JP2750229B2 - Large and lightweight reflector - Google Patents

Large and lightweight reflector

Info

Publication number
JP2750229B2
JP2750229B2 JP15559391A JP15559391A JP2750229B2 JP 2750229 B2 JP2750229 B2 JP 2750229B2 JP 15559391 A JP15559391 A JP 15559391A JP 15559391 A JP15559391 A JP 15559391A JP 2750229 B2 JP2750229 B2 JP 2750229B2
Authority
JP
Japan
Prior art keywords
mirror
layer
reflector
base layer
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15559391A
Other languages
Japanese (ja)
Other versions
JPH04353802A (en
Inventor
博至 木村
信一 大越
俊幸 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP15559391A priority Critical patent/JP2750229B2/en
Priority to EP19910117353 priority patent/EP0507000B1/en
Priority to DE69118512T priority patent/DE69118512T2/en
Priority to US07/775,095 priority patent/US5640282A/en
Publication of JPH04353802A publication Critical patent/JPH04353802A/en
Priority to US08/458,672 priority patent/US5576884A/en
Priority to US08/567,165 priority patent/US5617262A/en
Application granted granted Critical
Publication of JP2750229B2 publication Critical patent/JP2750229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、天体観測やビ−ム集
光,拡散あるいは宇宙産業等に用いられる実用性の優れ
た反射鏡に関し、更に、大きな温度変化にも実質的に鏡
面が変化することのない軽量化された大型反射鏡基体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly practical reflector used for astronomical observation, beam condensing, diffusing, or the space industry. The present invention relates to a light-weight large-sized reflector base that does not need to be made.

【0002】[0002]

【従来の技術】従来、天体用反射鏡や高エネルギ−ビ−
ム等の光学的な集光や拡散又は光路変更等に用いられる
反射鏡は、石英ガラスや高珪酸ガラス等の板体の表面を
平面や所定の曲率面に研磨し、その研磨面に光学的な反
射層として、従来知られた方法、例えば、CVD法によ
り400℃ないし800℃の温度の加熱条件下にアルミニウム
等の金属の蒸着膜を形成させ、これを軽量の操作用支持
台に支持させて所望の方向に自由に操作し得るように用
いられる。このような蒸着操作が必要であるため、反射
鏡用素材としては、反射面の温度や内力的な状況変化に
影響されない精度保持が要求される。
2. Description of the Related Art Conventionally, astronomical reflectors and high energy beams have been used.
The reflector used for optical condensing, diffusing, or changing the optical path of a mirror or the like, polishes the surface of a plate made of quartz glass, high silicate glass, etc. to a flat surface or a predetermined curvature surface. As a reflective layer, a conventionally known method, for example, a vapor deposition film of a metal such as aluminum is formed under heating conditions of 400 ° C. to 800 ° C. by a CVD method, and this is supported on a lightweight operation support. And can be freely operated in a desired direction. Since such a vapor deposition operation is required, the material for the reflecting mirror is required to maintain accuracy that is not affected by the temperature of the reflecting surface or an internal force change.

【0003】しかして、かかる反射鏡は、これまで直径
が5〜20cm程度の小型のものが主流であったが、近年、
大口径のビ−ムの反射や高い集光率を得るために直径が
30cm〜1mあるいはそれ以上の大型のものが要求される
ようになり、またそのような大型のものが一部実用化さ
れているが、集光ビ−ムの輻射熱や環境温度の変化によ
る板素材の微妙な体積変化による鏡面うねりや鏡面形成
面への金属反射膜蒸着の際の高温熱処理による熱変形等
が、その反射鏡の性能を低下させるので、熱膨張変化や
熱変形の小さい石英ガラスや高珪酸ガラスが主として使
用されるようになった。しかし、大型化に伴って、反射
鏡自体の重量が極めて大きくなり、その反射鏡の支持角
度等の支持姿勢の変化によって自重による変形を生み出
し、しいては鏡面のうねりとなり性能の低下が問題とな
っている。
[0003] In the past, such reflectors were mainly small ones having a diameter of about 5 to 20 cm.
In order to reflect a large diameter beam and obtain a high light collection rate,
Large-sized ones of 30 cm to 1 m or more are required, and such large-sized ones have been put into practical use. The mirror surface undulation due to the delicate volume change of the mirror surface and the thermal deformation due to the high temperature heat treatment when depositing the metal reflective film on the mirror surface lowers the performance of the reflecting mirror. High silicate glass has come to be mainly used. However, as the size of the reflector increases, the weight of the reflector itself becomes extremely large, and deformation of the reflector due to its own weight is caused by changes in the support posture, such as the support angle of the reflector, and as a result, the mirror surface swells and the performance decreases. Has become.

【0004】一方、これらの問題に対して、反射鏡用素
材の軽量化と高い被保持強度を与える反射鏡に関する多
くの提案がなされている。例えば、特公昭63-57761号公
報には、天体用軽量反射鏡素材として、透明反射鏡板と
後板との間に数列の管から成る石英ガラス等の支持格子
を有し、その管列の各管が、隣接する列の2個の管と接
触線又は接触帯を有するように互い違いにされ、その接
触線等の領域内における管の壁の厚さを壁の残部に比べ
て減少させると共に、各管を接触線等に沿って相互に溶
接させた特殊な管構造のものが開示されている。しか
し、かかる特殊構成の天体反射鏡素材は、構成が複雑だ
けでなく製作が厄介で工業的に著しく不利であり、また
鏡面垂直方向からの研磨圧に対して支持格子の支持部分
と非支持部分では、鏡面の変形の度合いが異なり、一体
化された反射鏡板の曲面研磨に対して満足し得る素材と
はいえない。
[0004] On the other hand, to solve these problems, many proposals have been made on reflectors that reduce the weight of the reflector material and provide high holding strength. For example, Japanese Patent Publication No. 63-57761 discloses a light-weight reflector material for a celestial body, which has a support grid made of several rows of tubes between a transparent reflector plate and a rear plate, such as quartz glass. The tubes are staggered to have a contact line or contact zone with two tubes in an adjacent row, reducing the wall thickness of the tube in the area of the contact line or the like as compared to the rest of the wall; A special pipe structure in which the pipes are welded to each other along a contact line or the like is disclosed. However, such a specially constructed astronomical reflector material is not only complicated in construction, but also difficult to manufacture, and is extremely disadvantageous industrially.In addition, the supporting portion and the non-supporting portion of the support grid are subject to polishing pressure from the vertical direction of the mirror surface. Thus, the degree of deformation of the mirror surface is different, and it cannot be said that the material is satisfactory for polishing the curved surface of the integrated reflector plate.

【0005】更に、この反射鏡素材は、製作の際に支持
格子である管素材の有効高さを厳密な意味で一定にする
ことが難しく、このため張り合わせた透明反射鏡板に管
素材の不均一な凹凸が歪として残り、後日、鏡面うねり
などの経時変化を引き起こすため、反射鏡の性能低下の
要因となっている。また、支持格子は、その構造上、鏡
面を重力に対して水平にした時と垂直にした時では、自
重に対する剛性が変わって鏡面の姿勢により面精度に微
妙な変化が現われるため、姿勢の可動が必要な操作性を
要する用途には使用し難い。
In addition, it is difficult to make the effective height of the tube material, which is a support grid, strictly constant in the strict sense during the production of the reflector material. Such irregularities remain as distortions and cause changes over time, such as swelling of the mirror surface, at a later date, which is a factor in lowering the performance of the reflector. Also, due to its structure, when the mirror surface is horizontal and vertical with respect to gravity, the rigidity against its own weight changes and the surface accuracy changes slightly depending on the mirror surface, so the posture is movable. However, it is difficult to use for applications that require operability.

【0006】また、特公昭61-26041号公報は、軽量鏡に
関し、特に、石英ガラス類の前板と後板との間に、これ
らの板に動かないように連結された石英ガラス類でつく
られた支持格子が融着一体化された天体用軽量鏡を記載
している。この支持格子は、石英ガラス類の板状部材及
び(又は)管状部材が支持用の板の上に置かれ、それぞ
れ2個の部材の間に残っている空間の中に、粒状体、小
管片、小粒子、小板片又はこれらの混合物から成る焼結
されるべき物質が充填され、この配置が、黒鉛リングに
よって一緒に保持され、次いでこれらが炉内において非
酸化性雰囲気下に焼結温度に加熱されて、そのように形
成された支持格子が前板と後板に動かないように加熱融
着により連結されることが開示されている。
Japanese Patent Publication No. Sho 61-26041 relates to a lightweight mirror, and more particularly, to a lightweight mirror made of quartz glass which is connected between these front and rear plates so as not to move. A lightweight mirror for a celestial body in which a support grid is fused and integrated. The support grid is formed by placing a plate-shaped member and / or a tubular member made of quartz glass on a supporting plate, and in each of the spaces left between the two members, a granular material, a small tube piece, and the like. , Filled with the material to be sintered, consisting of small particles, platelets or mixtures thereof, the arrangement being held together by graphite rings, which are then heated in a furnace under a non-oxidizing atmosphere under a non-oxidizing atmosphere. It is disclosed that the supporting grid thus formed is connected to the front plate and the rear plate by heat fusion so as not to move.

【0007】しかし、この方法は、適切な形状の板状部
材や管状部材を予め多数作成し、並列配置した所定空間
に焼結物質を充填したり、あるいは焼結物質を充填した
補強管状部材を適宜配置して前板と後板とを融着しなけ
ればならない厄介な操作と労力及び時間を必要とするの
で工業的には採用し難い。しかも、この方法は、支持格
子が融着する前板の箇所がしばしば歪を形成し、あるい
は焼結物質自体が低密度の連続気孔を持った多孔質体で
あるため、収縮したり崩壊して形状変化を起こし、前板
表面の凹面精度が損なわれるという不利が回避できなか
った。
However, in this method, a large number of plate-like members or tubular members having an appropriate shape are prepared in advance, and a predetermined space arranged in parallel is filled with a sintering material, or a reinforcing tubular member filled with the sintering material is used. Since it requires troublesome operation, labor, and time for appropriately arranging the front plate and the rear plate and fusing the front plate and the rear plate, it is difficult to industrially adopt the method. Moreover, in this method, the front plate where the support grid is fused often forms a strain, or the sintered material itself is a porous body having low-density continuous pores, so that it shrinks or collapses. The disadvantage that the shape changes and the concave surface accuracy of the front plate surface is impaired cannot be avoided.

【0008】[0008]

【発明が解決しようとする課題】従って、本発明の課題
は、軽量で反射鏡面の方向調整等の操作性の優れた実用
的大型反射鏡を提供することにある。また他の課題は、
製造が容易で、前板(反射鏡板)支持強度に優れ、更に
反射鏡面が鏡面研磨の際にも変形やうねりを起こさない
基体層が一体化された優れた強度の大型反射鏡を提供す
ることにある。更に他の課題は、反射鏡面を形成する板
が温度変化により歪ができたり、反射膜蒸着の際に熱変
形が発生しない均質で優れた反射面を有する反射鏡を提
供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a practical large reflector which is lightweight and excellent in operability such as adjusting the direction of the reflector surface. Another challenge is
Provided is a large-sized reflector having excellent strength that is easy to manufacture, has excellent front plate (reflection mirror plate) support strength, and has an integrated base layer that does not cause deformation or undulation even when the reflection mirror surface is polished. It is in. Still another object is to provide a reflecting mirror having a uniform and excellent reflecting surface in which a plate forming the reflecting mirror surface can be distorted due to a change in temperature and does not undergo thermal deformation upon deposition of the reflecting film.

【0009】[0009]

【課題を解決するための手段】本発明者らは、かかる課
題を解決すべく多くの試作研究を重ねた結果、実用的に
優れた大型の軽量反射鏡を開発した。すなわち、本発明
は、平面又は所定の曲率に形成された表面に反射膜が蒸
着される大型反射鏡において、該反射鏡が表面に鏡面を
有する無気泡で透明な石英ガラス又は高珪酸ガラスから
成る鏡面形成層と、その下側に一体化された二酸化珪素
質多孔性発泡体の層から成る基体層とから構成される多
層構造体であって、上記鏡面形成層が、多層構造反射鏡
の中央部の厚さの2〜20%の範囲の層厚を有し、また、
上記多孔性基体層が、その内部に含まれる全気孔体積の
15%以上の独立気泡を含有し、且つ0.1〜1g/cm3の見
掛け密度を有する大型軽量化反射鏡を要旨とするもので
ある。更に該反射鏡の多孔性基体層の下側に、補強層を
一体に形成した大型軽量化反射鏡は一層好ましい。
Means for Solving the Problems The present inventors have conducted many trial production studies to solve the above problems, and as a result, have developed a practically excellent large lightweight reflector. That is, the present invention provides a large reflector having a reflective film deposited on a flat surface or a surface formed with a predetermined curvature, wherein the reflector is made of bubble-free transparent quartz glass or high silicate glass having a mirror surface on the surface. A multilayer structure comprising a mirror surface forming layer and a base layer composed of a silicon dioxide porous foam layer integrated thereunder, wherein the mirror surface forming layer is located at the center of the multilayer structure reflecting mirror. A layer thickness in the range of 2 to 20% of the thickness of the part,
The porous substrate layer has a total pore volume contained therein.
The gist of the present invention is a large-sized light-weight reflector having at least 15% closed cells and an apparent density of 0.1 to 1 g / cm 3 . Further, a large-sized and lightweight reflector in which a reinforcing layer is integrally formed below the porous base layer of the reflector is more preferable.

【0010】本発明の大型軽量化反射鏡は、光、例え
ば、太陽光やレ−ザ光線等を集めたり散乱させたりす
る、主として天体用,レ−ザ−集光用,太陽熱用として
有用な反射鏡であって、その鏡面形成面には反射光に適
切な膜が形成され、各種用途の反射鏡として使用され
る。かかる大型軽量反射鏡は、特に高い反射鏡精度と軽
量化による高い操作性が要求される。この軽量化は、実
用上一層構造の同型の鏡体に比較して軽量化反射鏡の場
合の50%以上、望ましくは70%以上の重量軽減が必要と
されている。
The large and light reflecting mirror of the present invention collects and scatters light, for example, sunlight and laser beams, and is useful mainly for celestial bodies, laser condensing, and solar heat. It is a reflecting mirror, and a film suitable for reflected light is formed on the mirror forming surface, and is used as a reflecting mirror for various uses. Such large-sized lightweight reflectors are required to have particularly high reflector accuracy and high operability due to weight reduction. This weight reduction requires a weight reduction of 50% or more, preferably 70% or more, in the case of a weight-reducing reflector in comparison with a mirror body of the same type having a more practical structure.

【0011】従って、その鏡面形成層は、温度変化に対
して変形しない実質的に無気泡の透明高珪酸ガラスや石
英ガラスが専ら用いられ、また、この鏡面形成層を保持
する基体層も鏡面形成層と熱膨張差による歪や反射膜蒸
着時の熱変形が発生しない二酸化珪素質部材が用いられ
る。そのような二酸化珪素部材は、90%以上の二酸化珪
素を含有する素材であれば好適に使用できる。しかし
て、鏡面反射鏡板を支えるために鏡面形成層の下部の基
体層として一体形成される二酸化珪素質部材は、軽量化
と強度を得るためにその気孔中に多量の独立気泡を含
み、且つ0.1〜1g/cm3の見掛け密度を有する多孔性発
泡体であることが重要である。
Accordingly, the mirror-forming layer is made of a substantially bubble-free transparent high silicate glass or quartz glass which is not deformed by a change in temperature, and the base layer holding the mirror-forming layer is also formed of a mirror-forming layer. A silicon dioxide-based member that does not generate distortion due to a difference in thermal expansion between the layer and a thermal expansion during deposition of the reflective film is used. Such a silicon dioxide member can be suitably used as long as it contains 90% or more of silicon dioxide. Thus, the silicon dioxide-based member integrally formed as a base layer below the mirror-forming layer to support the mirror-reflecting mirror plate contains a large number of closed cells in its pores in order to obtain weight reduction and strength, and 0.1%. It is important that the porous foam has an apparent density of 密度 1 g / cm 3 .

【0012】多孔性発泡体の気孔における独立気泡の割
合を高めると、3次元的格子構造のネットワ−クが形成
されてその強度が顕著に向上する。しかし、発泡体の見
掛け密度が0.1g/cm3未満では、その3次元的格子構造
を形成する独立気泡の壁厚が薄くて鏡面形成層を支持す
る強度が不充分となり、特に反射鏡面の研磨においてそ
の研磨圧のために多孔部が部分的につぶれ易く、その部
分に対応する鏡面形成層の表面が極めて僅かではあるが
陥没変形して、反射鏡面の精度を大きく低下させる原因
となるので不都合である。また、見掛け密度が1g/cm
3を超えると反射鏡の重量が充分に軽量化されないため
自重による変形が起こり易く、反射鏡の保持姿勢によっ
ては重力方向の反りを発生し、反射鏡面の精度が著しく
損なわれるので好ましくなく、特に大型になるほど操作
性が大きく低下するので実用的でない。
When the proportion of closed cells in the pores of the porous foam is increased, a network having a three-dimensional lattice structure is formed, and the strength is remarkably improved. However, when the apparent density of the foam is less than 0.1 g / cm 3 , the wall thickness of the closed cells forming the three-dimensional lattice structure is thin, and the strength for supporting the mirror surface forming layer is insufficient. The polishing pressure causes the porous portion to be easily crushed partially, and the surface of the mirror-forming layer corresponding to the portion is extremely slightly depressed and deformed, which causes a great decrease in the accuracy of the reflecting mirror surface, which is inconvenient. It is. The apparent density is 1 g / cm
If it exceeds 3 , the weight of the reflector is not sufficiently reduced, so that it is likely to be deformed by its own weight, and depending on the holding posture of the reflector, a warp in the direction of gravity is generated, and the accuracy of the reflector surface is significantly impaired. It is not practical because the operability is greatly reduced as the size increases.

【0013】また、多孔性基体層は、その発泡体中に3
次元的格子構造のネットワ−クが充分に形成されるため
には、全気孔体積の15%以上の独立気泡を有することが
必要である。独立気泡の合計体積が15%より小さいと、
反射鏡面の仕上げ研磨による面押圧や自重による曲げた
わみで多孔性の基体層内の連通気孔部分に沿って割れが
発生する恐れがあるので好ましくない。独立気泡の径
は、その格子構造を形成させるには小さい方が良いが、
通常、0.1mm〜3mm程度のものが望ましい。
Further, the porous substrate layer contains 3
In order for a network having a three-dimensional lattice structure to be sufficiently formed, it is necessary to have closed cells of 15% or more of the total pore volume. If the total volume of closed cells is less than 15%,
It is not preferable because cracks may occur along the continuous ventilation holes in the porous base layer due to surface pressing due to finish polishing of the reflecting mirror surface or bending deflection due to its own weight. The smaller the diameter of the closed cell is better to form the lattice structure,
Normally, a size of about 0.1 mm to 3 mm is desirable.

【0014】本発明の大型反射鏡は、上記のような二酸
化珪素質多孔性発泡体の層から成る基体層の強度条件と
関連して、反射鏡面形成層にも軽量化を考慮して適度の
強度を与えることが重要である。鏡面形成層の強度は、
透明石英ガラス板の厚さに依存するが、多くの試作実験
によって鏡面形成層板は、鏡面形成層と基体層とから構
成される反射鏡の中央の全肉厚の2〜20%の範囲の板肉
に調製することが実用上極めて望ましいことが見出され
た。その板厚が2%より薄いと反射鏡層の強度が不足し
て高い反射精度を得ること及び長期安定に保持すること
が困難であり、また20%より厚くすると反射鏡の軽量化
が不充分となり、これと関連して基体層の強度を高めな
ければならないので、反射鏡の重量は一層大きくなり、
その操作性は著しく損なわれる。
The large reflector according to the present invention has an appropriate size in consideration of the weight reduction of the reflector surface forming layer in consideration of the strength condition of the base layer comprising the silicon dioxide porous foam layer as described above. It is important to give strength. The strength of the mirror forming layer is
Although it depends on the thickness of the transparent quartz glass plate, many prototype experiments have shown that the mirror-forming layer plate has a thickness in the range of 2 to 20% of the total thickness at the center of the reflecting mirror composed of the mirror-forming layer and the base layer. It has been found that it is practically very desirable to prepare a plate. If the thickness is less than 2%, it is difficult to obtain high reflection accuracy due to insufficient strength of the reflecting mirror layer and to maintain a long-term stability. If the thickness is more than 20%, the weight of the reflecting mirror is not sufficiently reduced. In connection with this, the strength of the base layer must be increased, so that the weight of the reflector is further increased,
Its operability is significantly impaired.

【0015】本発明の反射鏡を構成する基体層は、二酸
化珪素質、好ましくは、例えば90%以上の二酸化珪素か
ら成り水酸基を含有するシリカ粉末をアンモニア雰囲気
中で加熱反応させたのち所望形状に成形して焼結する
か、シリカ粉末を成形して焼結したのち、その成形体を
アンモニア雰囲気中で加熱反応させたアンモニア化多孔
質体を1500〜1800℃の温度に加熱して粉末を融着させる
と共に、シリカからガスを離脱させることにより製造す
ることができる。また、二酸化珪素溶融温度で反応昇華
する粉末をシリカ粉末に混入し加熱融着して多孔性発泡
部材を得ることもできる。
The base layer constituting the reflecting mirror of the present invention is formed into a desired shape after heating and reacting a silica powder containing silicon dioxide, preferably, for example, 90% or more silicon dioxide and containing a hydroxyl group in an ammonia atmosphere. After molding and sintering, or molding and sintering silica powder, the compact is heated and reacted in an ammonia atmosphere to heat the ammoniated porous body to a temperature of 1500 to 1800 ° C to melt the powder. At the same time as releasing the gas from the silica. Alternatively, a powder which reacts and sublimates at a silicon dioxide melting temperature may be mixed into silica powder and heated and fused to obtain a porous foamed member.

【0016】これらの溶融発泡体の調製においては、ア
ンモニア化反応条件、例えば、アンモニア雰囲気濃度,
反応温度,反応時間やシリカ粉末の粉砕度等を選択する
ことにより、あるいは昇華性粉末の添加量を選択するこ
とにより、発泡体の見掛け密度をコントロ−ルすること
ができる。しかし、この方法では、なるべく連通気泡を
形成させないように発泡を注意深く行うことが重要であ
り、慎重な温度のコントロ−ルが要求される。また、そ
の溶融発泡処理においては、例えば、2枚の円盤状カ−
ボン板の間にアンモニア化粉末を充填し、又はアンモニ
ア化円盤状焼結体を挾んで加熱溶融して所望形状の多孔
性軽量部材を得ることができる。
In the preparation of these molten foams, the ammoniating reaction conditions, for example, ammonia atmosphere concentration,
The apparent density of the foam can be controlled by selecting the reaction temperature, the reaction time, the degree of pulverization of the silica powder, or the amount of the sublimable powder to be added. However, in this method, it is important to carefully perform foaming so as not to form open cells, and a careful temperature control is required. In the melt foaming process, for example, two disk-shaped
Ammonia powder can be filled between the bon plates, or heated and melted by sandwiching the ammoniated disc-shaped sintered body to obtain a porous lightweight member having a desired shape.

【0017】更に、本発明の大型軽量化反射鏡には、強
度を補うために基体層の下面に補強層を設けることが好
ましく、前記多孔性基体層と同様な二酸化珪素質製の板
体であって基体層下面に融着一体化される。この補強層
板としては、反射鏡の軽量化を考慮し、また補強効果を
挙げるために、二酸化珪素の粉末焼結体又は独立気泡含
有ガラス体が有利に用いられる。実用的に好ましく採用
される補強層は、例えば、0.8〜2.5g/cm3の見掛け密
度を有するものである。ガラス体補強層の場合には、独
立気泡が60%以上含まれるものが好ましい。また、それ
らの補強層の板厚は、見掛け密度と関連するが、反射鏡
面形成層と同様に、反射鏡の中央の肉厚の2%ないし20
%程度が好ましい。
Further, in the large-sized and lightweight reflecting mirror of the present invention, it is preferable to provide a reinforcing layer on the lower surface of the base layer in order to supplement the strength, and to use a silicon dioxide plate similar to the porous base layer. Then, it is fused and integrated with the lower surface of the base layer. As the reinforcing layer plate, a sintered body of silicon dioxide powder or a closed-cell-containing glass body is advantageously used in order to reduce the weight of the reflector and to enhance the reinforcing effect. The reinforcing layer preferably employed practically has, for example, an apparent density of 0.8 to 2.5 g / cm 3 . In the case of the glass body reinforcing layer, those containing 60% or more of closed cells are preferable. The thickness of the reinforcing layer is related to the apparent density, but is 2% to 20% of the central thickness of the reflecting mirror, similarly to the reflecting mirror surface forming layer.
% Is preferable.

【0018】多孔性発泡体基体層と鏡面形成層板及び補
強層板との一体化は、加熱融着によって行われるが、そ
の融着面積をできるだけ大きくするために、融着一体化
される界面に、該基体層の軟化点より低い軟化点を有す
るシリカ粉末、例えば、粒径が10μm以下の微粉状シリ
カ粉末を介在させ、各層を接合させた状態に保持して上
記シリカ粉体の軟化点以上の温度に約1〜4時間程度加
熱することにより効果的に行うことができる。そのよう
な低融点シリカ粉体は、一般的にガラス化前のゾルゲル
法又は熱化学気相法により得ることができる。また、結
合層を形成させるための上記適用においては、可及的微
粉末であることが望ましく、例えば、10μm以下に粉砕
調整して使用される。
The integration of the porous foam base layer with the mirror surface forming layer plate and the reinforcing layer plate is performed by heat fusion. In order to increase the fusion area as much as possible, the interface to be fused and integrated is formed. In addition, a silica powder having a softening point lower than the softening point of the base layer, for example, fine powder silica powder having a particle size of 10 μm or less is interposed, and the softening point of the silica powder is maintained while keeping the layers joined. Heating to the above temperature for about 1 to 4 hours can be performed effectively. Such a low-melting-point silica powder can be generally obtained by a sol-gel method before vitrification or a thermochemical vapor phase method. In the above-mentioned application for forming the bonding layer, the powder is desirably as fine as possible. For example, the powder is used after being crushed and adjusted to 10 μm or less.

【0019】この一体化方法によれば、融着接合面積が
大幅に増大し、反射鏡面の研磨において透明鏡面形成層
の剥離現象を伴うことのない接合強度の優れた安定な多
層構造反射鏡が得られる。かかる剥離防止には、多孔性
基体層と鏡面形成層の境界部層の全面積に占める実質的
な接続肉厚の合計断面積と気孔部分の合計断面積割合
は、実質的な接続肉厚の合計断面積が全断面積の5%以
上ある方がよい。
According to this integration method, a stable multi-layered reflecting mirror having an excellent bonding strength without greatly increasing the fusion bonding area and without causing the transparent mirror surface forming layer to peel off during polishing of the reflecting mirror surface. can get. To prevent such peeling, the total cross-sectional area ratio of the substantial connection wall thickness and the total cross-sectional area ratio of the pore portion occupying the entire area of the boundary layer between the porous base layer and the mirror surface forming layer is determined by the ratio of the substantial connection wall thickness. The total cross-sectional area should be at least 5% of the total cross-sectional area.

【0020】このように一体化された多層構造体は、次
いで鏡面形成層表面を所定の曲率の鏡面に研磨仕上げさ
れる。その鏡面仕上げにおいては、面に平行な摩擦力と
垂直な圧力(約0.5N/cm2)が作用するが、本発明によ
る主として基体層に独立気泡を含み、所定の厚みの鏡面
形成層を持つことにより、必要な複合強度を持った大型
軽量化反射鏡は、あらゆる方向に対して実質的に等しい
抵抗強度を有し、しかも鏡面形成層とその支持層である
基体層が強固に結合されており、その素材段階の研磨加
工時にも安全で高精度の加工が可能であるから、結果と
して反射膜を鏡面形成面に形成した高精度の大型反射鏡
が得られる。高精度の鏡面研磨面には、最後に、反射光
に応じてその使用に適切な金属の反射鏡としての蒸着膜
が形成され、これを操作装置に取り付けて使用される。
In the multilayer structure thus integrated, the surface of the mirror forming layer is then polished to a mirror surface having a predetermined curvature. In the mirror finishing, a frictional force parallel to the surface and a pressure perpendicular to the surface (approximately 0.5 N / cm 2 ) are applied. However, according to the present invention, the base layer mainly contains closed cells and has a mirror forming layer having a predetermined thickness. As a result, a large-sized lightweight reflector having the required composite strength has substantially the same resistance strength in all directions, and furthermore, the mirror surface forming layer and the base layer which is its supporting layer are firmly bonded. In addition, safe and high-precision processing is possible even during polishing at the material stage, and as a result, a large-sized high-precision reflecting mirror having a reflecting film formed on a mirror surface is obtained. On the high-precision mirror-polished surface, finally, a vapor deposition film as a metal reflecting mirror suitable for the use thereof is formed according to the reflected light, and this is attached to an operation device for use.

【0021】本発明を図面について説明する。図1及び
図2は、本発明の大型軽量反射鏡の一例の斜視図とその
模式的断面図で、無気泡で透明な石英ガラス又は高珪酸
ガラス板の円盤状鏡面形成層1と下側の二酸化珪素質多
孔性発泡体の層から成る基体層2とが融着一体化され、
その鏡面形成層1の表面には、金属蒸着反射膜3が形成
されている。図3は、その基体層の下側面に二酸化珪素
質焼結体の円盤状補強層4が融着一体化されて反射鏡が
補強された例の模式的断面図である。図4は、表面が凹
曲面に形成された鏡面形成層1’を有する本発明の大型
軽量化凹面反射鏡の一例の模式的断面図で、鏡面形成層
1’の表面には同様に金属蒸着反射膜3が形成され、そ
の基体層2の底面に円盤状補強層4が融着一体化される
と共に、その周側面に全周にわたって薄板状の二酸化珪
素周側面補強層5が実質的に気密に一体化されて一層の
補強がなされている。
The present invention will be described with reference to the drawings. FIGS. 1 and 2 are a perspective view and a schematic cross-sectional view of an example of a large-sized lightweight reflecting mirror of the present invention, wherein a disc-shaped mirror surface forming layer 1 of a bubble-free and transparent quartz glass or high silicate glass plate and a lower side are shown. A substrate layer 2 comprising a layer of silicon dioxide porous foam is fused and integrated;
On the surface of the mirror surface forming layer 1, a metal deposited reflective film 3 is formed. FIG. 3 is a schematic cross-sectional view of an example in which a disk-shaped reinforcing layer 4 of a silicon dioxide sintered body is fused and integrated on the lower surface of the base layer to reinforce the reflecting mirror. FIG. 4 is a schematic cross-sectional view of an example of a large-sized and lightweight concave reflecting mirror of the present invention having a mirror surface forming layer 1 ′ having a concavely curved surface, and the surface of the mirror surface forming layer 1 ′ is likewise metal-deposited. A reflective film 3 is formed, a disc-shaped reinforcing layer 4 is fused and integrated on the bottom surface of the base layer 2, and a thin silicon dioxide peripheral side reinforcing layer 5 is substantially airtightly formed on the entire peripheral surface. And further reinforcement.

【0022】[0022]

【作用】本発明の大型軽量反射鏡は、それ自体軽量で且
つ使用環境の温度や操作姿勢による鏡面の変形がほとん
どなく、従って、優れた操作性を有するので、実用的に
極めて望ましく、従来の格子構造の大型反射鏡に比べて
簡易構成を有し、製造が容易で低コストで提供されるか
ら、工業的に著しく有利である。
The large and light reflecting mirror of the present invention is lightweight in itself, has almost no deformation of the mirror surface due to the temperature and operating posture of the use environment, and has excellent operability. Compared with a large-sized reflector having a lattice structure, it has a simple configuration, is easy to manufacture, and is provided at low cost, which is extremely advantageous industrially.

【0023】[0023]

【実施例】次に、本発明の反射鏡を具体例により更に詳
細に説明する。 実施例 1 水酸基約300ppmを含有する約98%の二酸化珪素粉末を11
00℃の温度で大型の円盤に成形焼結し、これをアンモニ
ア雰囲気中で加熱反応させた後、約1800℃の温度に約10
分間加熱し溶融発泡させて、0.1g/cm3の見掛け密度を
有する多孔性発泡体を作成し、この発泡体を切り出して
円盤状基体層を作成した。基体層に占める全気孔に対す
る独立気泡の割合は約15%であった。この独立気泡の含
有率は、基体層の見掛け密度と基体層を構成する二酸化
珪素質マトリックス自体の密度の測定及び元の多孔性発
泡体である基体層を液体に浸漬して得られる連通気孔の
体積から容易に算出される。
Next, the reflecting mirror of the present invention will be described in more detail with reference to specific examples. Example 1 About 98% of silicon dioxide powder containing about 300 ppm of hydroxyl groups was
Formed and sintered into a large disk at a temperature of 00 ° C and heated and reacted in an ammonia atmosphere.
The mixture was heated and melted and foamed for 1 minute to form a porous foam having an apparent density of 0.1 g / cm 3 , and the foam was cut out to form a disc-shaped substrate layer. The ratio of closed cells to all pores in the base layer was about 15%. The content of the closed cells is determined by measuring the apparent density of the base layer and the density of the silicon dioxide matrix itself constituting the base layer, and measuring the density of the open pores obtained by immersing the base layer, which is the original porous foam, in a liquid. Calculated easily from volume.

【0024】一方、高純度石英ガラス製の透明で無気泡
円盤のフラットな鏡面形成層を作成し、これを、平均直
径が約8μm前後のシリカ粉を全面に薄くひろげた基体
層の上側面に重ね、その接合状態で約1600℃の温度で融
着一体化した。次に、この積層体の周囲削って直径1000
mm円盤としたのち、鏡面形成層表面をダイヤホ−ル研
削,砥粒研磨,ポリッシングを経て、厚み1mmのフラッ
トな平面に仕上げ、更にCVD法(気相成長法)により
アルミニウム金属を蒸着させて優れた光沢の反射鏡膜を
形成させ、直径が1000mm,厚さが50mmの軽量化反射鏡を
製造した。
On the other hand, a flat, mirror-free layer of a transparent, bubble-free disk made of high-purity quartz glass was formed, and this layer was placed on the upper surface of a base layer obtained by thinly spreading silica powder having an average diameter of about 8 μm over the entire surface. The layers were overlapped and fused together at a temperature of about 1600 ° C. in the joined state. Next, the circumference of this laminate was cut to a diameter of 1000
After making a disk of mm, the surface of the mirror surface forming layer is finished to a flat surface with a thickness of 1 mm through diamond grinding, abrasive polishing, and polishing, and furthermore, aluminum metal is vapor-deposited by the CVD method (vapor phase growth method). A light reflecting mirror with a diameter of 1000 mm and a thickness of 50 mm was manufactured by forming a glossy reflecting mirror film.

【0025】実施例 2 発泡温度を若干低くして、見掛け密度1.0g/cm3の基体
層を作成した以外は実施例1と同様にして、実施例1と
同一寸法,形状の反射鏡を作成した。
Example 2 A reflector having the same dimensions and shape as in Example 1 was prepared in the same manner as in Example 1 except that the foaming temperature was slightly lowered and a base layer having an apparent density of 1.0 g / cm 3 was prepared. did.

【0026】実施例 3 実施例1において、いくらか層厚の厚い鏡面形成層を用
い、基体層の原料となる二酸化珪素粉末成形体の焼結を
1300℃で行い、更に発泡温度を実施例1と実施例2の中
間領域温度で行った。このようにして、全体の厚み及び
直径が実施例1と同様で、鏡面形成層厚が10mm,基体層
の見掛け密度が0.8g/cm3を有する反射鏡を作成した。
該基体層の独立気泡の割合は約60%であった。
Example 3 In Example 1, sintering of a silicon dioxide powder compact as a raw material of a base layer was performed using a somewhat thick mirror-forming layer.
The temperature was set at 1300 ° C., and the foaming temperature was set at an intermediate temperature between Example 1 and Example 2. In this way, a reflector having the same overall thickness and diameter as in Example 1, a mirror surface forming layer thickness of 10 mm, and an apparent density of the base layer of 0.8 g / cm 3 was produced.
The ratio of closed cells in the substrate layer was about 60%.

【0027】実施例 4 実施例1において、基体層を1mmほど薄くし、代りに比
重2.2の不透明石英ガラスを補強層として溶着し、全体
の厚み及び直径が実施例1と同様な軽量化反射鏡を製造
した。
Example 4 In Example 1, the thickness of the base layer was reduced by about 1 mm, and opaque quartz glass having a specific gravity of 2.2 was welded as a reinforcing layer instead. Was manufactured.

【0028】比較例 1〜3 上記実施例1と同様な製法で、しかし基体層となる二酸
化珪素粉末の焼結温度を実施例1より低い温度(1000
℃)とし、更に基体層製作時に発泡温度を実施例2と実
施例1の中間領域にすることにより、全体の厚み及び直
径が実施例1と同様で鏡面形成層の厚さ10mm,基体層密
度0.8g/cm3で、基体層の独立気泡の割合は約10%の低
独立気泡の反射鏡を作成した(比較例1)。また、上記
実施例及び比較例と同様な製法のコントロ−ルにより、
全体の厚み及び直径が実施例1と同様で、鏡面形成層の
厚さが1mm,基体層の見掛け密度が0.05g/cm3で基体
層の独立気泡の割合が約15%の低密度基体層反射鏡を作
成した(比較例2)。更に、鏡面形成層の厚さが0.5m
m,基体層密度0.1g/cm3で、基体層の独立気泡の割合
が約15%の鏡面形成層の薄い反射鏡を作成した(比較例
3)。上記各例の多層構造体を表1にまとめて示す。
Comparative Examples 1 to 3 The same manufacturing method as in Example 1 was used, but the sintering temperature of the silicon dioxide powder to be the base layer was lower than that in Example 1 (1000
° C), and the foaming temperature during the production of the substrate layer is set in the intermediate region between Example 2 and Example 1, so that the overall thickness and diameter are the same as in Example 1, the mirror-surface-forming layer thickness is 10 mm, and the substrate layer density A reflector having a low closed cell density of 0.8 g / cm 3 and a closed cell ratio of about 10% in the substrate layer was prepared (Comparative Example 1). In addition, by the control of the same manufacturing method as in the above Examples and Comparative Examples,
A low-density base layer having the same overall thickness and diameter as in Example 1, a mirror-forming layer having a thickness of 1 mm, an apparent density of the base layer of 0.05 g / cm 3 , and a closed cell ratio of about 15% in the base layer. A reflector was prepared (Comparative Example 2). Furthermore, the thickness of the mirror surface forming layer is 0.5 m
m, a base layer density of 0.1 g / cm 3 , and a thin mirror having a mirror surface forming layer having a closed cell ratio of about 15% in the base layer was prepared (Comparative Example 3). Table 1 summarizes the multilayer structures of the above examples.

【0029】[0029]

【表1】 [Table 1]

【0030】比較例 4及び5 参考のために、従来の反射鏡として、石英ガラス一層か
ら成る反射鏡(比較例4)及び二枚の2mmの石英ガラス
円盤に直径40mm,肉厚2mmの短管を隙間なく並べて挾み
込み、溶接一体化して一面を研磨し反射膜を付けること
により軽量化された従来の格子構造(ハニカム構造)の
基体層を有する軽量反射鏡を製造した(比較例5)。
Comparative Examples 4 and 5 For reference, as a conventional reflecting mirror, a reflecting mirror composed of one layer of quartz glass (Comparative Example 4) and a short tube of 40 mm in diameter and 2 mm in thickness were mounted on two 2 mm quartz glass disks. Were laid out without gaps, welded together, polished on one side, and provided with a reflective film to produce a lightweight reflector having a conventional lattice structure (honeycomb structure) base layer (Comparative Example 5). .

【0031】得られた軽量化反射鏡について、次の試験
を行って各反射鏡を評価した。 試験1:基体層と鏡面形成層との結合状態を反射膜蒸着
前にポリッシング面側及び側面から観察し、異状の有無
を調べた。その結果、実施例1と2はいずれも異状は見
られなかったが、比較例1及び2は、側面及びポリッシ
ング面側から見たとき、基体層と鏡面形成層の結合部に
微小な剥離割れが観察された。また、比較例3に至って
は、鏡面形成層に複数のクラックが観察された。
The following tests were performed on the obtained lightweight reflectors, and each reflector was evaluated. Test 1: The bonding state between the base layer and the mirror surface forming layer was observed from the polishing surface side and the side surface before depositing the reflective film, and the presence or absence of abnormalities was examined. As a result, no abnormalities were observed in both Examples 1 and 2, but in Comparative Examples 1 and 2, when viewed from the side surface and the polishing surface side, a small peeling crack was formed in the joint portion between the base layer and the mirror surface forming layer. Was observed. Further, in Comparative Example 3, a plurality of cracks were observed in the mirror surface forming layer.

【0032】試験2:反射鏡の外周縁部を3点で支持し
反射鏡の面精度を測定した。面精度の測定は、垂直と水
平のそれぞれの自乗平均平方根粗さ(RMS)と粗さ曲
線の最大高さ(Rt)について行った。その結果を表2
に示す。
Test 2: The outer periphery of the reflector was supported at three points, and the surface accuracy of the reflector was measured. The surface accuracy was measured for each of the vertical and horizontal root mean square roughness (RMS) and the maximum height (Rt) of the roughness curve. Table 2 shows the results.
Shown in

【0033】[0033]

【表2】 [Table 2]

【0034】表2より、比較例では、垂直状態と水平状
態のRMS及びRtの差が大きいのに対して、実施例
は、水平,垂直ともRMSとRtに大きな変化は見られ
ず、特に補強層を設けた実施例4では精度変化が極めて
少なく、操作性が良いことが判る。また、従来の軽量化
反射鏡である比較例5に比較しても面精度及び水平と垂
直の差異のいずれも実施例のほうが良い結果が得られ
た。
From Table 2, it can be seen that, in the comparative example, the difference between RMS and Rt in the vertical state and the horizontal state is large, whereas in the example, there is no significant change in RMS and Rt both in the horizontal and vertical states, and especially in the reinforcement. It can be seen that in Example 4 in which the layer was provided, the change in precision was extremely small and the operability was good. Further, compared to the comparative example 5 which is a conventional lightweight reflector, both the surface accuracy and the difference between the horizontal and vertical directions showed better results in the example.

【0035】試験3:反射膜以外のすべてを透明石英ガ
ラスで構成した同寸法の反射鏡の重量に対する各反射鏡
の重量を軽量化率の測定を実施例1,4及び比較例4と
5について行った。その結果、軽量化率は、実施例1は
94%,実施例4は92%,比較例4は0%,比較例5は78
%であった。これより、本発明の反射鏡が従来の反射鏡
に比べて高い軽量化率が達成されることが理解できる。
Test 3: The weight of each reflector was reduced with respect to the weight of a reflector having the same dimensions, except that the reflection film was made of transparent quartz glass. Measurements were made for Examples 1 and 4 and Comparative Examples 4 and 5. went. As a result, the weight reduction rate is
94%, Example 4 92%, Comparative Example 4 0%, Comparative Example 5 78%
%Met. From this, it can be understood that the reflector of the present invention achieves a higher weight reduction rate than the conventional reflector.

【0036】[0036]

【発明の効果】鏡面形成層の厚みが反射鏡の中央部の肉
厚の2〜20%、基体層の見掛け密度が0.1〜1g/cm
3で、その多孔性基体層の全気孔体積の15%以上を独立
気泡で構成させた本発明の大型軽量化反射鏡は、鏡面を
研磨する際に破損する恐れがなく、高精度の反射面を形
成させることができ、しかも水平,垂直などの姿勢にと
らわれない面精度の保持が可能であって、従来の軽量反
射鏡に比較して操作性や反射面精度に遥かに優れてい
る。更に、多孔質基体層の下面に補強層を設けたもの
は、一層高い操作性が得られる。
The thickness of the mirror surface forming layer is 2 to 20% of the thickness of the central portion of the reflecting mirror, and the apparent density of the base layer is 0.1 to 1 g / cm.
3 , the large and lightweight reflecting mirror of the present invention, in which 15% or more of the total pore volume of the porous substrate layer is constituted by closed cells, has no risk of being damaged when the mirror surface is polished, and has a highly accurate reflecting surface. Can be formed, and the surface accuracy can be maintained regardless of the posture such as horizontal or vertical, and the operability and the accuracy of the reflecting surface are far superior to those of the conventional lightweight reflecting mirror. Further, the one in which the reinforcing layer is provided on the lower surface of the porous substrate layer can obtain higher operability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の大型軽量反射鏡の一例の斜視図であ
る。
FIG. 1 is a perspective view of an example of a large lightweight reflector according to the present invention.

【図2】図1の模式的断面図である。FIG. 2 is a schematic sectional view of FIG.

【図3】その基体層の下側面に補強層が一体化された反
射鏡の模式的断面図である。
FIG. 3 is a schematic cross-sectional view of a reflector in which a reinforcing layer is integrated with a lower surface of the base layer.

【図4】本発明の大型軽量化凹面反射鏡の一例の模式的
断面図である。
FIG. 4 is a schematic cross-sectional view of an example of the large-sized and lightweight concave reflecting mirror of the present invention.

【符号の説明】[Explanation of symbols]

1・・・鏡面形成層 1'・・・凹鏡面形成層 2・・・基体層 3・・・金属蒸着反射膜 4・・・補強層 5・・・周側面補強層 DESCRIPTION OF SYMBOLS 1 ... Mirror surface forming layer 1 '... Concave mirror surface forming layer 2 ... Base layer 3 ... Metal deposition reflection film 4 ... Reinforcement layer 5 ... Peripheral side surface reinforcement layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−40349(JP,A) 特開 昭57−136604(JP,A) 特開 昭61−151501(JP,A) 特開 昭63−41802(JP,A) 特開 平4−323601(JP,A) 特公 昭61−26041(JP,B2) 特公 昭63−57761(JP,B2) (58)調査した分野(Int.Cl.6,DB名) G02B 5/08 G02B 5/10──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-52-40349 (JP, A) JP-A-57-136604 (JP, A) JP-A-61-151501 (JP, A) 41802 (JP, A) JP-A-4-323601 (JP, A) JP-B-61-26041 (JP, B2) JP-B-63-57761 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) G02B 5/08 G02B 5/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平面又は所定の曲率に形成された表面に反
射膜が蒸着される大型反射鏡において、該反射鏡が、表
面に鏡面を有する無気泡で透明な石英ガラス又は高珪酸
ガラスから成る鏡面形成層と、その下側に一体化された
二酸化珪素質多孔性発泡体の層から成る基体層とから構
成される多層構造体であって、上記鏡面形成層が、多層
構造反射鏡の中央部の厚さの2〜20%の範囲の層厚を有
し、また上記多孔性基体層が、その内部に含まれる全気
孔体積の15%以上を独立気泡として含有し、且つ0.1〜
1g/cm3の見掛け密度を有する大型軽量化反射鏡。
1. A large reflecting mirror having a reflecting film deposited on a flat surface or a surface having a predetermined curvature, wherein the reflecting mirror is made of bubble-free and transparent quartz glass or high silicate glass having a mirror surface on the surface. A multilayer structure comprising a mirror surface forming layer and a base layer composed of a silicon dioxide porous foam layer integrated thereunder, wherein the mirror surface forming layer is located at the center of the multilayer structure reflecting mirror. Part of the porous substrate layer contains at least 15% of the total pore volume contained therein as closed cells, and has a thickness of 0.1 to 20%.
A large, lightweight reflector with an apparent density of 1 g / cm 3 .
【請求項2】0.8〜2.5g/cm3の見掛け密度を有する二
酸化珪素質補強層が、上記多層構造体の多孔性基体層の
下側に、更に一体に形成された請求項1記載の大型軽量
化反射鏡。
2. The large-sized structure according to claim 1, wherein a silicon dioxide reinforcing layer having an apparent density of 0.8 to 2.5 g / cm 3 is further integrally formed under the porous base layer of the multilayer structure. Lightweight reflector.
JP15559391A 1991-03-30 1991-05-30 Large and lightweight reflector Expired - Fee Related JP2750229B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP15559391A JP2750229B2 (en) 1991-05-30 1991-05-30 Large and lightweight reflector
EP19910117353 EP0507000B1 (en) 1991-03-30 1991-10-11 Base body of reflecting mirror and method for preparing the same
DE69118512T DE69118512T2 (en) 1991-03-30 1991-10-11 Base body for a reflecting mirror and method for its production
US07/775,095 US5640282A (en) 1991-03-30 1991-10-11 Base body of reflecting mirror and method for preparing the same
US08/458,672 US5576884A (en) 1991-03-30 1995-06-02 Base body of reflecting mirror and method for preparing the same
US08/567,165 US5617262A (en) 1991-03-30 1995-12-05 Base body of reflecting mirror and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15559391A JP2750229B2 (en) 1991-05-30 1991-05-30 Large and lightweight reflector

Publications (2)

Publication Number Publication Date
JPH04353802A JPH04353802A (en) 1992-12-08
JP2750229B2 true JP2750229B2 (en) 1998-05-13

Family

ID=15609425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15559391A Expired - Fee Related JP2750229B2 (en) 1991-03-30 1991-05-30 Large and lightweight reflector

Country Status (1)

Country Link
JP (1) JP2750229B2 (en)

Also Published As

Publication number Publication date
JPH04353802A (en) 1992-12-08

Similar Documents

Publication Publication Date Title
EP0507000B1 (en) Base body of reflecting mirror and method for preparing the same
US5563743A (en) Base body of a reflecting mirror and method for the preparation thereof
US7766494B1 (en) Light-weight mirror blank assembly
US4856887A (en) Lightweight silicon carbide mirror
JP3309096B2 (en) Method of manufacturing reflector or mirror and reflector
US6206531B1 (en) Lightweight precision optical mirror substrate and method of making
GB2077938A (en) Light-weight mirrors particularly for astronomy
US6176588B1 (en) Low cost light weight mirror blank
JPH08310866A (en) Preparation of sandwich structure being weight-saved by placing honeycomb-like central material between sic and structure obtained by its preparation
JP2750229B2 (en) Large and lightweight reflector
US4898604A (en) Method of manufacturing a blank for a light-weight mirror with a supporting structure
JP2966619B2 (en) Lightweight reflector base
JP2580406B2 (en) Method for manufacturing reflector base
JP2569234B2 (en) Manufacturing method of lightweight reflector base
JP2580419B2 (en) Manufacturing method of lightweight reflector base
JPH0894813A (en) Light-weight reflection mirror
US20040121193A1 (en) Mirror blanks from inflatable balls
JP2750234B2 (en) Manufacturing method of silica-based lightweight reflector
Ghigo et al. Slumped glass option for making the XEUS mirrors: preliminary design and ongoing developments
EP0548429B1 (en) Method of fabricating lightweight honeycomb type structure
JP2910022B2 (en) Circular light reflector
Melugin et al. Development of lightweight, glass mirror segments for the Large Deployable Reflector
Jana et al. Silicon carbide-based lightweight mirror blanks for space optics applications
JP2570160Y2 (en) Lightweight reflector base
JPH0821905A (en) Reflector and preparation thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees