JPH04335301A - Production of base body of reflection mirror - Google Patents

Production of base body of reflection mirror

Info

Publication number
JPH04335301A
JPH04335301A JP13553691A JP13553691A JPH04335301A JP H04335301 A JPH04335301 A JP H04335301A JP 13553691 A JP13553691 A JP 13553691A JP 13553691 A JP13553691 A JP 13553691A JP H04335301 A JPH04335301 A JP H04335301A
Authority
JP
Japan
Prior art keywords
glass
quartz glass
plate
fused
high silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13553691A
Other languages
Japanese (ja)
Other versions
JP2580406B2 (en
Inventor
Tatsumasa Nakamura
達政 中村
Yoshiaki Ise
吉明 伊勢
Yoshiaki Okamoto
義昭 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKAMOTO KOGAKU KAKOUSHIYO KK
Shin Etsu Quartz Products Co Ltd
Original Assignee
OKAMOTO KOGAKU KAKOUSHIYO KK
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKAMOTO KOGAKU KAKOUSHIYO KK, Shin Etsu Quartz Products Co Ltd filed Critical OKAMOTO KOGAKU KAKOUSHIYO KK
Priority to JP3135536A priority Critical patent/JP2580406B2/en
Priority to US07/785,103 priority patent/US5316564A/en
Publication of JPH04335301A publication Critical patent/JPH04335301A/en
Priority to US08/197,702 priority patent/US5461511A/en
Priority to US08/418,777 priority patent/US5563743A/en
Application granted granted Critical
Publication of JP2580406B2 publication Critical patent/JP2580406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve strength and accuracy and to reduce costs as well as to obtain excellent operability by fusing and forming a glass sealing layer on the peripheral side face of a laminate formed by using a quartz glass or high silicate glass sheet to a porous foam layer. CONSTITUTION:The disk-shaped porous foam 1 which is the quartz glass or high silicate glass consisting of silicon oxide and has 0.1 to 1g/cm<2> apparent density is used as a supporting member for a reflection mirror plate. This porous foam 1 is cut to a desired plate of a disk or square shape according to the size and shape of the reflection mirror. The transparent foamless quartz glass or high silicate glass sheet 2 for the reflection mirror is fused and integrated to the one surface thereof and a glass sheet 3 which does not require high purity as the rear sheet is fused and integrated to the other surface. After both sheets are joined to both surfaces of the foam layer 1, a slender sealing layer 4 of the quartz glass or high silicate glass is fused and formed on the peripheral side face of this laminate. The entire side face of the foam layer 1 is preferably finished smooth before the formation of the sealing layer.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、天体観測やビ−ム集光
あるいは宇宙産業等に有用な反射鏡の製造方法に関し、
特に、軽量で操作性に優れ、しかも高度の構造体強度と
光学的特性を有する反射鏡基体の製造方法に関する。
[Industrial Application Field] The present invention relates to a method for manufacturing a reflecting mirror useful for astronomical observation, beam focusing, space industry, etc.
In particular, the present invention relates to a method for manufacturing a reflecting mirror substrate that is lightweight, has excellent operability, and has high structural strength and optical properties.

【0002】0002

【従来の技術】従来、天体用反射鏡や高エネルギ−ビ−
ム等の光学的な集光に用いられる反射鏡は、例えば、石
英ガラスや高珪酸ガラス等を素材とする無気泡反射鏡板
の表面に、光学的な反射層として、アルミニウム等の金
属蒸着膜を形成させ、これを操作用支持台に支持させて
自由に回転操作される。このような反射鏡用基体は、反
射面の温度や内力的な状況変化に影響されない精度保持
が要求される。このような反射鏡は、これまで直径が5
〜20cm程度の小型のものが主流であったが、近年、
高い集光率を得るために直径が30cm〜1mあるいは
それ以上の大型のものが要求されるようになり、実用化
されるようになった。しかし、このような大型のものは
極めて大きな重量となるので、その反射鏡の支持角度等
の支持姿勢の変化によって自重による変形が起こり易く
、鏡面にうねり現象が生じて反射鏡の光学的性能を低下
させるなどの問題があった。
[Prior Art] Conventionally, astronomical reflectors and high-energy beams have been used.
For example, a reflector used for optical convergence such as a mirror is made of a bubble-free reflector plate made of quartz glass, high silicate glass, etc., with a vapor-deposited metal film such as aluminum as an optical reflective layer. It is supported on an operating support and can be rotated freely. Such a base for a reflecting mirror is required to maintain accuracy without being affected by the temperature of the reflecting surface or internal force changes. Until now, such a reflector had a diameter of 5
Small ones of ~20cm were the mainstream, but in recent years,
In order to obtain a high light condensing efficiency, large diameter devices of 30 cm to 1 m or more are now required and put into practical use. However, since such large objects are extremely heavy, changes in the supporting posture such as the support angle of the reflector can easily cause deformation due to its own weight, causing waviness on the mirror surface and impairing the optical performance of the reflector. There were problems such as deterioration.

【0003】このように大型化に伴って、集光ビ−ムの
輻射や環境温度の変化による反射鏡基体の微妙な体積変
化や変形のために鏡面うねり等が変化し、その変化がそ
の反射鏡の性能を低下させるので、反射鏡用素材として
熱膨張変化の小さい石英ガラスや高珪酸ガラスが使用さ
れるようになった。しかし、これらのガラス類は、反射
鏡基体を重くし反射鏡の操作性を低下させるので、操作
性を向上させるためには、その基体を可及的に軽減する
ことが要求される。そのような現実的要求に沿って、特
に大型反射鏡板の支持部材に関し、その充分な支持強度
を保有し、しかも軽量化を達成するための多くの提案が
なされた。
[0003] As the size increases, the mirror surface waviness changes due to subtle volume changes and deformations of the reflector base due to radiation of the focused beam and changes in environmental temperature, and these changes affect the reflection. Since this degrades mirror performance, quartz glass and high silicate glass, which have small thermal expansion changes, have come to be used as materials for reflective mirrors. However, these glasses make the reflector base heavy and reduce the operability of the reflector, so in order to improve the operability, it is required to reduce the weight of the base as much as possible. In line with such practical requirements, many proposals have been made to maintain sufficient support strength and to achieve weight reduction, particularly regarding support members for large reflecting mirror plates.

【0004】例えば、特公昭63−57761号公報に
は、天体用軽量反射鏡素材として透明反射鏡板(前板)
と後板との間に、数列の管から成る石英ガラス等の支持
格子を有し、その管列の各管が、隣接する列の2個の管
と接触線又は接触帯を有するように互い違いにされ、そ
の接触線等の領域内における管の壁の厚さが壁の残部に
比べて減少され、更に管が接触線等に沿って相互に溶接
されている特殊な管構造のものが開示されている。しか
し、かかる特殊構成の天体反射鏡素材は、構成が複雑だ
けでなく製作が厄介で工業的に著しく不利である。また
、かかる反射鏡素材は、反射鏡の面方向の強度は著しく
低く、一体化された反射鏡板の平坦面あるいは曲面の研
磨に対して満足し得る支持部材とはいえない。
For example, Japanese Patent Publication No. 63-57761 discloses a transparent reflector plate (front plate) as a lightweight reflector material for celestial bodies.
and the rear plate, a supporting grid of quartz glass or the like consisting of several rows of tubes, staggered so that each tube in the row has a contact line or zone with two tubes in an adjacent row. Discloses a special tube construction in which the thickness of the tube wall in the area of the line of contact etc. is reduced compared to the rest of the wall and the tubes are further welded together along the line of contact etc. has been done. However, such a specially constructed astronomical reflector material is not only complicated in construction but also difficult to manufacture, which is extremely disadvantageous from an industrial standpoint. Moreover, such a reflecting mirror material has extremely low strength in the plane direction of the reflecting mirror, and cannot be said to be a support member that is satisfactory for polishing the flat or curved surface of an integrated reflecting mirror plate.

【0005】更に、この反射鏡素材は、製作の際に支持
格子である管素材の有効高さを厳密な意味で一定にする
ことが難しく、そのため張り合わせた透明反射鏡板に管
素材の不均一な凹凸が歪として残り、後日、鏡面うねり
などの経時変化を引き起こして反射鏡の性能を低下させ
る大きな要因となっている。また、支持格子は、その構
造上、鏡面を重力に対して水平にした時と垂直にした時
では、自重に対する剛性が変わって鏡面の姿勢により面
精度に微妙な変化が現われるため、姿勢の可動が必要な
操作性を要する用途には使用し難い。
Furthermore, when manufacturing this reflecting mirror material, it is difficult to keep the effective height of the tube material, which is the supporting grid, constant in a strict sense. The unevenness remains as distortion, which later causes changes over time such as mirror waviness, which is a major factor in degrading the performance of the reflecting mirror. In addition, due to its structure, the rigidity of the support grid against its own weight changes when the mirror surface is placed horizontally and perpendicularly to gravity, resulting in subtle changes in surface accuracy depending on the posture of the mirror surface. It is difficult to use it for applications that require ease of use.

【0006】また、特公昭61−26041号公報の技
術は軽量鏡に関し、特に、石英ガラス類の前板(反射鏡
板)と後板との間に、石英ガラス類でつくられた支持格
子が動かないように融着一体化された天体用軽量鏡を記
載している。この支持格子は、石英ガラス類の板状部材
及び(又は)管状部材が支持用の板の上に置かれて、そ
れぞれ2個の部材の間に残っている空間の中に、粒状体
,小管片,小粒子,小板片又はこれらの混合物から成る
焼結されるべき物質が充填され、この配置が、黒鉛リン
グによって一緒に保持され、次いで、これらが炉内にお
いて非酸化性雰囲気中で焼結温度に加熱され、このよう
に形成された支持格子を前板と後板に動かないように加
熱融着させて強固に連結されることも開示されている。
[0006] Furthermore, the technique disclosed in Japanese Patent Publication No. 61-26041 relates to a lightweight mirror, and in particular, a support grid made of quartz glass is movable between a front plate (reflector plate) and a rear plate made of quartz glass. It describes a lightweight astronomical mirror that is fused and integrated so that it does not occur. This support grid consists of plate-like and/or tubular members of quartz glass placed on a support plate, each containing granules and tubules in the space remaining between the two members. The material to be sintered consisting of pieces, small particles, platelets or mixtures thereof is filled, this arrangement is held together by graphite rings, and these are then sintered in a furnace in a non-oxidizing atmosphere. It is also disclosed that the supporting grid thus formed is heated to a freezing temperature and heat-fused to the front plate and the rear plate so as not to move, thereby firmly connecting them.

【0007】しかし、この方法は、適切な形状の板状部
材や管状部材を予め多数作成し、並列配置した所定空間
に焼結物質を充てんしたり、あるいは焼結物質を充てん
した補強管状部材を適宜配置して前板と後板とを融着し
なければならない厄介な操作と労力及び時間を必要とす
るので工業的には著しく不利である。また、この管状部
材を用いる方法は軽量化が不充分で、管状支持部材が融
着した反射鏡用前板の箇所が歪を形成するため平坦研磨
が困難となり、光学的精度が損なわれるという致命的な
問題があった。
However, in this method, a large number of plate-shaped members or tubular members of appropriate shapes are prepared in advance, and predetermined spaces arranged in parallel are filled with sintered material, or reinforcing tubular members filled with sintered material are used. This is extremely disadvantageous industrially because it requires a complicated operation, labor, and time to properly arrange the front plate and the rear plate and fuse them together. In addition, this method of using a tubular member is not sufficient for reducing weight, and the portion of the front plate of the reflector where the tubular support member is fused is distorted, making it difficult to polish flat, which is fatal as optical accuracy is impaired. There was a problem.

【0008】[0008]

【発明が解決しようとする課題】従って、本発明の課題
は、反射鏡面が温度変化などにより歪を発生したり自重
により変形しない操作性の優れた軽量反射鏡基体を提供
することにある。また他の課題は、反射鏡板の支持部材
として軽量且つ反射鏡板支持方向と直交する方向にも優
れた3次元的強度を有する実用性の高い発泡性多孔質支
持部材を提供することにある。更に他の課題は、鏡面研
磨その他の加工や取扱いにも汚染されることのない実質
的気密にシ−ルされた実用的に極めて有用な反射鏡基体
を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a lightweight reflecting mirror base with excellent operability in which the reflecting mirror surface does not become distorted due to temperature changes or deform due to its own weight. Another object of the present invention is to provide a highly practical foamable porous support member for a reflective mirror plate that is lightweight and has excellent three-dimensional strength even in a direction orthogonal to the supporting direction of the reflective mirror plate. Still another object is to provide a reflector base which is practically hermetically sealed and is extremely useful in practice, and which is not contaminated by mirror polishing or other processing or handling.

【0009】[0009]

【課題を解決するための手段】本発明は、明細書の前記
特許請求の範囲の請求項1に記載の構成要件から成る軽
量な反射鏡基体の製造方法を要旨とするものである。
SUMMARY OF THE INVENTION The gist of the present invention is a method for manufacturing a lightweight reflecting mirror base comprising the constituent elements set forth in claim 1 of the appended claims of the specification.

【0010】反射鏡は、光、例えば、太陽光やビ−ム等
を集めたり散乱させたりする、特に天体用,宇宙産業用
として有用な反射鏡であって、その他レ−ザ−光の集光
や太陽熱の利用にも使用し得る反射鏡であって、その鏡
面を形成する酸化珪素透明無気泡板の反射面は利用目的
に応じて平坦面又は所定の曲面に形成される。更に、そ
の面には、利用しようとする光の種類に適切な金属の蒸
着膜が形成される。いずれの利用方法においても、反射
鏡には光学的に高い反射精度と容易な操作性が要求され
る。従って、その反射面は、温度変化に対して実質的に
変形しない素材で構成させることが重要で、反射板とし
て可及的高純度の高珪酸がラスや石英ガラスから成る気
泡を含まない透明な板が用いられる。
[0010] A reflecting mirror is a reflecting mirror that collects or scatters light, such as sunlight or beams, and is particularly useful for astronomical objects and the space industry. This is a reflecting mirror that can also be used to utilize light and solar heat, and the reflecting surface of the silicon oxide transparent bubble-free plate that forms the mirror surface is formed into a flat surface or a predetermined curved surface depending on the purpose of use. Furthermore, a metal vapor deposition film appropriate for the type of light to be used is formed on that surface. In either method of use, the reflecting mirror is required to have high optical reflection accuracy and easy operability. Therefore, it is important that the reflective surface is made of a material that does not substantially deform due to temperature changes.The reflective surface should be made of a material that does not substantially deform due to temperature changes. A board is used.

【0011】本発明の方法においては、そのような反射
鏡板を支持する部材として、好ましくは、99重量%以
上の酸化珪素から成る石英ガラス質又は高珪酸ガラス質
で、その見掛け密度が0.1〜1g/cm3を有する円
盤状多孔性発泡体が用いられる。該多孔性発泡体の見掛
け密度が0.1g/cm3未満では、反射鏡板を支える
支持強度が弱く、また1g/cm3を超えると軽量化が
不充分となり、自重によって変形する傾向が増大すると
共に満足すべき操作性も得られない。
In the method of the present invention, the member supporting such a reflecting mirror plate is preferably made of silica glass or high silicate glass comprising 99% by weight or more of silicon oxide, and whose apparent density is 0.1. A disc-shaped porous foam with ˜1 g/cm 3 is used. If the apparent density of the porous foam is less than 0.1 g/cm3, the support strength for supporting the reflector plate will be weak, and if it exceeds 1 g/cm3, the weight reduction will be insufficient, and the tendency to deform due to its own weight will increase, making it unsatisfactory. I can't get the operability I should have.

【0012】このような発泡体は、主として独立気泡で
構成させることが好ましく、そのような独立気泡によっ
て形成される3次元的格子構造のネットワ−クを有する
多孔質体は、あらゆる方向への一層高い圧縮強度が保証
される。かかる多孔性発泡体は、反射鏡用板を全面にわ
たって均一に支持されるから、研磨における反射鏡用板
表面に加わる押圧力に対して優れた抵抗性を有するだけ
でなく、面に平行な方向にも優れた抵抗強度を与えるの
で反射鏡用板の保持部材として極めて望ましい。
[0012] It is preferable that such a foam is mainly composed of closed cells, and a porous body having a three-dimensional lattice structure network formed by such closed cells can be High compressive strength is guaranteed. Since such a porous foam supports the reflector plate uniformly over the entire surface, it not only has excellent resistance to the pressing force applied to the reflector plate surface during polishing, but also has excellent resistance to the pressure applied to the surface of the reflector plate during polishing. It also provides excellent resistance strength, making it extremely desirable as a holding member for a reflecting mirror plate.

【0013】そのような発泡体は、例えば、酸化珪素か
ら成る水酸基含有石英ガラスの粉末をアンモニア雰囲気
中で加熱下にアンモニア化反応させ、これを所望形状に
成形し焼結するか、成形焼結したものをアンモニア雰囲
気中で加熱反応させてアンモニア化したガラス焼結体を
つくり、次いで該焼結体を、例えば、1500〜180
0℃の温度に加熱溶融し、ガラスからガスを発生させる
ことにより容易に製造される。その際、溶融ガラス内に
発生するガス気泡の破裂を防止することにより、主とし
て独立気泡から成る発泡体が効果的に得される。またガ
ラスの溶融温度で反応,昇華する粉末成分をシリカ粉末
に混入して加熱融着することによっても発泡体を製造す
ることができるが、この製造においては、適切な所望径
の気泡の形成を確保し、加熱過剰による連通気泡の形成
を防止するように発泡条件が選択される。
Such a foam can be produced, for example, by subjecting a hydroxyl group-containing quartz glass powder made of silicon oxide to an ammonification reaction under heating in an ammonia atmosphere, molding it into a desired shape and sintering it, or by molding and sintering it. This is heated and reacted in an ammonia atmosphere to produce an ammoniated glass sintered body, and then the sintered body is heated to a temperature of 1500 to 180
It is easily manufactured by heating and melting the glass to a temperature of 0°C and generating gas from the glass. At this time, by preventing the gas bubbles generated in the molten glass from bursting, a foam mainly consisting of closed cells can be effectively obtained. Foams can also be produced by mixing powder components that react and sublimate at the melting temperature of glass with silica powder and fusing them with heat. Foaming conditions are selected to ensure and prevent the formation of open cells due to overheating.

【0014】このようにして製造された多孔性発泡体は
、反射鏡の大きさや形状に応じて所望の形状、例えば、
円盤や四角形の板体に適宜カットされ、その一方の面に
反射鏡用の透明無気泡石英ガラス又は高珪酸ガラスの板
が、また他方の面には後板としてそれほど純度の高くな
い石英ガラス又は高珪酸ガラスの板が融着一体化される
。この一体化操作においては、該多孔性発泡体層の上側
の面と反射鏡用円板の裏面との接合面間に、該多孔性発
泡体層の軟化点より低い軟化点を有するシリカ粉末を全
面に薄くひろげ、例えば、1mm程度の層を全面にわた
って形成させ、これを介して接合状態に保持して上記シ
リカ粉体の軟化点以上の温度に約1〜4時間程度加熱す
ることにより効果的に融着一体化させることができる。
The porous foam thus produced can be shaped into a desired shape depending on the size and shape of the reflecting mirror, for example.
It is cut into a disc or square plate as appropriate, and one side has a transparent bubble-free quartz glass or high silicate glass plate for the reflective mirror, and the other side has a back plate of quartz glass or a plate of not very high purity. High silicate glass plates are fused and integrated. In this integration operation, a silica powder having a softening point lower than that of the porous foam layer is applied between the bonding surface between the upper surface of the porous foam layer and the back surface of the reflector disk. It is effective by spreading it thinly over the entire surface, for example, forming a layer of about 1 mm over the entire surface, holding it in a bonded state through this, and heating it to a temperature above the softening point of the silica powder for about 1 to 4 hours. can be fused and integrated.

【0015】シリカ粉体の軟化点が該支持部材の軟化点
と同等かそれ以上では、加熱一体化において多孔質支持
部材が軟化溶融し、独立気泡が破裂したり基体表面が変
形するなどの望ましくない現象が生ずるので不都合であ
る。一般に、ゾルゲル法又は熱化学気相法により得られ
たものは比較的融点が低いので、その粉砕物が上記シリ
カ粉体として好適に使用できる。また、このシリカ粉体
は、微細なほど均質な融着結合層を形成するので好まし
く、例えば、粒径が10μm以下のものが実用上極めて
望ましい。この一体化方法によれば、融着接合面積が大
幅に増大し、反射鏡用板が発泡体層に一層安定に固定さ
れる。この接合においては、反射鏡用板の裏面と接合さ
れる多孔質体の面とが実質的に全面にわたって接触する
ような同一面形状に予め形成される。
If the softening point of the silica powder is equal to or higher than the softening point of the supporting member, the porous supporting member will soften and melt during heating and integration, causing undesirable problems such as rupturing of closed cells and deformation of the substrate surface. This is inconvenient because it causes a phenomenon that should not occur. In general, those obtained by the sol-gel method or the thermochemical vapor phase method have a relatively low melting point, so their pulverized products can be suitably used as the above-mentioned silica powder. Further, the finer the silica powder is, the more homogeneous the fusion bonding layer is formed, so it is preferable, and for example, a particle size of 10 μm or less is extremely desirable in practice. According to this integration method, the area of fusion bonding is greatly increased, and the reflecting mirror plate is more stably fixed to the foam layer. In this joining, the back surface of the reflecting mirror plate and the surface of the porous body to be joined are formed in advance into the same surface shape so that they are in contact with each other over substantially the entire surface.

【0016】発泡体層の一方の面に融着一体化される反
射鏡用板は、可及的高純度の石英ガラス又は高珪酸ガラ
ス質から成り、且つ実質的に気泡を含有しない透明な板
体である。この反射板には微細な気泡が含まれていても
反射面に歪やゆがみ等の望ましくない状態をもたらすの
で高精度の反射鏡を作り出すことができなくなるので気
泡の含有は好ましくない。また、他方の面に溶融一体化
される板は、反射鏡板のような高純度と透明性は必要で
はなく、多少、気泡を含んでいても透明性が損なわれて
いても差し支えないが、温度変化に実質的に影響のない
石英ガラス又は高珪酸ガラス質製の板体であることが重
要である。
[0016] The reflecting mirror plate that is fused and integrated with one surface of the foam layer is a transparent plate that is made of quartz glass or high silicate glass of the highest possible purity and that does not substantially contain air bubbles. It is the body. Even if this reflective plate contains minute air bubbles, it is not preferable to include air bubbles because it will cause undesirable conditions such as distortion and distortion on the reflecting surface, making it impossible to create a highly accurate reflecting mirror. In addition, the plate that is melted and integrated with the other side does not need to have the same high purity and transparency as a reflective mirror plate, and it is okay for the plate to contain some air bubbles or lose its transparency, but It is important that the plate is made of quartz glass or high silicate glass that does not substantially affect changes.

【0017】本発明の方法においては、両板が発泡体層
に一体に接合されたのち、その積層体の周側面に石英ガ
ラス又は高珪酸ガラスのシ−ル層が融着形成される。こ
のシ−ル層は、必ずしも完全気密性であることを必要と
しないが、そのシ−ル層の形成に先立って、周側面、特
に発泡体層の全側面を平滑仕上げすることが好ましい。 その平滑仕上げ処理は、通常知られた、例えば、グライ
ンダ−による平滑研磨あるいは水素酸素燃焼炎等のファ
イアによる焼仕上等の方法によって行うことができる。
In the method of the present invention, after both plates are integrally joined to the foam layer, a sealing layer of quartz glass or high silicate glass is fused and formed on the circumferential side of the laminate. Although this sealing layer does not necessarily have to be completely airtight, it is preferable that the peripheral surfaces, especially all the sides of the foam layer, be smoothed prior to forming the sealing layer. The smooth finishing treatment can be performed by a commonly known method such as smooth polishing using a grinder or baking using a fire such as a hydrogen-oxygen combustion flame.

【0018】次に、平滑仕上げされた積層体周側面への
石英ガラス又は高珪酸ガラスのシ−ル層の融着形成は、
シ−ルされる面にそれらガラスの粉末を付着させ、これ
を加熱溶融させてガラスシ−ル層を形成させてもよいが
、周側面の幅と長さに対応するガラスの板を燃焼炎によ
り周側面に順次融着一体化することが実用的である。 このようなガラスシ−ル層を形成させた反射鏡基体は、
例えば水性研磨剤による鏡面研磨において、微粉状の水
性研磨剤による基体への側面からの汚染が実質的完全に
防止できるばかりでなく、反射鏡基体の物理的強度を大
幅に向上させ、精密研磨された鏡面を長期間安定に保つ
ことができる。
Next, a sealing layer of quartz glass or high silicate glass is fused and formed on the circumferential side of the laminate which has been smoothed.
Glass powder may be attached to the surface to be sealed and heated and melted to form a glass seal layer, but a glass plate corresponding to the width and length of the circumferential surface may be It is practical to fuse and integrate them sequentially on the circumferential side. The reflector base on which such a glass seal layer is formed is
For example, in mirror polishing using a water-based abrasive, not only can contamination of the substrate from the sides by the finely divided aqueous abrasive be virtually completely prevented, but the physical strength of the reflector base can be greatly improved, allowing precision polishing. The mirror surface can be kept stable for a long period of time.

【0019】このように周側面がガラスシ−ルされた積
層体の透明反射鏡用板の表面は、上記したように、例え
ば、水性研磨剤を用いて、通常知られた精密研磨法によ
り平面あるいは所定の曲面に精密研磨され、その研磨面
に反射鏡用の金属、例えば、アルミニウムや銀等の金属
薄膜が蒸着その他の手段によって形成され、軽量大型反
射鏡に仕上げられる。なお、鏡面への金属薄膜形成時に
高温に曝されて、基体内部の気体の膨張による周側シ−
ル層の破損が懸念される場合には、その周側面に一個あ
るいは複数個の小さな通孔を設けておくことが望ましい
As described above, the surface of the transparent reflective mirror plate of the laminate whose circumferential surface is glass-sealed is polished to a flat or flat surface by a commonly known precision polishing method using, for example, an aqueous abrasive. The mirror is precisely polished to a predetermined curved surface, and a thin film of a metal for a reflective mirror, such as aluminum or silver, is formed on the polished surface by vapor deposition or other means, resulting in a lightweight, large-sized reflective mirror. In addition, when forming a metal thin film on a mirror surface, it is exposed to high temperatures and the circumferential seal is damaged due to the expansion of gas inside the base.
If there is a concern that the layer may be damaged, it is desirable to provide one or more small holes in the circumferential surface of the layer.

【0020】本発明の方法を添付図面により更に詳細に
説明する。図1は、本発明の方法によって製造された円
盤状の軽量大型反射鏡用基体の一例の部分切欠き斜視図
である。図において、石英ガラス質製円盤状多孔性発泡
体層1の一方の面に透明で無気泡の高純度石英ガラス製
の反射鏡用板2が、また他方の面に半透明の石英ガラス
製の板3が融着一体化され、次いでその一体化された積
層体の周側面に石英ガラスの細長い板4が一端から順次
融着一体化されてシ−ル層が形成される。このようにし
て得られた本発明の軽量且つ大型の反射鏡用基体は、そ
の鏡面が精密研磨されてフラットな高精度の反射鏡面2
’に形成され、更にその研磨面に金属蒸着等により光沢
反射膜が形成されて、光学的に優れた反射鏡が提供され
る。
The method of the present invention will be explained in more detail with reference to the accompanying drawings. FIG. 1 is a partially cutaway perspective view of an example of a disc-shaped, lightweight, large-sized reflecting mirror substrate manufactured by the method of the present invention. In the figure, a reflective plate 2 made of transparent, bubble-free, high-purity quartz glass is placed on one side of a disc-shaped porous foam layer 1 made of silica glass, and a translucent plate 2 made of quartz glass is placed on the other side. The plates 3 are fused and integrated, and then elongated quartz glass plates 4 are sequentially fused and integrated from one end to the peripheral side of the integrated laminate to form a sealing layer. The lightweight and large reflecting mirror base of the present invention obtained in this way has a highly accurate reflecting mirror surface 2 whose mirror surface is precisely polished and flat.
A glossy reflective film is further formed on the polished surface by metal vapor deposition or the like, thereby providing an optically excellent reflective mirror.

【0021】[0021]

【作用】本発明の方法により、反射鏡面に安定で光学的
面精度の優れた平坦あるいは曲面鏡が形成される軽量基
体が効果的に提供される。また、本発明の方法によって
得られる大型反射鏡は、軽量にもかかわらず優れた構造
体強度を有し、長期にわたってその高精度鏡面が安定に
保持されるので、操作性の良さと共に産業上の利用性は
すこぶる高い。
[Operation] The method of the present invention effectively provides a lightweight substrate on which a flat or curved mirror is formed that is stable and has excellent optical surface precision on its reflective mirror surface. In addition, the large reflecting mirror obtained by the method of the present invention has excellent structural strength despite its light weight, and its high-precision mirror surface is stably maintained over a long period of time. Usability is extremely high.

【0022】[0022]

【実施例】次に、本発明を具体例により更に詳細に説明
する。 実施例  1 四塩化珪素を酸水素火炎バ−ナ−に供給して火炎加水分
解させて石英ガラスス−ト体を造り、これに1000℃
の温度でアンモニアガスを2時間反応させたのち、アン
モニア雰囲気ガスを追い出し、1600℃の温度に加熱
して発泡させ、見掛け密度が、約0.3g/cm3の石
英ガラス多孔性発泡体を得た。この発泡体をカットして
直径350mm,厚さ25mmの円盤を作成した。
EXAMPLES Next, the present invention will be explained in more detail using specific examples. Example 1 Silicon tetrachloride was supplied to an oxyhydrogen flame burner and flame-hydrolyzed to produce a quartz glass soot body, which was heated to 1000°C.
After reacting the ammonia gas for 2 hours at a temperature of . This foam was cut to create a disk with a diameter of 350 mm and a thickness of 25 mm.

【0023】この多孔性円盤の前面に、直径350mm
,厚さ3mmの透明で無気泡の石英ガラス円板を載せ、
その間に融着剤としてシリカ微粉末を全面に薄く敷いて
、約1300℃の温度で加熱融着させた。その際、多孔
性円盤の下側面に直径350mm,厚さ3mmの石英ガ
ラス円板を後板として同様に融着剤としてシリカ微粉末
を薄く敷き、これらを接触状態に保持して加熱融着一体
化させ積層体を得た。次いで、厚さ1mmで30mm×
1100mmの細長い石英ガラス板を酸素水素バ−ナ−
で積層体の周側面に融着一体化し、シ−ル層を形成させ
た。
[0023] On the front surface of this porous disk, a diameter of 350 mm is provided.
, a transparent, bubble-free quartz glass disk with a thickness of 3 mm was mounted,
In the meantime, a thin layer of fine silica powder was spread over the entire surface as a fusing agent, and the film was heat-sealed at a temperature of about 1300°C. At that time, a quartz glass disk with a diameter of 350 mm and a thickness of 3 mm was used as a back plate on the lower surface of the porous disk, and a thin layer of silica powder was similarly spread as a fusion agent, and these were kept in contact and heat fused together. A laminate was obtained. Next, 30mm x 1mm thick
A 1100mm long quartz glass plate is used as an oxygen-hydrogen burner.
A sealing layer was formed by fusion-bonding and integrating on the circumferential side of the laminate.

【0024】このようにして得られた大型反射鏡基体の
透明無気泡石英ガラス板のフラット表面を水性研磨液を
用いて精密研磨仕上げした。この面について光学的干渉
縞による面の平坦度を調べたところ、干渉縞は平行で、
面全体が極めて高度な平坦度を有することが確認された
。この精密研磨面に、更に、アルミニウムの薄い膜を蒸
着させることによりレ−ザ光用等に好適に使用される高
精度のフラット反射面が得られた。蒸着膜が形成された
大型反射鏡は、従来知られた軽量反射鏡に比べて、はる
かに軽量且つ光学的特性の優れた極めて望ましいもので
あった。
The flat surface of the transparent bubble-free quartz glass plate of the large reflector base thus obtained was precision polished using an aqueous polishing liquid. When we investigated the flatness of this surface using optical interference fringes, we found that the interference fringes were parallel.
It was confirmed that the entire surface had extremely high flatness. By further depositing a thin aluminum film on this precision polished surface, a highly precise flat reflective surface suitable for use with laser beams etc. was obtained. A large-sized reflecting mirror on which a vapor-deposited film is formed is extremely desirable because it is much lighter and has superior optical properties compared to conventionally known lightweight reflecting mirrors.

【0025】[0025]

【発明の効果】本発明の方法により得られる多孔性発泡
体層を石英ガラス板で取り囲んで形成された大型反射鏡
基体は、その多孔性発泡体層が無気泡透明石英ガラス反
射鏡板と、これと対向する後板とが全面にわたって溶着
一体化されると共に周側面のガラスシ−ル層が溶融一体
化されているので、軽量で優れた操作性を有するにも関
わらず極めて高い構造強度を有し、例えば、研磨する際
の押圧等の応力が加わっても変形したり破損する等の恐
れがなく、また石英ガラス反射鏡板に歪が発生して光反
射特性を低下させる不都合もないので、高い実用的価値
を有する。
Effects of the Invention: A large reflecting mirror substrate formed by surrounding a porous foam layer with a quartz glass plate obtained by the method of the present invention has a structure in which the porous foam layer is composed of a cell-free transparent quartz glass reflecting plate and a quartz glass plate. The rear plate facing the front plate is welded and integrated over the entire surface, and the glass seal layer on the peripheral side is melted and integrated, so it has extremely high structural strength despite being lightweight and has excellent operability. For example, there is no risk of deformation or breakage even if stress is applied such as pressure during polishing, and there is no problem of deterioration of light reflection characteristics due to distortion of the quartz glass reflector plate, making it highly practical. has real value.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1は、本発明の方法によって製造した円盤状
の軽量大型反射鏡用基体の一例の部分切欠き斜視図であ
る。
FIG. 1 is a partially cutaway perspective view of an example of a disc-shaped, lightweight, large-sized reflecting mirror substrate manufactured by the method of the present invention.

【符合の説明】[Explanation of sign]

1・・・石英ガラス質製円盤状多孔性発泡体層2・・・
透明無気泡の高純度石英ガラス製の反射鏡用板2’・・
・2の精密研磨表面 3・・・石英ガラス製の板 4・・・石英ガラスシ−ル層
1... Disc-shaped porous foam layer made of quartz glass 2...
Reflector plate 2' made of transparent bubble-free high purity quartz glass...
・Precision polished surface of 2 3... Quartz glass plate 4... Quartz glass seal layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】見掛け密度0.1〜1g/cm3を有する
石英ガラス質製又は高珪酸ガラス質製の多孔性発泡体層
の一方の面に透明無気泡の石英ガラス又は高珪酸ガラス
の反射鏡用板を、また他方の面に石英ガラス又は高珪酸
ガラスの板を融着一体化したのち、その周側面に石英ガ
ラス又は高珪酸ガラスのシ−ル層を融着形成させること
を特徴とする反射鏡基体の製造方法。
Claim 1: A reflective mirror made of transparent bubble-free quartz glass or high silicate glass on one side of a porous foam layer made of silica glass or high silicate glass having an apparent density of 0.1 to 1 g/cm3. A quartz glass or high silicate glass plate is fused and integrated on the other side of the quartz glass or high silicate glass plate, and then a quartz glass or high silicate glass sealing layer is fused and formed on the peripheral side of the quartz glass or high silicate glass plate. Method for manufacturing a reflecting mirror base.
【請求項2】上記シ−ル層の融着を、長尺の該ガラス板
体を融着一体化する請求項1記載の製造方法。
2. The manufacturing method according to claim 1, wherein the sealing layer is fused and integrated with the elongated glass plate.
JP3135536A 1991-04-23 1991-05-10 Method for manufacturing reflector base Expired - Fee Related JP2580406B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3135536A JP2580406B2 (en) 1991-05-10 1991-05-10 Method for manufacturing reflector base
US07/785,103 US5316564A (en) 1991-04-23 1991-10-30 Method for preparing the base body of a reflecting mirror
US08/197,702 US5461511A (en) 1991-04-23 1994-02-17 Base body of a reflecting mirror and method for the preparation thereof
US08/418,777 US5563743A (en) 1991-04-23 1995-04-07 Base body of a reflecting mirror and method for the preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3135536A JP2580406B2 (en) 1991-05-10 1991-05-10 Method for manufacturing reflector base

Publications (2)

Publication Number Publication Date
JPH04335301A true JPH04335301A (en) 1992-11-24
JP2580406B2 JP2580406B2 (en) 1997-02-12

Family

ID=15154075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3135536A Expired - Fee Related JP2580406B2 (en) 1991-04-23 1991-05-10 Method for manufacturing reflector base

Country Status (1)

Country Link
JP (1) JP2580406B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152507A (en) * 1994-11-30 1996-06-11 Shinetsu Quartz Prod Co Ltd Lightweight double-faced mirror
JP2009205108A (en) * 2008-02-29 2009-09-10 Mitsubishi Electric Corp Lightweight mirror and manufacturing method therefor
JP2020502582A (en) * 2016-12-21 2020-01-23 マックス−プランク−ゲゼルシャフト ツール フォーデルング デル ヴィッセンシャフテン エー.ヴェー. Mirror and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240349A (en) * 1975-09-24 1977-03-29 Nasa Reflecting element and method of making same
JPS6126041A (en) * 1984-07-16 1986-02-05 Mitsubishi Paper Mills Ltd Silver halide photographic emulsion
JPS61151501A (en) * 1984-12-19 1986-07-10 サントル ナシオナル ド ラ ルシエルシユ シアーンテイフイク(セ エヌ エール エス) Substrate for mirror especially ideal for use in precision optical part and making thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240349A (en) * 1975-09-24 1977-03-29 Nasa Reflecting element and method of making same
JPS6126041A (en) * 1984-07-16 1986-02-05 Mitsubishi Paper Mills Ltd Silver halide photographic emulsion
JPS61151501A (en) * 1984-12-19 1986-07-10 サントル ナシオナル ド ラ ルシエルシユ シアーンテイフイク(セ エヌ エール エス) Substrate for mirror especially ideal for use in precision optical part and making thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152507A (en) * 1994-11-30 1996-06-11 Shinetsu Quartz Prod Co Ltd Lightweight double-faced mirror
JP2009205108A (en) * 2008-02-29 2009-09-10 Mitsubishi Electric Corp Lightweight mirror and manufacturing method therefor
JP2020502582A (en) * 2016-12-21 2020-01-23 マックス−プランク−ゲゼルシャフト ツール フォーデルング デル ヴィッセンシャフテン エー.ヴェー. Mirror and manufacturing method thereof
US11550082B2 (en) 2016-12-21 2023-01-10 Max-Planck-Gesellschaft Zur Förderung De Wissenschaften E.V. Mirror with increased form stability and longevity and a method of fabricating the same

Also Published As

Publication number Publication date
JP2580406B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
US5461511A (en) Base body of a reflecting mirror and method for the preparation thereof
US7766494B1 (en) Light-weight mirror blank assembly
US4917934A (en) Telescope mirror blank and method of production
EP0507000A1 (en) Base body of reflecting mirror and method for preparing the same
GB2077938A (en) Light-weight mirrors particularly for astronomy
JPS6071553A (en) Manufacture of super small lens
US4606960A (en) Process for making honeycomb sandwich panels
JP2580406B2 (en) Method for manufacturing reflector base
JP2569234B2 (en) Manufacturing method of lightweight reflector base
JP2580419B2 (en) Manufacturing method of lightweight reflector base
JPH0458602B2 (en)
US7069747B2 (en) Mirror blanks from inflatable balls
US1888341A (en) Composite silica article
JPH0894813A (en) Light-weight reflection mirror
JP2750234B2 (en) Manufacturing method of silica-based lightweight reflector
JP2750229B2 (en) Large and lightweight reflector
US6598984B2 (en) Lightweight mirror and method of making
JPH02153849A (en) Composite consisting of glass-containing substance and glass-free substance, and method for forming said composite
JP2966619B2 (en) Lightweight reflector base
Hobbs et al. Current fabrication techniques for ULE and fused silica lightweight mirrors
JP6927536B2 (en) Mirror and its manufacturing method
Ghigo et al. Slumped glass option for making the XEUS mirrors: preliminary design and ongoing developments
Melugin et al. Development of lightweight, glass mirror segments for the Large Deployable Reflector
Strzelecki et al. Low-temperature Bonding of lightweight Mirrors
Angel New techniques for fusion bonding and replication for large glass reflectors

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960806

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees