JPH04337248A - Zinc negative electrode plate for alkaline battery - Google Patents

Zinc negative electrode plate for alkaline battery

Info

Publication number
JPH04337248A
JPH04337248A JP3141019A JP14101991A JPH04337248A JP H04337248 A JPH04337248 A JP H04337248A JP 3141019 A JP3141019 A JP 3141019A JP 14101991 A JP14101991 A JP 14101991A JP H04337248 A JPH04337248 A JP H04337248A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
copper
zinc
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3141019A
Other languages
Japanese (ja)
Other versions
JP3185244B2 (en
Inventor
Hideo Yasuda
安田 秀雄
Koichi Nishiyama
浩一 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP14101991A priority Critical patent/JP3185244B2/en
Publication of JPH04337248A publication Critical patent/JPH04337248A/en
Application granted granted Critical
Publication of JP3185244B2 publication Critical patent/JP3185244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the life performance by uniformly distributing the fine copper powder around a copper basic current collector. CONSTITUTION:The zinc oxide powder 100 pts. and nylon short fibers 0.2 pts. with the length 1mm are mixed with propylene glycol 30 pts. into a paste shape. It is kneaded with a 60%-aqueous dispersion solution 3ml of polytetrafluoroethylene powder and pressed to a copper punching metal with the thickness 0.1mm and dried at 150 deg.C, and it is further pressed to obtain a negative electrode plate of 3X15X52mm with the theoretical capacity 700mAh of zinc oxide. Two Ni plates and a counter electrode are anode-excite for 22min with 5mA in a 3M-potassium hydroxide aqueous solution, then they are cathode-excited with the same current, and they are washed with hot water and dried. Copper fine grains are uniformly distributed on the surface of the copper grid of the negative electrode plate, thus the life performance can be improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はアルカリ電池用亜鉛負極
板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc negative electrode plate for alkaline batteries.

【0002】0002

【従来の技術とその課題】近年、電子機器の発展によっ
て新しい高性能の電池の出現が期待されている。そのう
ち、亜鉛を負極とする電池、例えばアルカリマンガン電
池やニッケル・亜鉛電池の高性能化への要求が強まって
いる。特に、これらの電池は二次電池としての可能性が
あるが、サイクル寿命が短いために、実用化が困難であ
った。
[Background Art and its Problems] In recent years, with the development of electronic equipment, new high-performance batteries are expected to appear. Among these, there is a growing demand for higher performance batteries that use zinc as the negative electrode, such as alkaline manganese batteries and nickel-zinc batteries. In particular, although these batteries have potential as secondary batteries, their short cycle life has made it difficult to put them into practical use.

【0003】その大きな技術的な課題としては、亜鉛の
デンドライト現象やシェイプチェンジ現象がある。これ
らの課題を克服するための一つの手段として、導電材と
して銅粉末やカドミウム粉末を添加して電流分布を均一
にして、これらの課題を軽減する試みが提案されている
が(例えばGS NEWS VOL.49,26(19
90),特開平1−315949)充分なものではなか
った。
[0003] The major technical problems include the dendrite phenomenon and shape change phenomenon of zinc. As a means to overcome these problems, attempts have been made to add copper powder or cadmium powder as a conductive material to make the current distribution uniform and alleviate these problems (for example, GS NEWS VOL .49,26(19
90), Japanese Unexamined Patent Publication No. 1-315949).

【0004】現在、二酸化マンガン・亜鉛電池は一次電
池として実用化されているが、充放電が可能な二次電池
としては実用化されていない。また、ニッケル・亜鉛電
池も、高エネルギー密度の電池として期待されているが
、現在のところ寿命性能が充分でないために実用化レベ
ルには、到達しておらず、その原因の大部分は亜鉛負極
のデンドライト現象やシェイプチェンジ現象にある。 これらの現象はいずれもサイクルにともなう容量低下や
電池の短絡に結びつくためにその効果的な対策が望まれ
ている。
Currently, manganese dioxide/zinc batteries are in practical use as primary batteries, but not as rechargeable secondary batteries. Furthermore, nickel-zinc batteries are also expected to be batteries with high energy density, but they have not yet reached the level of practical use due to insufficient longevity performance, which is largely due to the zinc negative electrode. This is due to the dendrite phenomenon and shape change phenomenon. Since all of these phenomena lead to a decrease in capacity and short circuit of the battery due to cycles, effective countermeasures are desired.

【0005】[0005]

【課題を解決するための手段】本発明は、従来の集電機
能と比較して極めて効果的な新しい集電構造の亜鉛負極
板に関するものであり、この負極板を二酸化マンガン・
亜鉛電池やニッケル・亜鉛電池に適用することによって
サイクル寿命性能を著しく改良したものである。
[Means for Solving the Problems] The present invention relates to a zinc negative electrode plate with a new current collecting structure that is extremely effective compared to conventional current collecting functions, and this negative electrode plate is made of manganese dioxide.
By applying it to zinc batteries and nickel-zinc batteries, the cycle life performance has been significantly improved.

【0006】その特徴は、銅の基本集電体、例えば、活
物質支持体のパンチングメタルあるいはその活物質に混
合した銅粉末の周辺に銅の微粉末が均質に分布する構造
の亜鉛負極板に関するものである。
The feature relates to a zinc negative electrode plate having a structure in which fine copper powder is uniformly distributed around a basic copper current collector, such as a punched metal of an active material support or a copper powder mixed with the active material. It is something.

【0007】その具体的な製造方法の一つは,銅を集電
体とする亜鉛負極板を過放電したのち、充電することで
ある。その場合、通電電流の大きさとその時間によって
、集電体として機能する銅の微粉末の量が制御できる。
One of the specific manufacturing methods is to over-discharge a zinc negative electrode plate using copper as a current collector, and then charge it. In that case, the amount of fine copper powder that functions as a current collector can be controlled by the magnitude and duration of the applied current.

【0008】[0008]

【実施例】以下、本発明の好適な実施例を用いて説明す
る。 [実施例1]酸化亜鉛粉末100部および長さ1mmの
ナイロンの短繊維0.2部をプロピレングリコ−ル30
部で混合して、ペースト状にする。次にポリテトラフル
オロエチレン粉末の60%水性デイスパージョン溶液3
mlを加えて混練する。その後、厚さ0.1mmの銅の
パンチングメタルに加圧ローラーで圧着してから150
℃で乾燥し、再度プレスして酸化亜鉛の理論容量が70
0mAhで、寸法が2.3×15×52(mm)の負極
板を製作した。
[Embodiments] The present invention will be explained below using preferred embodiments. [Example 1] 100 parts of zinc oxide powder and 0.2 parts of short nylon fibers with a length of 1 mm were mixed with 30 parts of propylene glycol.
Mix to make a paste. Next, a 60% aqueous dispersion solution of polytetrafluoroethylene powder 3
ml and mix. After that, it was pressed onto a copper punching metal with a thickness of 0.1 mm using a pressure roller, and then
Dry at ℃ and press again until the theoretical capacity of zinc oxide is 70
A negative electrode plate with dimensions of 2.3 x 15 x 52 (mm) was manufactured at 0 mAh.

【0009】この負極板を3Mの水酸化カリウム水溶液
を使用し、2枚のニッケル板を対極として、5mAの電
流で22分間アノード通電したのち、今度は逆に同じ電
流でカソード通電をおこなった。その後さらに湯洗・乾
燥して本発明による負極板(A)を得た。 [実施例2]酸化亜鉛粉末100部および長さ1mmの
ナイロンの短繊維0.2部をプロピレングリコール30
部で混合して、ペースト状にする。次にポリテトラフル
オロエチレン粉末の60%水性デイスパージョン溶液3
mlを加えて混練する。その後、厚さ0.1mmの銅の
パンチングメタルに加圧ローラーで圧着してから150
℃で乾燥し、再度プレスして酸化亜鉛の理論容量が70
0mAhで、寸法が2.3×15×52(mm)の負極
板を製作した。
Using a 3M potassium hydroxide aqueous solution, this negative electrode plate was energized at the anode with a current of 5 mA for 22 minutes using two nickel plates as counter electrodes, and then the cathode was energized with the same current. Thereafter, it was further washed with hot water and dried to obtain a negative electrode plate (A) according to the present invention. [Example 2] 100 parts of zinc oxide powder and 0.2 parts of short nylon fibers with a length of 1 mm were mixed with 30 parts of propylene glycol.
Mix to make a paste. Next, a 60% aqueous dispersion solution of polytetrafluoroethylene powder 3
ml and mix. After that, it was pressed onto a copper punching metal with a thickness of 0.1 mm using a pressure roller, and then
Dry at ℃ and press again until the theoretical capacity of zinc oxide is 70
A negative electrode plate with dimensions of 2.3 x 15 x 52 (mm) was manufactured at 0 mAh.

【0010】この負極板を3Mの水酸化カリウム水溶液
を使用し、2枚のニッケル板を対極として、5mAの電
流で63分間アノード通電したのち、今度は逆に同じ電
流でカソード通電をおこなった。その後さらに湯洗・乾
燥して本発明による負極板(B)を得た。 [実施例3]酸化亜鉛粉末100部,金属カドミウム1
0部および長さ1mmのナイロンの短繊維0.2部をプ
ロピレングリコール35部で混合して、ペースト状にす
る。つぎにポリテトラフルオロエチレン粉末の60%水
性デイスパージョン溶液3mlを加えて混練する。その
後、厚さ0.1mmの銅のパンチングメタルに加圧ロー
ラーで圧着してから150℃で乾燥し、再度プレスして
酸化亜鉛の理論容量が700mAhで、寸法が2.3×
15×52(mm)の負極板を製作した。
Using a 3M potassium hydroxide aqueous solution, this negative electrode plate was energized at the anode with a current of 5 mA for 63 minutes using two nickel plates as counter electrodes, and then the cathode was energized with the same current. Thereafter, it was further washed with hot water and dried to obtain a negative electrode plate (B) according to the present invention. [Example 3] 100 parts of zinc oxide powder, 1 part of metal cadmium
0 parts and 0.2 parts of short nylon fibers having a length of 1 mm are mixed with 35 parts of propylene glycol to form a paste. Next, 3 ml of a 60% aqueous dispersion solution of polytetrafluoroethylene powder was added and kneaded. After that, it was pressed onto a copper punching metal with a thickness of 0.1 mm using a pressure roller, dried at 150°C, and pressed again. The theoretical capacity of zinc oxide was 700 mAh, and the dimensions were 2.3 ×
A negative electrode plate of 15×52 (mm) was manufactured.

【0011】この負極板を3Mの水酸化カリウム水溶液
を使用し、2枚のニッケル板を対極として、5mAの電
流で22分間アノード通電したのち、今度は逆に同じ電
流でカソード通電をおこなった。その後さらに湯洗・乾
燥して本発明による負極板(C)を得た。 [実施例4]酸化亜鉛粉末100部,金属銅粉末10部
および長さ1mmのナイロンの短繊維0.2部をプロピ
レングリコ−ル35部で混合して、ペースト状にする。 つぎにポリテトラフルオロエチレン粉末の60%水性デ
イスパージョン溶液3mlを加えて混練する。その後、
厚さ0.1mmの銅のパンチングメタルに加圧ローラー
で圧着してから150℃で乾燥し、再度プレスして酸化
亜鉛の理論容量が700mAhで、寸法が2.3×15
×52(mm)の負極板を製作した。
Using a 3M aqueous potassium hydroxide solution, this negative electrode plate was energized at the anode with a current of 5 mA for 22 minutes using two nickel plates as counter electrodes, and then the cathode was energized with the same current. Thereafter, it was further washed with hot water and dried to obtain a negative electrode plate (C) according to the present invention. [Example 4] 100 parts of zinc oxide powder, 10 parts of metallic copper powder, and 0.2 parts of short nylon fibers having a length of 1 mm are mixed with 35 parts of propylene glycol to form a paste. Next, 3 ml of a 60% aqueous dispersion solution of polytetrafluoroethylene powder was added and kneaded. after that,
It was pressed onto a copper punching metal with a thickness of 0.1 mm using a pressure roller, dried at 150°C, and pressed again. The theoretical capacity of zinc oxide was 700 mAh, and the dimensions were 2.3 x 15
A negative electrode plate of ×52 (mm) was manufactured.

【0012】この負極板を3Mの水酸化カリウム水溶液
を使用し、2枚のニッケル板を対極として、5mAの電
流で22分間アノード通電したのち、今度は逆に同じ電
流でカソード通電をおこなった。その後さらに湯洗・乾
燥して本発明による負極板(D)を得た。
Using a 3M aqueous potassium hydroxide solution, this negative electrode plate was energized at the anode with a current of 5 mA for 22 minutes using two nickel plates as counter electrodes, and then the cathode was energized with the same current. Thereafter, it was further washed with hot water and dried to obtain a negative electrode plate (D) according to the present invention.

【0013】これらの負極板を0.12mmのポリアミ
ド不織布1枚、厚さ25μmのポリエチレン製の微孔性
膜1枚からなるセパレータで包んだのち、0.12mm
のポリアミド不織布1枚で包まれた正極板2枚の間には
さみ、電解液として酸化亜鉛を飽和した8.5Mの水酸
化カリウム水溶液2.5mlを用いて公称容量が500
mAhの合成樹脂電槽を使用した角形ニッケル・亜鉛電
池(A),(B),(C)および(D)を製作した。電
池の符号は負極板のものに対応させている。外形寸法は
7×16.5×8mmであり、電池には0.5kg/c
m2 で作動する安全弁を付けている。
After wrapping these negative electrode plates with a separator consisting of one 0.12 mm polyamide nonwoven fabric and one 25 μm thick polyethylene microporous membrane,
sandwiched between two positive electrode plates wrapped in one polyamide nonwoven fabric, and using 2.5 ml of an 8.5 M potassium hydroxide aqueous solution saturated with zinc oxide as the electrolyte, the nominal capacity was 500.
Square nickel-zinc batteries (A), (B), (C), and (D) using mAh synthetic resin containers were manufactured. The battery symbols correspond to those of the negative electrode plate. The external dimensions are 7 x 16.5 x 8 mm, and the battery weighs 0.5 kg/c.
It is equipped with a safety valve that operates at m2.

【0014】こうして製作した電池を20℃、0.5C
の電流で2時間充電したのち0.2Cの電流で1.4V
まで放電するというサイクル試験をおこなった。初期容
量を100とする放電容量の推移を図1に示す。
[0014] The thus manufactured battery was heated to 20°C and 0.5C.
After charging for 2 hours at a current of 1.4V at a current of 0.2C
A cycle test was conducted in which the battery was discharged to the maximum. FIG. 1 shows the change in discharge capacity with the initial capacity being 100.

【0015】なお、比較のためにアノード通電・カソー
ド通電処理をおこなわなかった亜鉛負極板を使用した以
外は実施例1と同様にしてニッケル・亜鉛電池(E)を
製作した。さらに、アノード通電・カソード通電処理を
おこなわなかった亜鉛負極板を使用した以外は実施例4
と同様にしてニッケル・亜鉛電池(F)も製作して評価
をおこなった。
For comparison, a nickel-zinc battery (E) was manufactured in the same manner as in Example 1, except that a zinc negative electrode plate was used that was not subjected to anode energization or cathode energization treatment. Furthermore, Example 4 except that a zinc negative electrode plate which was not subjected to anode energization/cathode energization treatment was used.
A nickel-zinc battery (F) was also manufactured and evaluated in the same manner.

【0016】図1より、本発明の負極板を使用した電池
(A),(B),(C)および(D)は、従来の負極板
を使用した電池(E),(F)よりも、サイクルに伴う
放電容量の低下が少ないことがわかる。さらに、本発明
による電池を比較してみると、アノード通電処理時間の
長い、すなわち電池(B)よりも電池(A)の方がサイ
クル寿命性能がよく、また金属カドミウム粉末や銅粉末
を用いる本発明の負極板を使用した電池(C)および(
D)の性能が良いことがわかる。
From FIG. 1, it can be seen that the batteries (A), (B), (C), and (D) using the negative electrode plates of the present invention are better than the batteries (E), (F) using the conventional negative electrode plates. , it can be seen that the decrease in discharge capacity due to cycling is small. Furthermore, when comparing the batteries according to the present invention, battery (A) has a longer anode current treatment time, that is, battery (B) has better cycle life performance than battery (B). Battery (C) using the negative electrode plate of the invention and (
It can be seen that the performance of D) is good.

【0017】次に、本発明による負極板の性能が優れて
いる理由を調べるために、それぞれの負極板の断面をX
線マイクロアナライザーで調査した。その結果、本発明
による負極板は、銅グリッドから表面に銅の微粒子が均
一に分布していた。また、アノード通電処理時間の長い
負極板の方が微粒子の銅の量が多かった。一方、従来の
負極板(D)の場合には、銅の微粒子がほとんど認めら
れなかった。
Next, in order to investigate the reason why the performance of the negative electrode plate according to the present invention is excellent, the cross section of each negative electrode plate was
The results were investigated using a line microanalyzer. As a result, in the negative electrode plate according to the present invention, fine copper particles were uniformly distributed from the copper grid to the surface. In addition, the amount of fine copper particles was greater in the negative electrode plate with a longer anode current treatment time. On the other hand, in the case of the conventional negative electrode plate (D), almost no copper particles were observed.

【0018】これらのことから、本発明の負極板の性能
が優れているのは、活物質の酸化亜鉛粉末の近傍に均一
な銅の微粒子が存在することによって、負極板の電流分
布が均一になるために亜鉛負極板のシェイプチェンジ現
象やデンドライト現象が抑制されたためによるものと思
われる。特に、金属カドミウム粉末や金属銅粉末を含ん
だ場合に、その効果が著しくなるのは、金属カドミウム
粒子間や金属銅粒子間に微粒子の銅粉末が均一に介在し
て集電性がさらに向上したためであると推測される。
From the above, the reason why the negative electrode plate of the present invention has excellent performance is that the presence of uniform copper fine particles near the zinc oxide powder of the active material makes the current distribution of the negative electrode plate uniform. This is thought to be due to the fact that the shape change phenomenon and dendrite phenomenon of the zinc negative electrode plate were suppressed. In particular, when metal cadmium powder or metal copper powder is included, the effect becomes remarkable because the fine particles of copper powder are evenly interposed between the metal cadmium particles and between the metal copper particles, further improving the current collection property. It is assumed that

【0019】より実用的には、実施例のように負極板を
あらかじめアノード・カソード処理をするのではなく、
電池としたのち一定時間過放電したのち、充電すればよ
い。その場合、電流の大きさは小さいほど例えば0.1
C以下にすればより効果的であることがわかった。
More practically, instead of subjecting the negative electrode plate to anode/cathode treatment in advance as in the embodiment,
After making it into a battery, it can be over-discharged for a certain period of time and then charged. In that case, the smaller the magnitude of the current, for example 0.1
It was found that it is more effective if the temperature is lower than C.

【0020】まとめると、 (1)銅の基本集電体とその周辺に銅の微粉末が均質に
分布する構造を備えること特徴とするアルカリ電池用亜
鉛負極板。 (2)銅の基本粒子とその周辺に銅の基本粒子よりも小
さい銅の微粉末が均質に分布する構造を備えることを特
徴とするアルカリ電池用亜鉛負極板。 (3)金属カドミウムを含有することを特徴とする上記
(1)または(2)記載のアルカリ電池用亜鉛負極板。 (4)銅を集電体とする亜鉛負極板を備えたアルカリ電
池を過放電することを特徴とする化成方法。 により、亜鉛負極板を用いたアルカリ電池の寿命性能が
向上したことがわかる。
In summary: (1) A zinc negative electrode plate for alkaline batteries characterized by having a structure in which fine copper powder is homogeneously distributed around a copper basic current collector. (2) A zinc negative electrode plate for alkaline batteries characterized by having a structure in which basic copper particles and fine copper powder smaller than the basic copper particles are homogeneously distributed around the basic particles. (3) The zinc negative electrode plate for alkaline batteries as described in (1) or (2) above, which contains metal cadmium. (4) A chemical conversion method characterized by overdischarging an alkaline battery equipped with a zinc negative electrode plate using copper as a current collector. It can be seen that the life performance of alkaline batteries using zinc negative electrode plates has been improved.

【0021】以上は、本発明を亜鉛極をニッケル・亜鉛
電池に適用してその効果を確認したが、正極に二酸化マ
ンガンを用いたアルカリマンガン電池や酸化銀を用いた
銀電池に適用しても同様な効果を確認することができた
In the above, the effects of the present invention were confirmed by applying the zinc electrode to a nickel-zinc battery, but the present invention is also applicable to an alkaline manganese battery using manganese dioxide as the positive electrode or a silver battery using silver oxide. We were able to confirm a similar effect.

【0022】[0022]

【発明の効果】以上述べたように、本発明の亜鉛負極板
は、銅の基本集電体とその周辺に銅の微粉末が均質に分
布する構造を特徴とする亜鉛負極板であり、活物質の酸
化亜鉛粉末の近傍に均一な銅の微粒子が存在することに
よって、負極板の電流分布が均一になるために亜鉛負極
板のシェイプチェンジ現象やデンドライト現象が抑制さ
れる。従って、この負極板を使用したニッケル・亜鉛電
池、二酸化マンガン・亜鉛電池および酸化銀・亜鉛電池
等のアルカリ電池の寿命性能は著しく向上する。
Effects of the Invention As described above, the zinc negative electrode plate of the present invention is a zinc negative electrode plate characterized by a structure in which fine copper powder is uniformly distributed around a copper basic current collector, and is active. The existence of uniform fine copper particles in the vicinity of the zinc oxide powder of the substance makes the current distribution of the negative electrode plate uniform, thereby suppressing the shape change phenomenon and dendrite phenomenon of the zinc negative electrode plate. Therefore, the life performance of alkaline batteries such as nickel-zinc batteries, manganese dioxide-zinc batteries, and silver-zinc oxide batteries using this negative electrode plate is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の負極板を使用した電池と従来の負極板
を使用した電池の充放電サイクルに伴う容量保持率を比
較した図。
FIG. 1 is a diagram comparing the capacity retention rate of a battery using the negative electrode plate of the present invention and a battery using a conventional negative electrode plate during charge/discharge cycles.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】銅の基本集電体とその周辺に銅の微粉末が
均質に分布する構造を備えること特徴とするアルカリ電
池用亜鉛負極板。
1. A zinc negative electrode plate for an alkaline battery, comprising a basic copper current collector and a structure in which fine copper powder is uniformly distributed around the basic current collector.
【請求項2】銅の基本粒子とその周辺に銅の基本粒子よ
りも小さい銅の微粉末が均質に分布する構造を備えるこ
とを特徴とするアルカリ電池用亜鉛負極板。
2. A zinc negative electrode plate for an alkaline battery, comprising a structure in which basic copper particles and fine copper powder smaller than the basic copper particles are homogeneously distributed around the basic particles.
JP14101991A 1991-05-15 1991-05-15 Zinc negative electrode plate for alkaline batteries Expired - Fee Related JP3185244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14101991A JP3185244B2 (en) 1991-05-15 1991-05-15 Zinc negative electrode plate for alkaline batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14101991A JP3185244B2 (en) 1991-05-15 1991-05-15 Zinc negative electrode plate for alkaline batteries

Publications (2)

Publication Number Publication Date
JPH04337248A true JPH04337248A (en) 1992-11-25
JP3185244B2 JP3185244B2 (en) 2001-07-09

Family

ID=15282310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14101991A Expired - Fee Related JP3185244B2 (en) 1991-05-15 1991-05-15 Zinc negative electrode plate for alkaline batteries

Country Status (1)

Country Link
JP (1) JP3185244B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184471A (en) * 2015-03-25 2016-10-20 株式会社日本触媒 Electrode and battery constituted by using the same
CN113036152A (en) * 2021-03-08 2021-06-25 山东大学 High-energy-density and high-safety zinc metal battery without negative electrode and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184471A (en) * 2015-03-25 2016-10-20 株式会社日本触媒 Electrode and battery constituted by using the same
CN113036152A (en) * 2021-03-08 2021-06-25 山东大学 High-energy-density and high-safety zinc metal battery without negative electrode and preparation method and application thereof

Also Published As

Publication number Publication date
JP3185244B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
EP0354966A1 (en) Alkaline secondary battery and process for its production
KR920007381B1 (en) Making method of akaline battery
US3530496A (en) Rechargeable alkaline manganese cell
JPH11238509A (en) Nickel electrode active material for alkaline storage battery and nickel positive electrode using the same
JP7129288B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery containing this positive electrode
EP0901179B1 (en) Alkaline storage battery
JP4836351B2 (en) Electrode plate for alkaline storage battery and alkaline storage battery using the same
JPH04337248A (en) Zinc negative electrode plate for alkaline battery
EP0800221B1 (en) Alkaline storage battery and method for manufacturing positive electrode plate therefor
JPS62103976A (en) Cathode plate for enclosed lead storage battery
JPH1021897A (en) Secondary battery electrode
KR101641483B1 (en) MANUFACTURE METHOD OF POCKET TYPE Ni-Zn BATTERY
JPH071733Y2 (en) Zinc electrode for alkaline zinc storage battery
JP3547905B2 (en) Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery
JP4400113B2 (en) Nickel-hydrogen battery manufacturing method
JP2003257474A (en) Secondary battery
KR100287123B1 (en) Alkali-zinc secondary battery
JP2022182856A (en) Hydrogen storage alloy negative electrode and nickel hydrogen secondary battery including the same
JPH113697A (en) Chargeable/dischargeable battery and its manufacture
JP3267156B2 (en) Nickel hydride rechargeable battery
JPH0552028B2 (en)
JP2952272B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH07130369A (en) Battery electrode
JPH0251874A (en) Alkaline zinc lead-acid battery
JPH1140151A (en) Nickel-metal hydride secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees