, three probes 11, 21, 31 extending so that the cross-sectional area decreases in the positive direction of the XYZ axes are used, and these three probes 11, 21, 31 are fixed to the sample S. Thus, three points of the sample S are held. As a method for fixing the probes 11, 21, and 31 to the sample, a known technique such as a welding method using an electron beam or a bonding method using a carbide may be used.

図3は本実施の形態の試料保持・走査機構1を備える走査型プローブ顕微鏡2を、電子顕微鏡3に組み込んだ場合の構成の概略を示すブロック図である。
6つの駆動機構40はそれぞれ微動制御用と粗動制御用のコントローラ100に接続されており、これらコントローラ100はCPU101から出力される駆動信号に基いて動作する。上述のとおり、試料Sは3つの探針11,21,31で三点保持されており、他の3つの探針12,22,32によって試料S表面をXYZ軸方向に三次元走査し、探針−試料間の相互作用(例:トンネル電流、原子間力、静電気力、近接場、磁気力、交換力、化学結合力など)の信号を信号検出器で検出する。そして、それぞれ独立に得られた3組の画像を画像合成手段としてのCPU101で相補的に組み合わせることで試料の三次元立体画像を取得する。
なお、試料保持に供している3つの探針11,21,31は駆動機構40による駆動を行わず静止させておけばよいが、これら3つの探針11,21,31を動かせば試料Sに引張、圧縮、剪断等の外力を付加した状態の三次元立体画像を取得できる。また、探針11,21,31を介して試料Sに通電することにすれば通電状態の試料Sの三次元立体画像を取得できる。
取得した三次元立体画像には試料Sの幾何学的構造に関する情報のみならず、機械的、電気的、化学的諸特性についての情報が含まれているため、新素材開発のみならず幾何学的構造と物性とが密接に関係する三次元構造の電子デバイス開発、医薬品開発、ドラックデリバリー分野等の様々な研究分野に利用できる。
このように、本実施の形態の試料保持・走査機構1では試料Sを点(探針の先端)で保持するため、従来、試料を基板に載せた場合、試料が基板からの引力等の強い作用を受けて平面方向に広がってしまい、立体形状が崩れてしまうという問題や、試料の下面側が基板で隠れてしまうという問題があったが、これら問題を解消でき、より現実の立体形状に近い状態で試料Sを観察できる。
また、走査型プローブ顕微鏡2を電子顕微鏡3単体や、さらに収束イオンビーム発生装置を備えた電子顕微鏡に組み込むことで、電子顕微鏡3による試料Sの観察も行なうことができるだけでなく、後述するとおり、電子線や、さらにはイオンビームを探針の製造時に利用できるという利点も有する。
なお、本実施の形態では試料Sを3つの探針11,21,31で保持するものとしたが、これに限らず試料Sを1つ以上の探針で保持すればよい。例えば1つの探針で保持する場合、残りの5つの探針全てで走査したり、あるいは4つ以下の探針で走査することにしてもよい。
また、本実施の形態では探針を試料Sに固着させるものとしたが、必ずしも固着させる必要はなく、探針を試料に接触させて保持することにしてもよい。
FIG. 3 is a block diagram schematically showing a configuration when a scanning probe microscope 2 including a sample holding / scanning mechanism 1 according to the present embodiment is incorporated in an electron microscope 3.
The six drive mechanisms 40 are connected to controllers 100 for fine movement control and coarse movement control, respectively, and these controllers 100 operate based on drive signals output from the CPU 101. As described above, the sample S is held at three points by the three probes 11, 21, and 31, and the surface of the sample S is three-dimensionally scanned in the XYZ axis directions by the other three probes 12, 22, and 32, and the probe is searched. The signal of the needle-sample interaction (eg, tunnel current, atomic force, electrostatic force, near field, magnetic force, exchange force, chemical bonding force, etc.) is detected by a signal detector. Then, a three-dimensional image of the sample is obtained by complementarily combining the three sets of images obtained independently from each other by the CPU 101 as the image synthesizing means.
Note that the three probes 11, 21, and 31 used for holding the sample may be kept stationary without being driven by the drive mechanism 40, but if the three probes 11, 21, and 31 are moved, the sample S is moved to the sample S. It is possible to acquire a three-dimensional stereoscopic image in a state where external forces such as tension, compression, and shear are applied. In addition, if a current is supplied to the sample S via the probes 11, 21, and 31, a three-dimensional stereoscopic image of the sample S in the energized state can be obtained.
The acquired 3D image contains not only information about the geometric structure of the sample S but also information about mechanical, electrical, and chemical properties. It can be used in various research fields such as the development of electronic devices having a three-dimensional structure in which the structure and physical properties are closely related, drug development, and drug delivery.
As described above, in the sample holding / scanning mechanism 1 according to the present embodiment, the sample S is held at a point (tip of the probe). Therefore, conventionally, when the sample is placed on the substrate, the sample has a strong attractive force from the substrate. There was a problem that the three-dimensional shape collapsed due to the action, and the three-dimensional shape collapsed, and a problem that the lower surface of the sample was hidden by the substrate. The sample S can be observed in the state.
In addition, by incorporating the scanning probe microscope 2 into the electron microscope 3 alone or into an electron microscope equipped with a focused ion beam generator, not only can the observation of the sample S by the electron microscope 3 be performed, but also as described later, There is also an advantage that an electron beam or even an ion beam can be used when manufacturing a probe.
In the present embodiment, the sample S is held by the three probes 11, 21, 31. However, the present invention is not limited to this, and the sample S may be held by one or more probes. For example, when holding with one probe, scanning may be performed with all the remaining five probes, or scanning may be performed with four or less probes.
In this embodiment, the probe is fixed to the sample S. However, the probe is not necessarily fixed, and the probe may be held in contact with the sample.

[第2の実施の形態]
次に、本発明の試料保持・走査機構の第2の実施の形態について図面を参照しながら説明するが、上記実施の形態と同一の構成になる箇所については同一の符号を付してその説明を省略する。
本実施の形態では図4〜図6に示すように6つの駆動機構40を、3軸回転自由度を持つジンバル60に取り付けることを特徴とする。
具体的にはジンバル60は、X軸回りに回転自在となるようにフレーム50に軸支される大径のリング61と、Y軸回りに回転自在となるように大径のリング61に軸支される中径のリング62と、Z軸回りに回転自在となるように中径のリング62に軸支される小径のリング63から構成される。そして、X軸方向探針組10を小径のリング63、Y軸方向探針組20を大径と中径のリング61,62、Z軸方向探針組30を中径と小径のリング62,63に取り付けることで、試料保持に供していない他の3つの探針12,22,32を試料Sの周囲に移動させることができる仕組みになっている。各リング61,62,63の回転駆動は粗動制御用のコントローラ100で制御する。
なお、本実施の形態では3軸回転自由度を持つジンバル60を用いたが、2軸回転自由度を持つジンバルを使用してもよい。
またX軸方向探針組、Y軸方向探針組及びZ軸方向探針組のうち1つもしくは2つの探針組を取り外し、残りの探針組を構成する一方の探針を用いて試料を保持し、対向する他方の探針が備える駆動機構を、3軸回転自由度を持つジンバルに取り付け、当該対向する他方の探針が当該試料をXYZ軸方向に三次元走査することにしてもよい。
[Second embodiment]
Next, a second embodiment of the sample holding / scanning mechanism of the present invention will be described with reference to the drawings, and portions having the same configuration as the above embodiment will be denoted by the same reference numerals and will not be described. Is omitted.
The present embodiment is characterized in that six drive mechanisms 40 are mounted on a gimbal 60 having three degrees of freedom of rotation as shown in FIGS.
Specifically, the gimbal 60 is supported by a large-diameter ring 61 that is rotatably supported by the frame 50 so as to be rotatable around the X axis, and a large-diameter ring 61 that is rotatable around the Y axis. And a small-diameter ring 63 supported by the medium-diameter ring 62 so as to be rotatable around the Z axis. The X-axis direction probe set 10 is a small-diameter ring 63, the Y-axis direction probe set 20 is a large-diameter and medium-diameter ring 61,62, and the Z-axis direction probe set 30 is a medium-diameter and small-diameter ring 62, By attaching it to 63, the other three probes 12, 22, 32 not used for holding the sample can be moved around the sample S. The rotational drive of each ring 61, 62, 63 is controlled by a controller 100 for coarse movement control.
In this embodiment, the gimbal 60 having three degrees of freedom of rotation is used, but a gimbal having two degrees of freedom of rotation may be used.
Also, remove one or two of the X-axis probe set, Y-axis probe set, and Z-axis probe set, and use one of the tips that make up the remaining probe set. Holding the drive mechanism of the other opposing probe to a gimbal having three degrees of freedom of rotation, and the other opposing probe performs three-dimensional scanning of the sample in the XYZ axis directions. Good.

[第3の実施の形態]
次に、本発明の試料保持・走査機構の第3の実施の形態について図面を参照しながら説明するが、上記実施の形態と同一の構成になる箇所については同一の符号を付してその説明を省略する。
本実施の形態では図7〜図10に示すように試料保持に供する探針11,21,31を駆動させる駆動機構40に関して、これら駆動機構40をジンバル60に取り付けず、支持部材70を用いて別途支持することを特徴とする。
これにより、試料保持に供していない他の3つの探針12,22,32を、試料Sの周囲のほぼ360°の任意の位置まで移動させることが可能になる。換言すると、上記第2の実施の形態の構成の場合、例えばX軸方向探針組10のうち試料保持に供していない探針12は、これに対向配置される試料保持に供している探針11と一体に移動するので、探針11が試料Sを保持している箇所の近傍まで移動することができず、当該箇所の画像を取得するには、Y軸方向探針組20又はZ軸方向探針組30の探針22,32を当該箇所まで移動させる必要があった。しかし、本実施の形態の構成によれば、試料保持に供している探針11,21,31は支持部材70により支持されており、ジンバル60に組み込まれていない。したがって、試料保持に供していない探針12,22,32は、これに対向配置されている試料保持に供している探針11,21,31から独立して移動でき、例えばX軸方向探針組10のうち試料保持に供している探針11と試料Sとの保持箇所近傍の画像を、試料保持に供していない探針12で取得することができるので画像取得の自由度を向上させることができる。
[Third Embodiment]
Next, a third embodiment of the sample holding / scanning mechanism of the present invention will be described with reference to the drawings, and portions having the same configuration as the above embodiment will be denoted by the same reference numerals and will not be described. Is omitted.
In the present embodiment, as shown in FIGS. 7 to 10, regarding the drive mechanism 40 for driving the probes 11, 21, 31 used for holding the sample, these drive mechanisms 40 are not attached to the gimbal 60, and the support member 70 is used. It is characterized by being separately supported.
This makes it possible to move the other three probes 12, 22, and 32 that are not used for holding the sample to an arbitrary position around the sample S at substantially 360 °. In other words, in the case of the configuration of the second embodiment, for example, the probe 12 that is not used for holding the sample in the X-axis direction probe set 10 is the probe that is used for holding the sample that is disposed to face the sample. Since the probe 11 moves integrally with the probe 11, the probe 11 cannot move to the vicinity of the location holding the sample S, and to acquire an image of the location, the Y-axis direction probe set 20 or the Z-axis It was necessary to move the probes 22, 32 of the directional probe set 30 to the relevant location. However, according to the configuration of the present embodiment, the probes 11, 21, and 31 used for holding the sample are supported by the support member 70 and are not incorporated in the gimbal 60. Therefore, the probes 12, 22, 32 that are not used for holding the sample can move independently of the probes 11, 21, 31 that are used for holding the sample that is arranged opposite thereto, and for example, the X-axis direction probe An image of the vicinity of the holding position of the sample S and the probe 11 used for holding the sample in the set 10 can be acquired by the probe 12 not used for holding the sample, thereby improving the degree of freedom in image acquisition. Can be.

次に、試料保持・走査機構に用いる探針の製造方法において説明する。
本製造方法は、図11(a)に示すように探針材料となる柱状部材80の両端を駆動機構40に固定する第1ステップと、図11(b)に示すように当該柱状部材80の両端から長手方向の中央に向かって断面積が小さくなるようにテーパー加工を施す第2ステップと、図11(c)に示すように断面積の最小位置において柱状部材80を2つに切り離すことで、対向配置した2つの探針(例えば探針11と探針12)を製造する第3ステップを少なくとも備える。
このように、両端を駆動機構40に固定した一つの柱状部材80に加工を施して2つの探針を対向配置させる方が、別途製造した2つの探針をそれぞれ駆動機構40に固定した後、駆動機構40を動作させて2つの探針が対向するように位置決めする場合と比較して作業効率を高めることができる。
柱状部材80の両端から長手方向の中央に向かって断面積が小さくなるようにテーパー加工を施す方法として、例えば電子線による電子ビーム加工が挙げられるが、上記第1の実施の形態で示したように、走査型プローブ顕微鏡を電子顕微鏡に組み込んでおけば、電子顕微鏡が備える電子銃を利用して電子ビーム加工を行なうことができるという利点がある。また、三次元立体画像を取得する試料の形状や性状に応じて探針の形状を調節する必要があるが、電子顕微鏡が備える電子銃を利用することで、観察直前に探針を所望の形状に加工できるので作業効率を向上させることができる。また、探針の製造過程及び画像取得時に電子顕微鏡の機能を利用して各探針の状態や位置をモニタリングできるという利点もある。
なお、必ずしも走査型プローブ顕微鏡2を電子顕微鏡3に組み込む必要はなく、電子顕微鏡以外の周知の加工機の電子ビームを利用したり、或いは集束イオンビーム等の周知の加工方法を利用してもよい。
Next, a method of manufacturing a probe used for a sample holding / scanning mechanism will be described.
This manufacturing method includes a first step of fixing both ends of a columnar member 80 to be a probe material to the drive mechanism 40 as shown in FIG. 11 (a), and the columnar member 80 as shown in FIG. 11 (b). A second step of tapering so that the cross-sectional area decreases from both ends toward the center in the longitudinal direction, and by separating the columnar member 80 into two at the minimum position of the cross-sectional area as shown in FIG. The method further includes at least a third step of manufacturing two probes (for example, the probe 11 and the probe 12) disposed to face each other.
In this way, it is better to apply processing to one columnar member 80 having both ends fixed to the drive mechanism 40 and dispose the two probes facing each other, after fixing two separately manufactured probes to the drive mechanism 40, The working efficiency can be improved as compared with the case where the drive mechanism 40 is operated to position the two probes so as to face each other.
As a method of performing taper processing so that the cross-sectional area decreases from both ends of the columnar member 80 toward the center in the longitudinal direction, for example, electron beam processing with an electron beam can be mentioned, but as described in the first embodiment. Furthermore, if the scanning probe microscope is incorporated in the electron microscope, there is an advantage that electron beam processing can be performed using an electron gun provided in the electron microscope. In addition, it is necessary to adjust the shape of the probe in accordance with the shape and properties of the sample from which a three-dimensional stereoscopic image is to be obtained. Work efficiency can be improved. There is also an advantage that the state and position of each probe can be monitored using the function of the electron microscope at the time of manufacturing the probe and acquiring an image.
It is not always necessary to incorporate the scanning probe microscope 2 into the electron microscope 3, and an electron beam of a known processing machine other than the electron microscope may be used, or a known processing method such as a focused ion beam may be used. .

次に、走査型プローブ顕微鏡2を電子顕微鏡3に組み込んだ場合の探針製造から画像取得までの流れを示す。
まず、探針材料となる柱状部材80を駆動機構40に固定し、試料保持・走査機構1を電子顕微鏡3内に導入する。そして、電子線を用いて2つの探針が対向するように柱状部材80を加工する。同様の作業を繰り返して他の2組の探針を製造する。
次に、3つの探針11,21,31で試料Sを三点保持した状態で、試料Sに電子線を照射して清浄試料を作製する。そして、他の3つの探針12,22,32を移動させて3組の画像を取得し、これら画像を画像合成手段(CPU101)で相補的に組み合わせることで三次元立体画像を得る。
次に、必要に応じて試料保持に供している探針11,21,31を移動させたり、探針11,21,31に電気的(磁気的)信号等を加えたりすることで、試料Sに外力や電気的(磁気的)信号等を付加した状態での三次元立体画像を得る。
そして、試料保持に供していない探針12,22,32を所定位置まで戻した後、試料保持・走査機構1を電子顕微鏡3から取り出して終了する。
Next, a flow from the manufacture of the probe to the acquisition of an image when the scanning probe microscope 2 is incorporated in the electron microscope 3 will be described.
First, the columnar member 80 serving as a probe material is fixed to the drive mechanism 40, and the sample holding / scanning mechanism 1 is introduced into the electron microscope 3. Then, the columnar member 80 is processed using an electron beam so that the two probes face each other. The same operation is repeated to manufacture the other two sets of tips.
Next, in a state where the sample S is held at three points by the three probes 11, 21, and 31, the sample S is irradiated with an electron beam to produce a clean sample. Then, the other three probes 12, 22, and 32 are moved to obtain three sets of images, and these images are complementarily combined by the image combining means (CPU 101) to obtain a three-dimensional stereoscopic image.
Next, by moving the probes 11, 21, 31 used for holding the sample as needed, or by applying an electrical (magnetic) signal or the like to the probes 11, 21, 31, the sample S To obtain a three-dimensional image in a state where external force, electric (magnetic) signal, and the like are added to the image.
Then, after returning the probes 12, 22, and 32 not used for holding the sample to the predetermined position, the sample holding / scanning mechanism 1 is removed from the electron microscope 3 and the process is terminated.

本発明は、基板の影響を受けずに高い空間自由度で試料の三次元立体画像を取得できる試料保持・走査機構、この試料保持・走査機構を備えた走査型プローブ顕微鏡及び試料保持・走査機構で用いる探針の製造方法であり、産業上の利用可能性を有する。   The present invention relates to a sample holding / scanning mechanism capable of acquiring a three-dimensional stereoscopic image of a sample with a high degree of spatial freedom without being affected by a substrate, a scanning probe microscope including the sample holding / scanning mechanism, and a sample holding / scanning mechanism. This is a method for manufacturing a probe used in the method, and has industrial applicability.

S 試料
1 試料保持・走査機構
2 走査型プローブ顕微鏡
3 電子顕微鏡
10 X軸方向探針組
11,12,21,22,31,32探針
20 Y軸方向探針組
30 Z軸方向探針組
40 駆動機構
41 本体部
42,43,44 圧電素子
50 フレーム
51,52,53枠体
60 ジンバル
61 大径のリング
62 中径のリング
63 小径のリング
70 支持部材
80 柱状部材
100 コントローラ
101 CPU
S sample
1 Sample holding / scanning mechanism
2 Scanning probe microscope
3 Electron microscope
10 X axis probe set
11,12,21,22,31,32 tips
20 Y-axis probe set
30 Z axis probe set
40 Drive mechanism
41 Main unit
42,43,44 Piezoelectric element
50 frames
51,52,53 frame
60 gimbals
61 Large Diameter Ring
62 medium diameter ring
63 small diameter ring
70 Support members
80 Column
100 controller
101 CPU

Claims (8)

X軸方向に沿って対向配置した2つの探針で構成されるX軸方向探針組と、Y軸方向に沿って対向配置した2つの探針で構成されるY軸方向探針組と、Z軸方向に沿って対向配置した2つの探針で構成されるZ軸方向探針組と、前記6つの探針それぞれを少なくともXYZ軸方向に駆動させる6つの駆動機構を備えており、1つ以上の探針で試料を保持した状態で、他の探針が当該試料をXYZ軸方向に三次元走査することを特徴とする試料保持・走査機構。
An X-axis direction probe set composed of two probes arranged oppositely along the X-axis direction, and a Y-axis direction probe set composed of two probes arranged oppositely along the Y-axis direction, It comprises a Z-axis direction probe set composed of two probes arranged facing each other along the Z-axis direction, and six drive mechanisms for driving each of the six probes at least in the XYZ-axis direction. A sample holding / scanning mechanism wherein another probe scans the sample three-dimensionally in the XYZ axis directions while holding the sample with the above-described probe.
前記X軸方向探針組のうちの1つの探針と、前記Y軸方向探針組のうちの1つの探針と、前記Z軸方向探針組のうちの1つの探針の計3つの探針で試料を三点保持した状態で、他の探針が当該試料をXYZ軸方向に三次元走査することを特徴とする請求項1に記載の試料保持・走査機構。
One of the X-axis probe sets, one of the Y-axis probe sets, and one of the Z-axis probe sets, a total of three probes. 2. The sample holding / scanning mechanism according to claim 1, wherein another sample scans the sample three-dimensionally in the XYZ axis directions while holding the sample at three points by the probe.
前記6つの駆動機構を、3軸回転自由度を持つジンバルに取り付けることを特徴とする請求項1又は2に記載の試料保持・走査機構。
3. The sample holding / scanning mechanism according to claim 1, wherein the six driving mechanisms are attached to a gimbal having three degrees of freedom of rotation.
前記6つの駆動機構のうち前記試料保持に供する探針を駆動させる駆動機構に関して、当該駆動機構をジンバルに取り付けず、別途支持することを特徴とする請求項3に記載の試料保持・走査機構。
4. The sample holding / scanning mechanism according to claim 3, wherein, among the six driving mechanisms, a driving mechanism for driving the probe used for holding the sample is supported separately without attaching the driving mechanism to a gimbal.
前記X軸方向探針組、Y軸方向探針組及びZ軸方向探針組のうち1つもしくは2つの探針組を取り外し、残りの探針組を構成する一方の探針を用いて試料を保持し、対向する他方の探針が備える駆動機構を、3軸回転自由度を持つジンバルに取り付け、当該対向する他方の探針が当該試料をXYZ軸方向に三次元走査することを特徴とする請求項1又は2に記載の試料保持・走査機構。
One or two of the X-axis direction probe set, the Y-axis direction probe set and the Z-axis direction probe set are removed, and a sample is formed using one of the remaining probe sets. The drive mechanism of the other opposing probe is attached to a gimbal having three degrees of freedom of rotation, and the other opposing probe three-dimensionally scans the sample in the XYZ axis directions. 3. The sample holding and scanning mechanism according to claim 1, wherein
前記探針のうち前記試料保持に供する探針に関して、当該探針に前記試料を固着することを特徴とする請求項1〜5のいずれか一項に記載の試料保持・走査機構。
The sample holding / scanning mechanism according to any one of claims 1 to 5, wherein the sample fixed to the probe is used for holding the sample among the probes.
請求項1〜6のいずれか一項に記載の試料保持・走査機構を備えており、更に、前記他の探針が前記試料を三次元走査することで得た画像を相補的に合成することで当該試料の三次元立体画像を得る画像合成手段を備えることを特徴とする走査型プローブ顕微鏡。
A sample holding / scanning mechanism according to any one of claims 1 to 6, further comprising: the other probe complementarily synthesizing an image obtained by three-dimensionally scanning the sample. A scanning probe microscope comprising an image synthesizing means for obtaining a three-dimensional stereoscopic image of the sample.
請求項1〜6のいずれか一項に記載の試料保持・走査機構に用いる探針の製造方法において、
探針材料となる柱状部材の両端を前記駆動機構に固定するステップと、
当該柱状部材の両端から長手方向の中央に向かって断面積が小さくなるようにテーパー加工を施すステップと、
前記断面積の最小位置において柱状部材を2つに切り離すことで、前記対向配置した2つの探針を製造するステップを備えることを特徴とする探針の製造方法。
In the method for manufacturing a probe used for the sample holding and scanning mechanism according to any one of claims 1 to 6,
Fixing both ends of a columnar member to be a probe material to the driving mechanism;
Performing a taper process so that the cross-sectional area decreases from both ends of the columnar member toward the center in the longitudinal direction,
A method for manufacturing a probe, comprising a step of manufacturing the two opposed probes by separating the columnar member into two at the minimum position of the cross-sectional area.
JP2015192365A 2015-09-30 2015-09-30 Sample holding / scanning mechanism, scanning probe microscope, and method of manufacturing probe Active JP6675121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015192365A JP6675121B2 (en) 2015-09-30 2015-09-30 Sample holding / scanning mechanism, scanning probe microscope, and method of manufacturing probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015192365A JP6675121B2 (en) 2015-09-30 2015-09-30 Sample holding / scanning mechanism, scanning probe microscope, and method of manufacturing probe

Publications (2)

Publication Number Publication Date
JP2017067570A JP2017067570A (en) 2017-04-06
JP6675121B2 true JP6675121B2 (en) 2020-04-01

Family

ID=58494564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015192365A Active JP6675121B2 (en) 2015-09-30 2015-09-30 Sample holding / scanning mechanism, scanning probe microscope, and method of manufacturing probe

Country Status (1)

Country Link
JP (1) JP6675121B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3610540A1 (en) * 1986-03-27 1987-10-01 Kernforschungsanlage Juelich MOTION DEVICE FOR MICROMOVING OBJECTS
GB8624191D0 (en) * 1986-10-08 1986-11-12 Renishaw Plc Datuming of analogue measurement probes
JPH04157302A (en) * 1990-10-19 1992-05-29 Matsushita Electric Ind Co Ltd Scanning tunneling microscope
JPH0526613A (en) * 1991-07-24 1993-02-02 Matsushita Electric Ind Co Ltd Manufacture of probe for scanning tunnel microscope
US5903085A (en) * 1997-06-18 1999-05-11 Phase Metrics, Inc. Piezoelectric nanopositioner
JP4180289B2 (en) * 2002-03-18 2008-11-12 喜萬 中山 Nanotube sharpening method
JP3954456B2 (en) * 2002-07-09 2007-08-08 パイオニア株式会社 Pickup device
WO2008087725A1 (en) * 2007-01-18 2008-07-24 Advantest Corporation Substrate fixing device and substrate fixing method

Also Published As

Publication number Publication date
JP2017067570A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP2005069972A (en) Method for controlling travel in probe in scanning probe microscope
US7333191B2 (en) Scanning probe microscope and measurement method using the same
EP1653478B1 (en) Surface texture measuring probe and microscope utilizing the same
CN111413519A (en) Multi-integrated tip scanning probe microscope
JP6135820B2 (en) Scanning probe microscope
JP5009126B2 (en) Method for processing needle-shaped sample for atom probe and focused ion beam apparatus
US7388199B2 (en) Probe manufacturing method, probe, and scanning probe microscope
JP6675121B2 (en) Sample holding / scanning mechanism, scanning probe microscope, and method of manufacturing probe
Gao et al. Experiments using a nano-machining instrument for nano-cutting brittle materials
JP5034294B2 (en) Piezoelectric thin film evaluation apparatus and piezoelectric thin film evaluation method
JP2006275826A (en) Surface shape measuring apparatus
Tsunemi et al. Development of multi-environment dual-probe atomic force microscopy system using optical beam deflection sensors with vertically incident laser beams
JP4758526B2 (en) Micromanipulation equipment for fine work
JP2017067571A (en) Specimen holding/scanning mechanism, scanning probe microscope and manufacturing method of holding part
Lee Probe-rotating atomic force microscopy for determining material properties
JPWO2012033131A1 (en) Surface processing equipment using a scanning probe microscope
JP2006284392A (en) Scanning probe microscope, measuring method of surface contour of sample and probe device
JPH03122514A (en) Observing apparatus for surface
JPH0549921B2 (en)
JP7273408B2 (en) Scanning probe microscope and Z drive
Guan et al. A piezoelectric goniometer inside a transmission electron microscope goniometer
Ismail Development and characterisation of next generation stylus for micro coordinate measuring machine.
TWI582429B (en) Scanning method for an atomic force microscopy
JP2022130141A (en) Device for evaluating the properties of cell cluster and method for evaluating the properties of cell cluster
JP2003266342A (en) Micromanipulation device for minute work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190830

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200303

R150 Certificate of patent or registration of utility model

Ref document number: 6675121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250