JP2750234B2 - Manufacturing method of silica-based lightweight reflector - Google Patents

Manufacturing method of silica-based lightweight reflector

Info

Publication number
JP2750234B2
JP2750234B2 JP35721291A JP35721291A JP2750234B2 JP 2750234 B2 JP2750234 B2 JP 2750234B2 JP 35721291 A JP35721291 A JP 35721291A JP 35721291 A JP35721291 A JP 35721291A JP 2750234 B2 JP2750234 B2 JP 2750234B2
Authority
JP
Japan
Prior art keywords
silica glass
plate
reflector
container
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35721291A
Other languages
Japanese (ja)
Other versions
JPH05173006A (en
Inventor
博至 木村
信一 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP35721291A priority Critical patent/JP2750234B2/en
Publication of JPH05173006A publication Critical patent/JPH05173006A/en
Application granted granted Critical
Publication of JP2750234B2 publication Critical patent/JP2750234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、天体観測やビ−ム集
光、あるいはその他宇宙産業等に用いられる反射鏡の製
造方法に関し、特に、軽量で且つ構造体強度の優れた高
い操作性と光学的特性を有する軽量反射鏡の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a reflector used in astronomical observation, beam focusing, and other space industries, and more particularly, to a light-weight, high-strength, highly operable structure. The present invention relates to a method for manufacturing a lightweight reflector having optical characteristics.

【0002】[0002]

【従来の技術】従来、天体用反射鏡や高エネルギ−ビ−
ム等の光学的な集光に用いられる反射鏡は、例えば、石
英ガラスや高純度珪酸ガラス等を素材とする無気泡反射
鏡板の鏡面に、光学的な反射層としてアルミニウムのよ
うな金属蒸着膜を形成させ、これを操作用の支持台に取
り付けて自由に回転操作されている。かかる反射鏡は、
反射面の温度や内力的な状況変化に影響されない精度の
保持が要求される。
2. Description of the Related Art Conventionally, astronomical reflectors and high energy beams have been used.
The reflector used for optical condensing such as a mirror is made of, for example, a metal-deposited film such as aluminum as an optical reflection layer on the mirror surface of a bubble-free reflector plate made of quartz glass or high-purity silicate glass. Is formed, and this is mounted on an operation support base and freely rotated. Such a reflector is
It is required to maintain accuracy that is not affected by the temperature of the reflecting surface or an internal force change.

【0003】このような反射鏡は、これまで直径が5〜
20cm程度の小型のものが主流であったが、近年、その実
用的に望ましい高い集光率が得られる直径30cm〜1m、
あるいはそれ以上の大型のものが要求されるようになっ
てきた。しかし、このような大型のものは極めて重く、
そのため操作性が著しく低下し、また回転操作において
反射鏡の支持姿勢の変化によっては自重により鏡面変形
が起こったり、鏡面にうねり現象が生じて反射鏡の光学
的性能を低下させるなどの問題があった。
[0003] Such a reflecting mirror has hitherto had a diameter of 5 to 5.
A small size of about 20 cm was the mainstream, but in recent years, a diameter of 30 cm to 1 m that can obtain a practically desirable high light collection rate,
Or larger ones have been required. However, such large ones are extremely heavy,
As a result, the operability is significantly reduced, and there is a problem that the mirror surface is deformed by its own weight due to a change in the support posture of the reflector during the rotation operation, and the mirror surface undulates, thereby deteriorating the optical performance of the reflector. Was.

【0004】反射鏡の大型化に伴い、特に集光ビ−ムの
輻射や環境温度の変化に基づく反射鏡の体積変化や変形
などが大きくなり、そのために鏡面うねりが生じ易くな
って反射鏡の性能を大幅に低下させるという問題が付随
して発生するため、そのような不都合現象、特に熱膨張
変化の小さい石英ガラスや高珪酸ガラスが反射鏡用素材
として使用されるようになった。
[0004] As the size of the reflector increases, the volume change and deformation of the reflector due to the radiation of the condensing beam and the change of the environmental temperature increase, and the mirror surface swells easily. Since the problem of significantly lowering the performance is accompanied, such disadvantageous phenomena, particularly quartz glass and high silicate glass, which have a small change in thermal expansion, have come to be used as materials for reflectors.

【0005】しかし、これらの石英ガラス類で作られた
大型反射鏡は非常に重く、その操作性が著しく低下す
る。そのため反射鏡の重量をできるだけ軽減して操作性
を向上させることが要求される。かかる実用的要求に沿
って、大型反射鏡の軽量化、特に、反射鏡板を保持する
支持部の軽量化に関することが着目され、反射鏡板の支
持部材としての充分な強度と軽量化技術に関して多くの
提案がなされた。
[0005] However, large-sized reflectors made of these quartz glasses are very heavy and their operability is significantly reduced. Therefore, it is required to reduce the weight of the reflector as much as possible to improve operability. In line with such practical demands, attention has been paid to the weight reduction of large reflectors, particularly to the weight reduction of the support portion that holds the reflector plate, and there are many techniques for sufficient strength and weight reduction technology as a support member for the reflector plate. A proposal was made.

【0006】例えば、特公昭63-57761号公報には、天体
用軽量反射鏡素材として透明反射鏡板(前板)と後板と
の間に、数列の管から成る石英ガラス等の支持格子を有
し、その管列の各管が、隣接する列の2個の管と接触線
又は接触帯を有するように互い違いにされ、その接触線
等の領域内における管の壁の厚さが壁の残部に比べて減
少され、更に管が接触線等に沿って相互に溶接されてい
る特殊な管構造のものが開示されている。
For example, Japanese Patent Publication No. 63-57761 discloses a light-weight reflector material for a celestial body, which has a support grid made of several rows of tubes between a transparent reflector plate (front plate) and a rear plate. Each tube of the tube row is staggered so as to have a contact line or contact zone with two tubes of an adjacent row, and the thickness of the tube wall in the area of the contact line or the like is such that the remainder of the wall A special tube structure is disclosed in which the tubes are welded together along contact lines and the like.

【0007】しかし、かかる特殊構成の天体反射鏡素材
は、構成が複雑で製作が容易でなく工業的に著しく不利
である。また、かかる反射鏡素材は、反射鏡の面方向の
強度が著しく弱く、一体化された反射鏡板の曲面研磨仕
上に対して満足し得る支持部材とはいえない。
However, the astronomical reflector material having such a special structure has a complicated structure, is not easily manufactured, and is extremely disadvantageous industrially. Further, such a reflector material has a remarkably weak strength in the surface direction of the reflector, and cannot be said to be a satisfactory supporting member for the curved surface polishing finish of the integrated reflector plate.

【0008】更に、このような反射鏡素材は、製作の際
に支持格子である管素材の有効高さを厳密に一定にする
ことが難しく、そのため張り合わせた透明反射鏡板に管
素材の不均一な凹凸が歪として残り、後日、鏡面うねり
などの経時変化を引き起こすため反射鏡の性能低下の大
きな要因となっている。また、支持格子は、その構造
上、鏡面を重力に対して水平にした時と垂直にした時で
は、自重に対する剛性が変わって鏡面の姿勢により面精
度に微妙な変化が現われるため、姿勢の可動が必要な操
作性を要する用途には使用し難い。
Further, in such a reflector material, it is difficult to make the effective height of the tube material, which is a support grid, strictly constant at the time of manufacture, and therefore, the tube material is not uniform on the laminated transparent reflector plate. The unevenness remains as a distortion, which causes a temporal change such as swelling of the mirror surface at a later date, which is a major factor in the performance degradation of the reflector. Also, due to its structure, when the mirror surface is horizontal and vertical with respect to gravity, the rigidity against its own weight changes and the surface accuracy changes slightly depending on the mirror surface, so the posture is movable. However, it is difficult to use for applications that require operability.

【0009】また、特公昭61-26041号公報には、特に、
石英ガラス類の前板と後板との間にこれらの板に動かな
いように連結された石英ガラス類でつくられた支持格子
が融着一体化された構造の天体用軽量鏡が記載されてい
る。この支持格子は、石英ガラス類の板状部材及び(又
は)管状部材が支持用の板の上に置かれて、それぞれ2
個の部材の間に残っている空間に、粒状体,小管片,小
粒子,小板片等又はこれらの混合物から成る焼結される
べき物質が充てんされ、この配置が黒鉛リングによって
一緒に保持され、次いで、これらが炉内において非酸化
性雰囲気下に焼結温度に加熱され、そのように形成され
た支持格子が前板と後板に動かないように加熱融着によ
って連結されることも開示されている。
Japanese Patent Publication No. 61-26041 discloses, in particular,
A lightweight astronomical mirror having a structure in which a support grating made of quartz glass is fused and integrated between a front plate and a rear plate of quartz glass so as not to move to these plates is described. I have. The support grid is composed of a plate member made of quartz glass and / or a tubular member placed on a support plate, each of which has a shape of 2 mm.
The space remaining between the pieces is filled with the substance to be sintered, consisting of granules, small tube pieces, small particles, small platelets, etc., or a mixture thereof, the arrangement being held together by a graphite ring. These are then heated in a furnace to a sintering temperature in a non-oxidizing atmosphere, and the support grid so formed may be connected to the front and rear plates by heat fusion so as not to move. It has been disclosed.

【0010】しかし、この方法は、適切な形状の板状部
材や管状部材を予め多数作成し、並列配置した所定空間
に焼結物質を充てんしたり、あるいは焼結物質を充てん
した補強管状部材を適宜配置して前板と後板とを融着し
なければならない厄介な操作と労力及び時間を必要とす
るので工業的には採用し難い。また、この管状部材を用
いる方法は軽量化が不充分で、管状支持部材が融着した
反射鏡用前板の箇所が歪を形成するため平坦研磨が困難
となり、光学的精度が損なわれるという致命的な問題が
ある。
However, according to this method, a large number of plate-like members and tubular members having an appropriate shape are prepared in advance, and a predetermined space arranged in parallel is filled with a sintering substance, or a reinforcing tubular member filled with a sintering substance is filled. Since it requires troublesome operation, labor, and time for appropriately arranging the front plate and the rear plate and fusing the front plate and the rear plate, it is difficult to industrially adopt the method. In addition, the method using this tubular member is insufficient in weight reduction, and the flat plate is difficult to polish because the portion of the front plate for the reflector to which the tubular support member is fused is distorted, and optical precision is impaired. Problem.

【0011】また、所定形状に成形した発泡体の上下面
にシリカガラス反射鏡面と底面を融着一体化し、その周
側面を帯状のシリカガラス板を燃焼炎等により順次加熱
融着させる周側部の形成方法もあるが、反射鏡が大型に
なればなるほどその加工は容易でなく、発泡多孔質体の
側面部が軟化溶融して泡がつぶれたり、独立気泡が破裂
してその面形状が変化するので好ましくない。
A silica glass reflecting mirror surface and a bottom surface are fused and integrated on the upper and lower surfaces of a foam formed into a predetermined shape, and the peripheral side surfaces of the peripheral side portion are sequentially heated and fused with a strip-shaped silica glass plate by a combustion flame or the like. However, the larger the size of the reflector, the more difficult it is to process, and the side surface of the foamed porous material softens and melts, causing the bubbles to collapse or the closed cells to burst, changing the surface shape. Is not preferred.

【0012】[0012]

【発明が解決しようとする課題】従って、本発明の課題
は、優れた操作性を有し、反射鏡面が温度変化などによ
り歪を発生することのない強度を有する実用的に望まし
い軽量反射鏡基体を提供することにある。また他の課題
は、そのような軽量反射鏡を工業的に有利に製造し得る
効果的方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a practically desirable lightweight reflector base having excellent operability and having a strength such that the reflection mirror surface does not generate distortion due to a temperature change or the like. Is to provide. Yet another object is to provide an effective method by which such a lightweight reflector can be manufactured industrially advantageously.

【0013】[0013]

【課題を解決するための手段】本発明は、前記特許請求
の範囲に記載の構成要件から成るシリカ質軽量反射鏡の
製造方法を要旨とするものである。
SUMMARY OF THE INVENTION The gist of the present invention is a method for manufacturing a silica-based light-weight reflecting mirror comprising the constituent elements described in the claims.

【0014】上記構成要件から成る本発明の方法は、特
に、反射鏡のシリカガラス製の器状容器内に入れたシリ
カガラス多孔質体を加熱して上側のシリカガラス板で発
泡体を押圧して容器内に押し広げるように塑性変形させ
ると共に、内側の多孔質体と器状容器及びシリカガラス
板を一体化し、該容器の開口縁部とシリカガラス板周縁
部とを溶着させて、多孔質体を完全に囲繞する構造体と
することが特徴的である。かかる方法によれば、発泡体
が反射鏡囲繞殻体内に自由に充てんされるので発泡体を
所望形状に予め成形する必要がないという利点を有す
る。
In the method of the present invention having the above constitutional requirements, in particular, a porous silica glass body placed in a vessel made of silica glass as a reflecting mirror is heated and the foam body is pressed by an upper silica glass plate. Plastic deformation so as to spread it into the container, and integrate the inner porous body with the container and the silica glass plate, and weld the opening edge of the container and the peripheral edge of the silica glass plate to form a porous body. It is characteristic to have a structure that completely surrounds the body. According to such a method, there is an advantage that the foam does not need to be preformed into a desired shape because the foam is freely filled in the reflector surrounding shell.

【0015】本発明の方法に用いられる反射鏡の外側を
囲繞する板体は、シリカガラスで形成させるが、特に反
射鏡面形成用の板には、好ましくは、可及的高純度のシ
リカガラスで気泡のない透明な板が用いられる。また、
底面形成用板及び側面形成用板は必ずしも高純度シリカ
ガラスであることを要しないし、また高度に透明でなく
ても、あるいは多少気泡を含有していてもよい。これら
の板体は、反射鏡の大きさによって異なるが、それらの
厚さは、通常、2〜5mm程度である。
The plate surrounding the outside of the reflecting mirror used in the method of the present invention is formed of silica glass. Particularly, the plate for forming the reflecting mirror surface is preferably formed of silica glass having as high a purity as possible. A transparent plate without bubbles is used. Also,
The plate for forming the bottom surface and the plate for forming the side surfaces do not necessarily need to be high-purity silica glass, and may not be highly transparent or may contain some air bubbles. These plates vary depending on the size of the reflector, but their thickness is usually about 2 to 5 mm.

【0016】本発明の方法においては、シリカガラス多
孔質体が挿入されるシリカガラス製の、例えば周側壁部
を形成する円筒状板体と表板又は裏板形成用円盤状の板
とが予め融着一体化された開口する有底円筒状の器状容
器に形成される。その内側面に、該容器内容に対応する
円柱状発泡体が置かれ、その上からシリカガラス板又は
周側壁の一部を形成する円筒状板部を有する上記のよう
な有底円筒の器状のシリカガラス板状体を当てがい、所
定の高温加熱雰囲気中で押圧して、発泡体を器状容器内
に充てんさせると同時に、囲繞殻体を接合部で融着一体
化させて多孔質体を内側に含有する反射鏡基体が形成さ
れる。
In the method of the present invention, for example, a cylindrical plate forming a peripheral side wall and a disk-shaped plate for forming a front plate or a back plate made of silica glass into which a porous silica glass material is inserted are previously formed. It is formed into a cylindrical container with a bottom and an opening that is integrated by fusion. On its inner surface, a columnar foam corresponding to the contents of the container is placed, and a silica glass plate or a bottomed cylindrical container as described above having a cylindrical plate portion forming a part of the peripheral side wall from above. The silica glass plate is applied and pressed in a predetermined high-temperature heating atmosphere to fill the foam into the container and, at the same time, the surrounding shell is fused and integrated at the joint to form the porous body. Is formed inside.

【0017】この多孔質体を塑性変形させる操作温度で
は、板体で形成される囲繞殻は完全な密封状態を得る融
着が期待し難く、そのため融着不完全な間隙等には、シ
ロキサン結合を主骨とするシリコ−ンワニスやシリコ−
ンゴム等でシ−ルし、完全密封された反射鏡にすること
ができる。
At the operating temperature at which the porous body is plastically deformed, it is difficult to expect fusion of the surrounding shell formed of the plate to obtain a completely sealed state. Varnish or silicone whose main bone is
The mirror can be sealed with rubber or the like to form a completely sealed reflector.

【0018】また、それらの内側に充てんされるシリカ
ガラス多孔質体は、通常知られた泡ガラスの製造方法、
例えば、シリカ粉末にカ−ボン粉のような高温で反応ガ
ス化する物質を混ぜて加熱融着発泡させる方法、ガラス
をアンモニア雰囲気中でアンモニアと加熱反応させ、こ
れを更に高い温度に加熱してその離脱ガスを利用して発
泡させる方法、あるいは酸に容易に溶出するボロン系ガ
ラスを混合焼結し、これを酸処理して多孔質化する方法
によって製造される。
Further, the porous silica glass material filled in the inside thereof can be produced by a generally known method for producing foam glass,
For example, a method in which a substance which reacts at a high temperature, such as carbon powder, is mixed with silica powder to cause heat fusion and foaming.The glass is heated and reacted with ammonia in an ammonia atmosphere, and this is heated to a higher temperature. It is manufactured by a method of foaming using the desorbed gas or a method of mixing and sintering boron-based glass that easily elutes in acid, and treating this with acid to make it porous.

【0019】シリカガラス質多孔質体は、反射鏡の軽量
化と反射鏡面支持体としての強度を確保するには、例え
ば、見掛け密度が0.1〜1g/cm3程度のものが実用上好
ましく、この多孔質体は、例えば、1400〜1700℃の温度
で熱変形する条件下で押圧充てん操作される。この充て
んにおいては、各板の内面と多孔質体発泡体との間にシ
リカ粉を介在させることもでき、特に間隙が埋められて
融着一体化が促進されるので、高強度化に効果があり、
望ましい。また、その充てん押圧は、通常、1〜50g/
cm2の圧力で行われ、その際、好ましくは減圧雰囲気下
に操作される。
In order to reduce the weight of the reflector and secure the strength as a support for the reflector, the silica glass porous material preferably has an apparent density of, for example, about 0.1 to 1 g / cm 3. The porous body is subjected to a press-filling operation under a condition of being thermally deformed at a temperature of, for example, 1400 to 1700 ° C. In this filling, silica powder can be interposed between the inner surface of each plate and the porous foam, and particularly, the gap is filled to promote fusion and integration, which is effective in increasing the strength. Yes,
desirable. The filling pressure is usually 1 to 50 g /
It is carried out at a pressure of cm 2 , preferably operating under reduced pressure.

【0020】このようにして製造された多孔質体含有軽
量反射鏡用基体は、そのまま反射鏡の鏡面研磨仕上や金
属蒸着等の処理に提供することができ、例えば、最も厄
介な周側板部の最終的密閉操作を必要とせず省略をする
ことができるから、実用的に極めて有利である。
The substrate for a light-weight reflector containing a porous body manufactured in this manner can be provided as it is to a mirror polishing finish of the reflector or processing such as metal deposition. This is practically very advantageous because it can be omitted without requiring a final sealing operation.

【0021】また、このように形成され気密シ−ルされ
た反射鏡は、微粉状研磨剤や水が反射鏡内部へ侵入する
不都合が完全に防止されるから、反射鏡面を通常知られ
た精密研磨法によって平面あるいは所定の曲面に高度に
精密研磨することができ、更にその面に、何らのトラブ
ルもなく、例えばアルミニウムや銀等の反射鏡用金属膜
が蒸着その他の知られた手段によって優れた反射鏡層が
形成される。
In addition, the reflecting mirror thus formed and hermetically sealed can completely prevent the inconvenience of fine abrasive or water from entering the inside of the reflecting mirror. Polishing method enables highly precise polishing to a flat surface or a predetermined curved surface, and further, without any trouble, a metal film for a reflecting mirror such as aluminum or silver is excellently formed by vapor deposition or other known means. A reflective mirror layer is formed.

【0022】次に、本発明の方法を添付図面により、更
に詳細に説明する。図1は、本発明の方法の実施状態を
説明するための電気炉内の模式的断面図の一例で、その
(a)図は加熱前の状態であり、(b)図は加熱により
シリカガラス容器等と多孔質体とが一体化した状態の同
様の図である。また、図2は、本発明の方法で製造され
た大型反射鏡の一例の斜視図、図3はその断面図であ
り、図4は、本発明の方法による他の軽量反射鏡の斜視
図である。
Next, the method of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an example of a schematic cross-sectional view in an electric furnace for explaining an embodiment of the method of the present invention. FIG. 1A shows a state before heating, and FIG. It is the same figure in the state where the container etc. and the porous body were integrated. FIG. 2 is a perspective view of an example of a large reflecting mirror manufactured by the method of the present invention, FIG. 3 is a sectional view thereof, and FIG. 4 is a perspective view of another lightweight reflecting mirror according to the method of the present invention. is there.

【0023】図1において、周縁に立ち上がった周側板
が一体に形成され上方が開口する器状のシリカガラス製
容器1をカ−ボン円盤2と管状カ−ボンリング3で形成
される加熱用耐熱性カ−ボン型内に入れ、該シリカガラ
ス製容器1の内側底面に、融着用シリカガラス粉末5を
敷き、その上に容器1の開口上面より突出する高さを有
するシリカガラス多孔質体4を置き、更にその多孔質体
とシリカガラス製容器1との周縁間隙にシリカガラス粉
末5を充填する。また、その多孔質体4の上側にはシリ
カガラス製容器1と同じ径のシリカガラス円板6が当て
がわれ、その上に押圧用耐熱性カ−ボン板状体7及びカ
−ボン重り8を載せて、ヒ−タ9を備えた電気炉10内
で加熱される。
In FIG. 1, a container 1 made of a silica glass and having a container-like silica glass container 1 having a peripheral side plate integrally formed at the peripheral edge thereof and having an open top is formed by a carbon disk 2 and a tubular carbon ring 3. In a carbon mold, a fused silica glass powder 5 is spread on the inner bottom surface of the silica glass container 1, and a porous silica glass body 4 having a height protruding from the upper surface of the opening of the container 1 is placed thereon. Then, the silica glass powder 5 is filled in the peripheral gap between the porous body and the silica glass container 1. A silica glass disk 6 having the same diameter as the silica glass container 1 is applied to the upper side of the porous body 4, and a heat-resistant carbon plate 7 for pressing and a carbon weight 8 are placed thereon. Is heated in an electric furnace 10 equipped with a heater 9.

【0024】カ−ボン型内の温度が上昇すると多孔質体
4は塑性変形を始め、主として重り8により下方に押圧
されて容器1内に押し広げられ、シリカガラス粉末5の
溶融による融着と相俟って、多孔質体4はシリカガラス
製容器1及びシリカガラス板6と一体化される。その場
合、同時にシリカガラス製容器1とシリカガラス板6は
接触部において融着一体化し、囲繞殻体を形成する。
When the temperature in the carbon mold rises, the porous body 4 starts plastically deforming, and is mainly pressed downward by the weight 8 to be spread out in the container 1, and the silica glass powder 5 is fused by melting. Together with this, the porous body 4 is integrated with the silica glass container 1 and the silica glass plate 6. In this case, at the same time, the silica glass container 1 and the silica glass plate 6 are fused and integrated at the contact portion to form a surrounding shell.

【0025】器状のシリカガラス製容器1とシリカガラ
ス円板6に間隙が形成された場合には、好ましくはその
間隙がシリコ−ンゴム11で密封される(図2と図
3)。また、器状のシリカガラス製容器1と同様に周縁
に立上り管体部を持った器状のシリカガラス円板6とに
よって一体化され場合には、その周側板の中央部の間隙
が全周にわたってシリコ−ンゴムによりシ−ルされる
(図4)。
When a gap is formed between the container 1 made of silica glass and the disk 6 of silica glass, the gap is preferably sealed with silicone rubber 11 (FIGS. 2 and 3). Further, in the case where it is integrated with the container-shaped silica glass disk 6 having a rising tube portion on the periphery similarly to the container-shaped silica glass container 1, the gap at the center of the peripheral side plate is formed all around. (Fig. 4).

【0026】[0026]

【作用】本発明の方法によれば、反射鏡面に安定で光学
的面精度の優れた平坦あるいは曲面鏡が形成される軽量
基体が効果的に提供でき、また、本発明の方法によって
得られる大型反射鏡は、軽量にもかかわらず優れた構造
体強度を有し、長期にわたってその高精度鏡面が安定に
保持されるので、優れた反射鏡精度と高い操作性が保証
される。
According to the method of the present invention, it is possible to effectively provide a lightweight substrate on which a flat or curved mirror having a stable and excellent optical surface accuracy is formed on a reflecting mirror surface, and a large-sized substrate obtained by the method of the present invention. The reflecting mirror has excellent structural strength despite its light weight, and its high-precision mirror surface is stably maintained over a long period of time, so that excellent reflecting mirror accuracy and high operability are guaranteed.

【0027】[0027]

【実施例】次に、本発明を具体例により更に詳細に説明
する。 実施例 1 四塩化珪素を酸水素火炎中で加水分解して石英ガラスス
−ト体を得るCVD法(熱化学気相成長法)により得ら
れたシリカス−ト体を800℃の温度のアンモニアガス雰
囲気中で加熱してアンモニア化反応させ、次いで、これ
を減圧雰囲気(0.1torr)中で1650℃の温度に3時間加
熱して多孔性発泡体を製造した。これを直径495mm,厚
さ55mmの円盤にカットし、シリカガラス多孔質体を得
た。
Now, the present invention will be described in further detail with reference to specific examples. Example 1 A silica soot body obtained by a CVD method (thermochemical vapor deposition) of hydrolyzing silicon tetrachloride in an oxyhydrogen flame to obtain a quartz glass soot body was subjected to an ammonia gas atmosphere at a temperature of 800 ° C. Then, the mixture was heated in an atmosphere to cause an ammonia reaction, and then heated at a temperature of 1650 ° C. for 3 hours in a reduced pressure atmosphere (0.1 torr) to produce a porous foam. This was cut into a disk having a diameter of 495 mm and a thickness of 55 mm to obtain a porous silica glass body.

【0028】一方、直径496mm,厚さ3mmの反射面形成
用透明合成石英ガラス円板の外周縁に、直径502mm,高
さ(立上り幅)48mm,厚さ3mmの周側板部形成用天然シ
リカガラス管体状リングの下側周縁を径4mmのシリカガ
ラス棒で肉盛り溶接を行って一体化し、外径が502mm,
高さが51mmで厚さ3mmの一方が開口した有底円筒状容器
を作成した。
On the other hand, a natural synthetic silica glass for forming a peripheral side plate portion having a diameter of 502 mm, a height (rising width) of 48 mm and a thickness of 3 mm is provided on an outer peripheral edge of a transparent synthetic quartz glass disk for forming a reflecting surface having a diameter of 496 mm and a thickness of 3 mm. The lower peripheral edge of the tubular ring is welded with a silica glass rod with a diameter of 4 mm to form an integral part, and the outer diameter is 502 mm.
A bottomed cylindrical container having a height of 51 mm and a thickness of 3 mm with one opening opened was prepared.

【0029】この有底器状容器の内底面に、粒径が100
μm以下に調製されたシリカガラス粉を約0.5mmの厚さに
敷いてその上に前記円盤状シリカガラス多孔質体を置
き、これを直径が600mm,厚さが30mmのカ−ボン円盤の
上に前記器状容器の底板側を下側にして載せ、更に前記
多孔質体と器状容器の外側に直径550mm,高さ51mm,肉
厚10mmのカ−ボンリング体を同心状に設置した。
The inner bottom of the bottomed container has a particle size of 100
Silica glass powder prepared to be less than μm is spread to a thickness of about 0.5 mm, and the disc-shaped porous silica glass body is placed thereon, and placed on a carbon disc having a diameter of 600 mm and a thickness of 30 mm. Then, the bottom plate side of the container was placed on the lower side, and a carbon ring having a diameter of 550 mm, a height of 51 mm, and a thickness of 10 mm was concentrically installed outside the porous member and the container.

【0030】次に、前記多孔質体と器状容器側の周内面
との間に、粒径が100μm以下に調製されたシリカガラス
粉を充填し、挿入した多孔質体の上に直径502mm,厚さ
3mm,のシリカガラス円板を、更にその上に直径550m
m,厚さ30mmのカ−ボン円板及び直径300mm,厚さ200mm
の円盤状カ−ボン重りを順に同心状に載置した。
Next, a silica glass powder having a particle size of not more than 100 μm was filled between the porous body and the inner peripheral surface of the container, and a 502 mm diameter, A 3mm thick silica glass disk and 550m diameter on it
m, carbon disc with thickness of 30mm and diameter of 300mm, thickness of 200mm
Were placed concentrically in this order.

【0031】こように装置したものを電気炉内に入れ、
0.1torrの減圧雰囲気下に1400℃に1時間加熱した結
果、多孔質体は重りで押し広げられ、シリカガラス粉は
溶融してシリカガラス器状容器と多孔質体を一体化し、
該器状容器の立上り上縁と円板状シリカガラスの周縁部
が溶着して密封状反射鏡基体が得られた。得られた反射
鏡基体は、その体積及び重量から、外殻のシリカガラス
板と充填シリカ粉を除いた多孔性発泡体部分の密度は、
約0.2g/cm3であった。
The device thus constructed is placed in an electric furnace,
As a result of heating at 1400 ° C. for 1 hour under a reduced pressure atmosphere of 0.1 torr, the porous body is pushed out by a weight, the silica glass powder is melted, and the silica glass container and the porous body are integrated,
The rising upper edge of the container and the peripheral edge of the disk-shaped silica glass were welded to obtain a sealed reflector base. From the volume and weight of the obtained reflector base, the density of the porous foam part excluding the silica glass plate of the outer shell and the filled silica powder is:
It was about 0.2 g / cm 3 .

【0032】得られた反射鏡基体の外周を直径500mmに
研削し、更に反射面用板及び底面用板をダイヤホイ−ル
砥石で荒削りし、反射面用板側を更に酸化セリウムで鏡
面研磨し、直径500mm,厚さ50mmで外面に2mmの肉厚の
シリカガラス反射鏡板と外殻を有する軽量反射鏡基体に
加工した。この軽量反射鏡基体の反射面に、CVD法に
よりアルミニウムの皮膜を形成し、大型反射鏡を作成し
た。作成された反射鏡は、重量が約4kgで、従来の同
じサイズの反射鏡に対して81%の軽量化が達成された。
The outer periphery of the obtained reflector base was ground to a diameter of 500 mm, the plate for the reflecting surface and the plate for the bottom surface were further roughed with a diamond wheel, and the plate for the reflecting surface was further mirror-polished with cerium oxide. It was processed into a lightweight reflector base having a diameter of 500 mm, a thickness of 50 mm, a silica glass reflector plate having a thickness of 2 mm on the outer surface and an outer shell. An aluminum film was formed on the reflection surface of the lightweight reflector base by the CVD method, thereby producing a large-sized reflector. The resulting reflector weighs about 4 kg, and is 81% lighter than a conventional reflector of the same size.

【0033】実施例 2 実施例1と同様にして四塩化珪素を酸水素火炎中で加水
分解したス−ト体を製造し、800℃の温度のアンモニア
ガス雰囲気中で加熱してアンモニア化反応させた後、こ
れを0.1torrの減圧雰囲気中で1650℃の温度に3時間加
熱して多孔性発泡体を得た。次いで、これを直径495m
m,厚さ55mmの円盤にカットし、シリカガラス多孔質体
を得た。
Example 2 A soot body was prepared by hydrolyzing silicon tetrachloride in an oxyhydrogen flame in the same manner as in Example 1 and heated in an ammonia gas atmosphere at a temperature of 800 ° C. to carry out an ammonification reaction. Thereafter, this was heated at a temperature of 1650 ° C. for 3 hours in a reduced pressure atmosphere of 0.1 torr to obtain a porous foam. Then, this is 495m in diameter
m, and cut into a disk having a thickness of 55 mm to obtain a porous silica glass body.

【0034】一方、直径496mm,厚さ3mmの反射面形成
用透明合成石英ガラス円板の外周縁に、直径502mm,高
さ21mm,厚さ3mmの周側板部形成用天然シリカガラス管
体状リングの下側周縁を径4mmのシリカガラス棒で肉盛
り溶接を行って一体化し、外径が502mm,高さが24mmで
厚さが3mmの一方が開口した有底の反射鏡面用器状容器
を得た。
On the other hand, on the outer peripheral edge of a transparent synthetic quartz glass disk for forming a reflecting surface having a diameter of 496 mm and a thickness of 3 mm, a natural silica glass tubular ring for forming a peripheral side plate having a diameter of 502 mm, a height of 21 mm and a thickness of 3 mm is provided. The lower peripheral edge is welded together with a 4 mm diameter silica glass rod to form a united container with a 50 mm outer diameter, 24 mm height, and 3 mm thick bottomed bottomed reflector-like container with one open end. Obtained.

【0035】また、同様に直径496mm,厚さ3mmの底面
形成用天然シリカガラス円板の外周縁と直径502mm,高
さ21mm,厚さ3mmの周側板部形成用天然シリカガラス管
体状リングの下側周縁とを、径が4mmのシリカガラス棒
で肉盛り溶接を行って一体化し、外径が502mm,高さが2
4mmで厚さが3mmの一方が開口した有底の底板用器状容
器を作製した。
Similarly, an outer peripheral edge of a natural silica glass disk for forming a bottom surface having a diameter of 496 mm and a thickness of 3 mm and a natural silica glass tubular ring for forming a peripheral side plate portion having a diameter of 502 mm, a height of 21 mm and a thickness of 3 mm. The lower periphery is welded together with a 4 mm diameter silica glass rod to form an integral part, with an outer diameter of 502 mm and a height of 2 mm.
A bottomed container for bottom plate having a thickness of 4 mm and a thickness of 3 mm and having an opening on one side was prepared.

【0036】次に、その底板用器状容器の内底面に、粒
径が100μm以下に調製されたシリカガラス粉を約1mmの
厚さに敷いて、その上に前記円盤状シリカガラス多孔質
体を置き、これを直径600mm,厚さ30mmのカ−ボン円盤
の上に移し、更に前記多孔質体と器状容器の外側に直径
550mm,高さ51mm,肉厚10mmの管状カ−ボンリング体を
同心状に設置した。
Next, silica glass powder having a particle size of not more than 100 μm is laid on the inner bottom surface of the container for bottom plate to a thickness of about 1 mm, and the disk-shaped porous silica glass material is placed thereon. And place it on a carbon disk with a diameter of 600 mm and a thickness of 30 mm.
A tubular carbon ring body of 550 mm, height 51 mm and wall thickness 10 mm was installed concentrically.

【0037】次に、前記円盤状多孔質体の上に、反射鏡
面形成用の器状容器をその開口側を下に向けて載せ、そ
の上に直径502mm,厚さ3mmのシリカガラス円板を、更
にその上に直径550mm,厚さ30mmのカ−ボン円盤及び直
径300mm,厚さ200mmの円盤状カ−ボン重りを順に同心状
に載置した。
Next, a container for forming a reflecting mirror surface is placed on the disc-shaped porous body with its opening side facing down, and a silica glass disk having a diameter of 502 mm and a thickness of 3 mm is placed thereon. A carbon disk having a diameter of 550 mm and a thickness of 30 mm and a disk-shaped carbon weight having a diameter of 300 mm and a thickness of 200 mm were further concentrically placed thereon.

【0038】こように装置したものを電気炉内に入れ、
0.1torrの減圧条件下に1400℃の温度に1時間加熱し
た。その結果、多孔質体は重りで両器状容器内に押し広
げられて充満し、両容器と多孔質体は融着一体化した。
両器状容器同士の立上り状周壁の対向縁部は、全周縁に
わたって2mmの間隙が形成された。押圧変形して形成さ
れた多孔性発泡体部分の密度は、反射鏡基体の体積及び
重量から約0.2g/cm3であることが算出された。
The device thus constructed is placed in an electric furnace,
Heated to a temperature of 1400 ° C. for 1 hour under reduced pressure of 0.1 torr. As a result, the porous body was spread and filled with the weight into the two container-like containers, and the two containers and the porous body were fused and integrated.
A 2 mm gap was formed over the entire peripheral edge of the rising peripheral wall between the two containers. The density of the porous foam portion formed by pressing deformation was calculated to be about 0.2 g / cm 3 from the volume and weight of the reflector base.

【0039】このように形成された軽量反射鏡基体の周
側面部に全周にわたって形成された2mmの間隙に、脱ア
セトン一液硬化型シリコ−ンゴムを充填し、常温で約2
日間放置して硬化させ、完全に密封状の反射鏡基体を得
た。
A 2 mm gap formed over the entire peripheral surface of the thus formed lightweight reflector base is filled with a one-component silicone rubber that is de-acetone-desorbed.
It was left to cure for a period of days to obtain a completely sealed reflector base.

【0040】得られた反射鏡基体の外周直径を500mmに
研削し、更に反射面用及び底面用板をダイヤホイ−ル砥
石で荒削りし、反射面用板側を更に酸化セリウムで鏡面
研磨して、直径500mm,厚さ50mmで外面に2mmの肉厚の
シリカガラス反射鏡面と外殻を有する軽量反射鏡基体に
加工した後、この軽量反射鏡基体の反射面に、CVD法
によりアルミニウムの皮膜を蒸着させて大型反射鏡を作
製した。
The outer peripheral diameter of the obtained reflector base body was ground to 500 mm, the plates for the reflecting surface and the bottom surface were further roughly cut with a diamond wheel, and the reflecting surface plate side was further mirror-polished with cerium oxide. After processing into a lightweight reflector base having a diameter of 500 mm, a thickness of 50 mm, and a 2 mm thick silica glass reflector surface and outer shell on the outer surface, an aluminum film is deposited on the reflective surface of the lightweight reflector substrate by CVD. Thus, a large reflecting mirror was manufactured.

【0041】作製された反射鏡は、重量が約4kgで、
従来の同じサイズの反射鏡に対して80%の軽量化が達成
されただけでなく、研削研磨工程におけるク−ラントや
砥粒の反射鏡外殻内への進入もなく、また、反射膜の蒸
着の際にも、外殻内からのダストやミスとなどの発生に
よる皮膜異常がないことから、良好な反射面が形成され
た。
The manufactured reflector had a weight of about 4 kg.
In addition to achieving 80% lighter weight than the conventional reflector of the same size, there is no penetration of coolant or abrasive grains into the outer shell of the reflector during the grinding and polishing process, and the reflection film During evaporation, a good reflection surface was formed because there was no film abnormality due to the generation of dust or mistakes from the inside of the outer shell.

【0042】[0042]

【発明の効果】上記具体例から明らかなように、本発明
の方法によれば、板状のシリカガラス外殻を持った大型
反射鏡用基体が、従来の反射鏡に比べて容易且つ低コス
トで提供されるので、工業的に著しく有利である。ま
た、本発明方法によって製造される軽量反射鏡は、その
反射面が高精度に研磨できるばかりでなく金属蒸着膜の
形成にも何らの不都合がなく、更に高精度反射面が安全
に保持される優れた強度を有し、しかも大型のものでも
その軽量化によって高い操作性が得られるという極めて
望ましい実用的価値を有する。
As is apparent from the above embodiments, according to the method of the present invention, a large reflector base having a plate-like silica glass shell can be manufactured more easily and at lower cost than conventional reflectors. Is industrially remarkably advantageous. In addition, the lightweight reflecting mirror manufactured by the method of the present invention can not only polish the reflecting surface with high precision, but also does not have any inconvenience in forming the metal deposition film, and furthermore, the high-precision reflecting surface is safely held. It has excellent strength, and has a very desirable practical value that high operability can be obtained by reducing the weight of even a large one.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法の実施状態を説明するための模式
的断面図の一例で、その(a)図は加熱前の状態を示
し、(b)図は、加熱により多孔質体と板状シリカガラ
ス囲繞体との一体化した状態を示す図である。
FIG. 1 is an example of a schematic cross-sectional view for explaining an embodiment of the method of the present invention, in which (a) shows a state before heating, and (b) shows a porous body and a plate by heating. It is a figure which shows the state integrated with the silica glass surrounding body.

【図2】本発明の方法で製造された大型反射鏡の一例の
斜視図である。
FIG. 2 is a perspective view of an example of a large reflecting mirror manufactured by the method of the present invention.

【図3】図2の大型反射鏡の断面図である。FIG. 3 is a sectional view of the large reflecting mirror of FIG. 2;

【図4】本発明の方法による他の軽量反射鏡の斜視図で
ある。
FIG. 4 is a perspective view of another lightweight reflector according to the method of the present invention.

【符号の説明】[Explanation of symbols]

1 器状のシリカガラス製容器 2 カ−ボン円盤 3 管状カ−ボンリング 4 シリカガラス多孔質体 5 シリカガラス粉末 6 シリカガラス円板 7 耐熱性カ−ボン板状体 8 カ−ボン重り 9 ヒ−タ 10 電気炉 11 シリコ−ンゴム DESCRIPTION OF SYMBOLS 1 Container-shaped silica glass container 2 Carbon disk 3 Tubular carbon ring 4 Silica glass porous material 5 Silica glass powder 6 Silica glass disk 7 Heat-resistant carbon plate 8 Body weight 9 Carbon 10 Electric furnace 11 Silicon rubber

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G02B 5/08 C03C 11/00Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) G02B 5/08 C03C 11/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シリカ質軽量反射鏡の製造方法において、
周縁に立ち上がった周側板が一体に形成され上方が開口
する器状のシリカガラス製容器を加熱用耐熱性型内に入
れ、該シリカガラス製容器内にその容器の開口上面より
突出する高さを有するシリカガラス多孔質体を挿入し、
上側にシリカガラス板を載置して、その上方から押圧用
耐熱性板状体を当てがい、加熱,押圧してシリカガラス
多孔質体を上記容器内に押し広げてシリカガラス製容器
及びシリカガラス板と一体化することを特徴とするシリ
カ質軽量反射鏡の製造方法。
1. A method of manufacturing a silica-based lightweight reflector, comprising:
A vessel-shaped silica glass container in which a peripheral side plate rising at the periphery is integrally formed and opened upward is placed in a heat-resistant mold for heating, and a height projecting from the upper surface of the opening of the container into the silica glass container is set. Insert a silica glass porous body having
A silica glass plate is placed on the upper side, and a heat-resistant plate-like body for pressing is applied from above, and heated and pressed to spread the porous silica glass body into the above-described container, thereby forming a silica glass container and silica glass. A method for producing a silica-based lightweight reflecting mirror, which is integrated with a plate.
【請求項2】シリカガラス製容器と挿入多孔質体との間
隙にシリカガラス粉体を充填して加熱,押圧一体化する
請求項1記載の製造方法。
2. The method according to claim 1, wherein a gap between the silica glass container and the inserted porous body is filled with silica glass powder, and the mixture is heated and pressed to integrate.
【請求項3】載置されるシリカガラス板が、器状のシリ
カガラス製容器の立上り周側板に対向する周側板を周縁
に一体に備えている請求項1記載の製造方法。
3. The manufacturing method according to claim 1, wherein the silica glass plate to be placed is provided with a peripheral side plate which is opposed to a rising peripheral side plate of a vessel-shaped silica glass container integrally at a peripheral edge.
JP35721291A 1991-12-25 1991-12-25 Manufacturing method of silica-based lightweight reflector Expired - Fee Related JP2750234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35721291A JP2750234B2 (en) 1991-12-25 1991-12-25 Manufacturing method of silica-based lightweight reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35721291A JP2750234B2 (en) 1991-12-25 1991-12-25 Manufacturing method of silica-based lightweight reflector

Publications (2)

Publication Number Publication Date
JPH05173006A JPH05173006A (en) 1993-07-13
JP2750234B2 true JP2750234B2 (en) 1998-05-13

Family

ID=18452960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35721291A Expired - Fee Related JP2750234B2 (en) 1991-12-25 1991-12-25 Manufacturing method of silica-based lightweight reflector

Country Status (1)

Country Link
JP (1) JP2750234B2 (en)

Also Published As

Publication number Publication date
JPH05173006A (en) 1993-07-13

Similar Documents

Publication Publication Date Title
US5576884A (en) Base body of reflecting mirror and method for preparing the same
US5461511A (en) Base body of a reflecting mirror and method for the preparation thereof
US7766494B1 (en) Light-weight mirror blank assembly
JP2750234B2 (en) Manufacturing method of silica-based lightweight reflector
US4898604A (en) Method of manufacturing a blank for a light-weight mirror with a supporting structure
JP2884555B2 (en) Lightweight reflector
JP2569234B2 (en) Manufacturing method of lightweight reflector base
JP2580406B2 (en) Method for manufacturing reflector base
JP2580419B2 (en) Manufacturing method of lightweight reflector base
US7069747B2 (en) Mirror blanks from inflatable balls
US5150507A (en) Method of fabricating lightweight honeycomb structures
JP3394320B2 (en) Method for producing laminated quartz glass member having transparent layer and opaque layer
US3930824A (en) Method of forming laser components
JP2750229B2 (en) Large and lightweight reflector
US20180016176A1 (en) DEVICE FOR MANUFACTURING SiO2-TiO2 BASED GLASS
US10024577B2 (en) Solar radiation receiver having an entry window made of quartz glass and method for producing an entry window
EP0411910A2 (en) Lightweight structures and methods for the fabrication thereof
JP2966619B2 (en) Lightweight reflector base
Goela et al. Large scale fabrication of lightweight Si/SiC lidar mirrors
US11550082B2 (en) Mirror with increased form stability and longevity and a method of fabricating the same
JPH0772314A (en) Annular lightweight reflection mirror
EP0548429B1 (en) Method of fabricating lightweight honeycomb type structure
US1930327A (en) Composite silica article and method of fabricating same
Melugin et al. Development of lightweight, glass mirror segments for the Large Deployable Reflector
Edwards LARGE Optics of ULETM Zero Expansion Glass

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees