JPH04334899A - Charged particle deflecting magnet - Google Patents

Charged particle deflecting magnet

Info

Publication number
JPH04334899A
JPH04334899A JP3105391A JP10539191A JPH04334899A JP H04334899 A JPH04334899 A JP H04334899A JP 3105391 A JP3105391 A JP 3105391A JP 10539191 A JP10539191 A JP 10539191A JP H04334899 A JPH04334899 A JP H04334899A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
magnet
permanent magnet
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3105391A
Other languages
Japanese (ja)
Inventor
Yasuhiro Wasa
泰宏 和佐
Takuya Kusaka
卓也 日下
Kiyotaka Ishibashi
清隆 石橋
Toshimoto Suzuki
鈴木 敏司
Akira Kobayashi
明 小林
Kenichi Inoue
憲一 井上
Yutaka Kawada
豊 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3105391A priority Critical patent/JPH04334899A/en
Publication of JPH04334899A publication Critical patent/JPH04334899A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To adjust magnet field intensity by installing a magnetic substance for magnetic bypass adjacently to a permanent magnet. CONSTITUTION:A magnetic substance for a bypass 7 is arranged in parallel with the magnetizing direction of a permanent magnet 3. It is possible to change partially bypassing quantities of the magnet flux flowing from the magnet 3 to yoke magnetic substances 4, 5 by changing an interval G between the magnetic substance 7 and the magnet 3. The quantity of magnetic flux flowing from the magnet 3 whose magnetic flux density is constant to the magnetic substances 4, 5 is made to change so that the magnetic field intensity in a magnetic field space 6 is changed. The interval G between the magnet 3 and the magnetic substance 7 is adjusted by moving, the magnetic substance 7 by connecting a gap adjuster 8 to a moving mechanism which uses oil pressure or water pressure. Since magnetic field instensity can be changed, while the uniformity of magnetic field distribution is kept in a deflecting magnet by means of a permanent magnet, it is possible to solve such problems as high expeuse equipment of deflecting magnets acting by means of electromagnet and a high level of the running cost.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,電子サイクロトロンあ
るいは電子蓄積リング等において,荷電粒子を磁場によ
り偏向させて周回運動させながら加速・蓄積するストレ
ージリングに用いる荷電粒子偏向磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle deflection magnet used in an electron cyclotron, an electron storage ring, or the like, in which charged particles are deflected by a magnetic field and accelerated and stored while being orbited.

【0002】0002

【従来の技術】荷電粒子を加速あるいは蓄積させるため
に図9に概要を示すような加速・蓄積リングが用いられ
る。リング状の軌道20に荷電粒子を周回運動させるた
め,図9に示すように偏向磁石21を配置して,荷電粒
子の軌道を曲げる。図5は電磁石による偏向磁石で,荷
電粒子が通過するビームダクト1を電磁石により形成さ
れる磁場空間6に配置して,この磁場空間6に与える磁
場強度を磁性体24に設けたコイル22および23に流
す電流を変化させることにより,磁場分布の一様性を保
ったままで磁場強度を変化させることができる。電磁石
は磁場強度を変えることができるので,荷電粒子の加速
状態において荷電粒子のエネルギー変化に対応させるこ
とができる。図6は永久磁石による偏向磁石で,永久磁
石25,26を対向配置して,その間に磁場空間6を形
成すると共に,各永久磁石25,26をヨーク磁性体2
7で接続して磁気回路を形成している。磁場空間6にビ
ームダクト1を配置して,一定な磁場強度と一様な磁場
分布を荷電粒子に与えることができる。永久磁石は磁場
強度を変えることができないので,荷電粒子の蓄積状態
のように磁場強度を変化させる必要のないときに適して
いる。図7,8に示すものは,特開昭63−81798
号公報に開示されるもので,前記の電磁石によるもの,
および永久磁石によるものとを併用した例である。ビー
ムダクト1に対し,電磁石28と永久磁石29とを移動
可能に配置して,図7に示すように磁場強度を変化させ
る必要のある加速過程では電磁石28をビームダクト1
の位置に配し,磁場強度が一定でよい蓄積過程では図8
に示すように永久磁石29をビームダクト1の位置に移
動させるよう構成されている。
2. Description of the Related Art An acceleration/accumulation ring as schematically shown in FIG. 9 is used to accelerate or accumulate charged particles. In order to move the charged particles around the ring-shaped orbit 20, a deflecting magnet 21 is arranged as shown in FIG. 9 to bend the orbit of the charged particles. FIG. 5 shows a deflection magnet using an electromagnet, in which a beam duct 1 through which charged particles pass is placed in a magnetic field space 6 formed by the electromagnet, and the magnetic field strength given to this magnetic field space 6 is controlled by coils 22 and 23 provided in a magnetic body 24. By changing the current flowing through the magnetic field, it is possible to change the magnetic field strength while maintaining the uniformity of the magnetic field distribution. Since electromagnets can change the magnetic field strength, it can be made to correspond to changes in the energy of charged particles when they are in an accelerated state. FIG. 6 shows a deflection magnet using permanent magnets, in which permanent magnets 25 and 26 are arranged facing each other to form a magnetic field space 6 between them, and each permanent magnet 25 and 26 is connected to a yoke magnetic body 2.
7 to form a magnetic circuit. By arranging the beam duct 1 in the magnetic field space 6, it is possible to provide a constant magnetic field strength and a uniform magnetic field distribution to the charged particles. Permanent magnets cannot change the magnetic field strength, so they are suitable for situations where there is no need to change the magnetic field strength, such as when charged particles are accumulated. What is shown in Figures 7 and 8 is Japanese Patent Application Laid-Open No. 63-81798.
This is disclosed in the above publication, and uses the electromagnet mentioned above.
This is an example of a combination of a permanent magnet and a permanent magnet. An electromagnet 28 and a permanent magnet 29 are movably arranged with respect to the beam duct 1, and as shown in FIG.
Figure 8 shows a good accumulation process with a constant magnetic field strength.
The permanent magnet 29 is moved to the position of the beam duct 1 as shown in FIG.

【0003】0003

【発明が解決しようとする課題】上記従来例の偏向磁石
において,電磁石による偏向磁石の場合,磁場空間の間
隔が例えば70mmで,1.2Tの磁束密度を得るため
の電流は,約50000アンペアターンとなる。コイル
の巻数およびその断面積には構造上限界があるため,電
流を大きくする必要があり,大容量の電源とコイルの発
熱を抑える冷却装置が必要になり,ランニングコストが
高くなるという問題点をかかえている。また,上記永久
磁石による偏向磁石の場合,磁場分布を一様に保ったま
ま磁場強度を変化させることが困難で,例えば磁場を形
成する永久磁石の間隔を変えて磁場強度を変えると,磁
場分布の一様性が損われる問題点があった。さらに,上
記電磁石と永久磁石を併用した従来例構成においては,
電磁石から永久磁石に切替えるときに,電磁石と永久磁
石との境目の磁場分布が一様でない部分を荷電粒子が通
ることになるので,荷電粒子のビームが不安定になる危
険性を有している。本発明は上記課題を解決するために
,磁場強度の一様性を保ちつつ磁場強度を変化させるこ
とのできる永久磁石による偏向磁石を提供することを目
的とする。
[Problems to be Solved by the Invention] In the conventional deflecting magnet described above, in the case of a deflecting magnet using an electromagnet, when the magnetic field space is 70 mm, the current to obtain a magnetic flux density of 1.2 T is approximately 50,000 ampere turns. becomes. Because there are structural limits to the number of coil turns and its cross-sectional area, it is necessary to increase the current, which requires a large-capacity power supply and a cooling device to suppress the heat generated by the coil, which solves the problem of high running costs. I'm holding it. In addition, in the case of the above-mentioned deflection magnet using permanent magnets, it is difficult to change the magnetic field strength while keeping the magnetic field distribution uniform.For example, if the magnetic field strength is changed by changing the interval between the permanent magnets that form the magnetic field, There was a problem that the uniformity of the data was lost. Furthermore, in the conventional configuration using the above electromagnet and permanent magnet,
When switching from an electromagnet to a permanent magnet, the charged particles will pass through the boundary between the electromagnet and the permanent magnet where the magnetic field distribution is not uniform, so there is a risk that the beam of charged particles will become unstable. . SUMMARY OF THE INVENTION In order to solve the above problems, it is an object of the present invention to provide a deflection magnet using a permanent magnet that can change the magnetic field strength while maintaining uniformity of the magnetic field strength.

【0004】0004

【課題を解決するための手段】上記目的を達成するため
の本発明は,永久磁石にヨーク磁性体を接続した磁気閉
回路に開路を設けて磁場空間を形成し,該磁場空間の磁
場方向に直交する方向に荷電粒子のビーム方向を設定し
た荷電粒子偏向磁石において,前記永久磁石に隣接して
磁気バイパス用磁性体を永久磁石の着磁方向と平行に配
置し,該バイパス用磁性体と永久磁石との距離を調整可
能としたことを特徴とする荷電粒子偏向磁石である。ま
た,永久磁石にヨーク磁性体を接続した磁気閉回路に開
路を設けて磁場空間を形成し,該磁場空間の磁場方向に
直交する方向に荷電粒子のビーム方向を設定した荷電粒
子偏向磁石において,前記ヨーク磁性体の少なくとも1
箇所に間隔調整可能な間隙を設けたことを特徴とする荷
電粒子偏向磁石である。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an open circuit in a magnetic closed circuit in which a yoke magnetic body is connected to a permanent magnet to form a magnetic field space, and the magnetic field direction of the magnetic field space is In a charged particle deflecting magnet in which the beam direction of charged particles is set in orthogonal directions, a magnetic bypass magnetic body is arranged adjacent to the permanent magnet in parallel to the magnetization direction of the permanent magnet, and the bypass magnetic body and permanent This is a charged particle deflection magnet characterized by being able to adjust the distance to the magnet. In addition, in a charged particle deflection magnet in which a magnetic field space is formed by providing an open circuit in a magnetic closed circuit in which a yoke magnetic body is connected to a permanent magnet, and the beam direction of the charged particles is set in a direction perpendicular to the magnetic field direction of the magnetic field space, At least one of the yoke magnetic bodies
This is a charged particle deflection magnet characterized by providing adjustable gaps at certain locations.

【0005】[0005]

【作用】上記構成によれば,永久磁石にヨーク磁性体を
接続して形成した磁気閉回路に開路を設けて形成した磁
場空間に,荷電粒子のビームを通すことで,荷電粒子の
ビーム方向と直交する方向に磁場を印加することができ
,ローレンツ力により荷電粒子ビームを偏向させること
ができる。この磁場空間の磁場強度を変化させ,加速・
蓄積リングの加速過程における荷電粒子のエネルギー変
化に対応させるために,永久磁石に隣接させて磁気バイ
パス用磁性体を永久磁石の着磁方向と平行に配置すると
,磁気閉回路に流れる磁束の一部がバイパス用磁性体に
流れるので,このバイパス用磁性体と永久磁石との間隔
を変えると,バイパス用磁性体に流れる磁束の量を調節
することができ,従ってヨーク磁性体へ流れる磁束密度
が変わり,磁場空間の磁場強度を変えることができる。 しかし,磁場空間を形成する開路の間隔は一定であるの
で,磁場強度を変えても磁場分布の一様性は変化しない
。また,磁気閉回路を形成するヨーク磁性体の少なくと
も1箇所に間隙を設けて,この間隙の間隔を変化させる
と,磁気閉回路に流れる磁束の洩れ量が変化して磁場空
間の磁場強度を変化させることができる。しかし,磁場
空間を形成する開路間隔は一定であるので,磁場分布の
一様性は変化しない。
[Operation] According to the above configuration, by passing a beam of charged particles through a magnetic field space formed by providing an open circuit in a magnetic closed circuit formed by connecting a yoke magnetic body to a permanent magnet, the direction of the beam of charged particles can be changed. A magnetic field can be applied in orthogonal directions, and the charged particle beam can be deflected by the Lorentz force. By changing the magnetic field strength of this magnetic field space, acceleration and
In order to correspond to the energy change of charged particles during the acceleration process of the storage ring, if a magnetic bypass magnetic material is placed adjacent to the permanent magnet and parallel to the magnetization direction of the permanent magnet, a portion of the magnetic flux flowing through the magnetic closed circuit is flows into the bypass magnetic material, so by changing the distance between the bypass magnetic material and the permanent magnet, the amount of magnetic flux flowing into the bypass magnetic material can be adjusted, and the density of the magnetic flux flowing into the yoke magnetic material changes. , the magnetic field strength of the magnetic field space can be changed. However, since the interval between the open circuits forming the magnetic field space is constant, the uniformity of the magnetic field distribution does not change even if the magnetic field strength is changed. In addition, if a gap is provided in at least one part of the yoke magnetic body that forms the magnetic closed circuit, and the interval of this gap is changed, the leakage amount of the magnetic flux flowing in the magnetic closed circuit changes, and the magnetic field strength of the magnetic field space changes. can be done. However, since the open circuit interval that forms the magnetic field space is constant, the uniformity of the magnetic field distribution does not change.

【0006】[0006]

【実施例】次に,具体例を示して本発明の理解に供する
。図1に本発明の第1実施例を示す。永久磁石3の両極
にヨーク磁性体4および5を接続して,ヨーク磁性体4
と5とで磁場空間6である開路を形成した逆Cの字形の
磁気閉回路を構成している。ヨーク磁性体4,5により
形成される磁場空間6には永久磁石3による磁場が作用
するので,この磁場空間6の中心にビームダクト1を配
置する。ビームダクト1は図9に示したように,荷電粒
子が周回軌道を描くようにリング状に構成されており,
このビームダクト1を通過する荷電粒子のビーム方向に
対して直交する方向に磁場を印加してローレンツ力によ
り荷電粒子を偏向させる。前記のように構成された磁気
閉回路における磁場空間6は,ビームダクト1に対し一
様な磁場分布で,磁場強度が一定の磁場を印加している
。そこで,磁場分布の一様性を損うことなく,磁場強度
を変化させるために,図1に示すように永久磁石3の着
磁方向と平行にバイパス用磁性体7を配置する。このバ
イパス用磁性体7と永久磁石3との間隔Gを変えること
により,永久磁石3からヨーク磁性体4,5に流れる磁
束の一部をバイパスさせる量を変化させることができる
。即ち,磁束密度が一定である永久磁石3からヨーク磁
性体4,5に流れる量を変化させ,磁場空間6における
磁場強度を変化させることになる。上記構成に用いる永
久磁石3には残留磁気の大きな,例えばSmCoのよう
な希土類磁石を用い,ヨーク磁性体4,5およびバイパ
ス用磁性体7には透磁率が数百以上の,例えばフェライ
ト焼結体を用いている。また,永久磁石3とバイパス用
磁性体7との間隔Gの調整は,バイパス用磁性体7が永
久磁石3から大きな磁気引力を受けるので,図1に示す
ようにギャップ調整器8を油圧または水圧等による移動
機構(図示せず)に接続してバイパス用磁性体7を移動
させる。
[Example] Next, specific examples will be shown to help understand the present invention. FIG. 1 shows a first embodiment of the present invention. Yoke magnetic bodies 4 and 5 are connected to both poles of permanent magnet 3, and yoke magnetic body 4 is connected to both poles of permanent magnet 3.
and 5 form an inverted C-shaped magnetic closed circuit in which an open circuit, which is a magnetic field space 6, is formed. Since the magnetic field by the permanent magnet 3 acts on the magnetic field space 6 formed by the yoke magnetic bodies 4 and 5, the beam duct 1 is arranged at the center of this magnetic field space 6. As shown in Figure 9, the beam duct 1 is configured in a ring shape so that charged particles draw an orbit.
A magnetic field is applied in a direction perpendicular to the beam direction of charged particles passing through the beam duct 1 to deflect the charged particles by Lorentz force. The magnetic field space 6 in the magnetic closed circuit configured as described above applies a magnetic field with a uniform magnetic field distribution and a constant magnetic field strength to the beam duct 1. Therefore, in order to change the magnetic field strength without impairing the uniformity of the magnetic field distribution, the bypass magnetic body 7 is arranged parallel to the magnetization direction of the permanent magnet 3, as shown in FIG. By changing the distance G between the bypass magnetic body 7 and the permanent magnet 3, the amount by which part of the magnetic flux flowing from the permanent magnet 3 to the yoke magnetic bodies 4 and 5 is bypassed can be changed. That is, the amount of magnetic flux flowing from the permanent magnet 3, which has a constant magnetic flux density, to the yoke magnetic bodies 4 and 5 is changed, and the magnetic field strength in the magnetic field space 6 is changed. The permanent magnet 3 used in the above configuration is made of a rare earth magnet such as SmCo, which has a large residual magnetism, and the yoke magnetic bodies 4, 5 and the bypass magnetic body 7 are made of sintered ferrite, which has a magnetic permeability of several hundred or more. using the body. In addition, to adjust the distance G between the permanent magnet 3 and the bypass magnetic body 7, since the bypass magnetic body 7 receives a large magnetic attraction from the permanent magnet 3, the gap adjuster 8 is adjusted using hydraulic or hydraulic pressure as shown in FIG. The bypass magnetic body 7 is moved by connecting to a moving mechanism (not shown) such as the above-mentioned moving mechanism (not shown).

【0007】上記構成において,バイパス用磁性体7と
永久磁石3との間隔Gを変えたときの,磁場空間6の磁
場強度の変化を図2に実測定グラフとして示す。図の横
軸は磁場空間6の磁場分布,即ち,図1に示すヨーク磁
性体4と5とが対向するX方向の磁場強度の分布状態を
示し,縦軸は磁場強度(磁場方向が図示状態で下向きで
あるのでマイナスになる)を示している。永久磁石3と
バイパス用磁性体7との間隔Gが20cmのとき,0.
5Tの最大磁場が空間6に発生する。間隔Gは20cm
以上離しても磁場強度の変化は殆どなく,従って間隔G
の最大は,上記構成による場合20cmとなる。間隔G
を小さくするにしたがって磁場強度は小さくなり,間隔
Gを0cmにしたときの磁場強度は0.05Tで,最大
磁場強度の1/10となる。但し,実使用状態において
は,間隔Gを0cmにすることはないので,図1に示す
ようにギャップ調整器8の凸部10で最小の間隔Gを保
つように構成している。また,図2からわかるように,
ビームダクト1が配置される中心位置(X=0.11m
)付近の磁場の一様性は,磁場強度が変化しても損われ
ることなく一様な磁場分布を示している。この測定のた
めに用いた構成は,残留磁気約1.2Tの永久磁石3を
用い,図1に記載する寸法形状の条件による。また,こ
の構成による偏向磁石を用いて電子加速蓄積リングを構
成すると,リング半径約7mで最大ビームエネルギーが
1GeV,ビームの入射エネルギーは0.1GeVの比
較的小型の入射器でよく,全体として安価な加速蓄積リ
ングを構成することができる。尚,図1に示す磁場強度
補正コイル9は,間隔Gを変化させる機械的な磁場強度
調整の誤差を補正するためのもので,永久磁石3による
磁場に補助的な電磁石の磁場を加えて微調整を行うため
のものである。この磁場強度補正用コイル9には補正の
ための磁場発生に必要な電流を通じるだけでよいので,
大容量の電源装置や冷却装置などは不要である。
[0007] In the above configuration, the change in the magnetic field strength of the magnetic field space 6 when the distance G between the bypass magnetic body 7 and the permanent magnet 3 is changed is shown in an actual measurement graph in FIG. The horizontal axis of the figure shows the magnetic field distribution in the magnetic field space 6, that is, the distribution state of the magnetic field strength in the X direction where the yoke magnetic bodies 4 and 5 shown in FIG. Since it is downward, it is negative). When the distance G between the permanent magnet 3 and the bypass magnetic body 7 is 20 cm, 0.
A maximum magnetic field of 5T is generated in space 6. Spacing G is 20cm
There is almost no change in the magnetic field strength even if the distance is greater than
The maximum length is 20 cm in the case of the above configuration. Interval G
The magnetic field strength decreases as the distance G decreases, and when the interval G is 0 cm, the magnetic field strength is 0.05T, which is 1/10 of the maximum magnetic field strength. However, in actual use, the gap G is never set to 0 cm, so the convex portion 10 of the gap adjuster 8 is configured to maintain the minimum gap G, as shown in FIG. Also, as can be seen from Figure 2,
Center position where beam duct 1 is placed (X = 0.11m
) The uniformity of the magnetic field in the vicinity shows a uniform magnetic field distribution that is not impaired even when the magnetic field strength changes. The configuration used for this measurement uses a permanent magnet 3 with a residual magnetism of approximately 1.2 T, and conforms to the size and shape conditions shown in FIG. In addition, if an electron acceleration storage ring is constructed using deflection magnets with this configuration, a relatively small injector with a ring radius of approximately 7 m, maximum beam energy of 1 GeV, and beam incident energy of 0.1 GeV is required, and the overall cost is low. It is possible to construct an acceleration storage ring. The magnetic field strength correction coil 9 shown in FIG. 1 is used to correct errors in mechanical magnetic field strength adjustment that changes the interval G, and adds a magnetic field from an auxiliary electromagnet to the magnetic field from the permanent magnet 3 to slightly correct the error. This is for making adjustments. Since it is only necessary to pass the current necessary for generating the magnetic field for correction to this magnetic field strength correction coil 9,
There is no need for a large-capacity power supply or cooling device.

【0008】図3に本発明の第2実施例を示す。磁場空
間6を形成する間隔をあけて永久磁石11および12を
対向配置し,各永久磁石11,12の対向極の反対極を
ヨーク磁性体13で接続して逆Cの字形の磁気閉回路を
構成している。磁場空間6における磁場強度および磁場
分布の一様性は,先の第1実施例の構成と同様に達成さ
れる。この構成における磁場強度の調整は,図示するよ
うに各永久磁石11,12の着磁方向と平行に配置した
バイパス用磁性体14と各永久磁石11,12との間隔
Gを調整することによりなされる。間隔Gを調整するた
めのギャップ調整器の図示は省略している。図4に本発
明の第3実施例を示す。永久磁石15の両極にヨーク磁
性体16,17を接続し,この各ヨーク磁性体16,1
7と,磁場空間6を形成する間隔をあけて対向配置した
磁場形成用ヨーク磁性体18,19とを,間隔Gを隔て
対向させて磁気回路を構成している。間隔Gは永久磁石
15とヨーク磁性体16,17とが形成するブロックを
移動させて調節することができる。尚,間隔G調整のた
めのギャップ調整器の図示は,先例と同様に実施される
ものとして省略している。本構成による場合の磁場強度
の変化は,前記の2例と異なり,永久磁石15からの磁
束が磁場形成用ヨーク磁性体18,19へ流れる途中に
間隔Gを設けて,この間隔G部分から磁束が洩れること
を利用して,磁場空間6へ達する磁束の量を調節するも
のである。従って,間隔Gを調整することにより,磁場
空間6における磁場強度を変化させることができる。磁
場空間6の磁場強度を変化させても,磁場を形成する磁
場形成用ヨーク磁性体18,19の対向間隔は一定であ
るので,磁場分布の一様性は変化しない。
FIG. 3 shows a second embodiment of the present invention. Permanent magnets 11 and 12 are arranged facing each other with an interval that forms a magnetic field space 6, and the opposite poles of the opposing poles of each permanent magnet 11 and 12 are connected by a yoke magnetic body 13 to form an inverted C-shaped magnetic closed circuit. It consists of The uniformity of the magnetic field strength and magnetic field distribution in the magnetic field space 6 is achieved in the same manner as in the configuration of the first embodiment. The magnetic field strength in this configuration is adjusted by adjusting the distance G between the bypass magnetic body 14, which is arranged parallel to the magnetization direction of each permanent magnet 11, 12, and each permanent magnet 11, 12, as shown in the figure. Ru. A gap adjuster for adjusting the distance G is not shown. FIG. 4 shows a third embodiment of the present invention. Yoke magnetic bodies 16 and 17 are connected to both poles of the permanent magnet 15, and each of these yoke magnetic bodies 16 and 1
7 and magnetic field forming yoke magnetic bodies 18 and 19 which are arranged opposite to each other with an interval that forms a magnetic field space 6 are arranged to face each other with an interval G to form a magnetic circuit. The distance G can be adjusted by moving the block formed by the permanent magnet 15 and the yoke magnetic bodies 16 and 17. Note that illustration of a gap adjuster for adjusting the distance G is omitted because it is implemented in the same manner as in the previous example. The change in magnetic field strength in the case of this configuration differs from the above two examples in that a gap G is provided in the middle of the magnetic flux from the permanent magnet 15 flowing to the magnetic field forming yoke magnetic bodies 18 and 19, and the magnetic flux flows from this gap G. The amount of magnetic flux reaching the magnetic field space 6 is adjusted by utilizing the leakage of the magnetic flux. Therefore, by adjusting the interval G, the magnetic field strength in the magnetic field space 6 can be changed. Even if the magnetic field strength of the magnetic field space 6 is changed, the uniformity of the magnetic field distribution does not change because the opposing distance between the magnetic field forming yoke magnetic bodies 18 and 19 that form the magnetic field is constant.

【0009】[0009]

【発明の効果】以上に説明した本発明によれば,永久磁
石による偏向磁石において磁場分布の一様性を保ちつつ
磁場強度を変化させることができるので,電磁石による
偏向磁石の設備費用やランニングコストの高さの課題を
解決することができる。また従来,磁場強度を変化させ
ることが困難であるため,荷電粒子の蓄積過程での偏向
磁石としての用にしか使用できなかった永久磁石による
偏向磁石を,加速過程においても使用することができる
。本発明による偏向磁石は,比較的小型の電子シンクロ
トロンや電子蓄積リング等の加速,蓄積型リングを構成
する上において,安価な建設費用と低いランニングコス
トを実現することができ,近来その要求の高い半導体デ
バイスの微細加工などの目的に寄与することができる。
[Effects of the Invention] According to the present invention described above, it is possible to change the magnetic field strength while maintaining the uniformity of the magnetic field distribution in the deflecting magnet using a permanent magnet, so the equipment cost and running cost of the deflecting magnet using an electromagnet can be reduced. can solve the problem of height. In addition, permanent magnet deflection magnets, which conventionally could only be used as deflection magnets during the charged particle accumulation process because it is difficult to change the magnetic field strength, can also be used during the acceleration process. The deflection magnet according to the present invention can realize low construction costs and low running costs when configuring acceleration and storage rings such as relatively small electron synchrotrons and electron storage rings. It can contribute to purposes such as high-performance microfabrication of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の第1実施例偏向磁石の模式図。FIG. 1 is a schematic diagram of a deflection magnet according to a first embodiment of the present invention.

【図2】  同上装置による磁場強度変化の測定グラフ
[Fig. 2] Measurement graph of magnetic field strength changes using the same device.

【図3】  本発明の第2実施例偏向磁石の模式図。FIG. 3 is a schematic diagram of a deflection magnet according to a second embodiment of the present invention.

【図4】  本発明の第3実施例偏向磁石の模式図。FIG. 4 is a schematic diagram of a deflection magnet according to a third embodiment of the present invention.

【図5】  従来例の電磁石による偏向磁石の模式図。FIG. 5 is a schematic diagram of a conventional deflection magnet using an electromagnet.

【図6】  従来例の永久磁石による偏向磁石の模式図
FIG. 6 is a schematic diagram of a conventional deflection magnet using a permanent magnet.

【図7】  従来例の電磁石・永久磁石併用偏向磁石の
加速過程での模式図。
[Fig. 7] A schematic diagram of a conventional example of a deflecting magnet combining an electromagnet and a permanent magnet during an acceleration process.

【図8】  同上の蓄積過程での模式図。[Fig. 8] A schematic diagram of the accumulation process of the same as above.

【図9】  加速・蓄積リングの概要図。[Figure 9] Schematic diagram of the acceleration/storage ring.

【符号の説明】[Explanation of symbols]

1…ビームダクト 3,11,12,15…永久磁石 4,5,12,16,17…ヨーク磁性体6…磁場空間 7,14…バイパス用磁性体 18,19…磁場形成用ヨーク磁性体(ヨーク磁性体)
G…間隔
1... Beam duct 3, 11, 12, 15... Permanent magnet 4, 5, 12, 16, 17... Yoke magnetic body 6... Magnetic field space 7, 14... Bypass magnetic body 18, 19... Yoke magnetic body for magnetic field formation ( yoke magnetic material)
G...interval

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  永久磁石にヨーク磁性体を接続した磁
気閉回路に開路を設けて磁場空間を形成し,該磁場空間
の磁場方向に直交する方向に荷電粒子のビーム方向を設
定した荷電粒子偏向磁石において,前記永久磁石に隣接
して磁気バイパス用磁性体を永久磁石の着磁方向と平行
に配置し,該バイパス用磁性体と永久磁石との距離を調
整可能としたことを特徴とする荷電粒子偏向磁石。
Claim 1: Charged particle deflection in which a magnetic field space is formed by providing an open circuit in a magnetic closed circuit in which a yoke magnetic body is connected to a permanent magnet, and the beam direction of the charged particles is set in a direction perpendicular to the magnetic field direction of the magnetic field space. In the magnet, a magnetic bypass magnetic body is arranged adjacent to the permanent magnet in parallel to the magnetization direction of the permanent magnet, and the distance between the bypass magnetic body and the permanent magnet is adjustable. Particle deflection magnet.
【請求項2】  永久磁石にヨーク磁性体を接続した磁
気閉回路に開路を設けて磁場空間を形成し,該磁場空間
の磁場方向に直交する方向に荷電粒子のビーム方向を設
定した荷電粒子偏向磁石において,前記ヨーク磁性体の
少なくとも1箇所に間隔調整可能な間隙を設けたことを
特徴とする荷電粒子偏向磁石。
[Claim 2] Charged particle deflection in which a magnetic field space is formed by providing an open circuit in a magnetic closed circuit in which a yoke magnetic body is connected to a permanent magnet, and the beam direction of the charged particles is set in a direction perpendicular to the magnetic field direction of the magnetic field space. A charged particle deflection magnet, characterized in that a gap whose interval can be adjusted is provided at least at one location of the yoke magnetic body.
JP3105391A 1991-05-10 1991-05-10 Charged particle deflecting magnet Pending JPH04334899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3105391A JPH04334899A (en) 1991-05-10 1991-05-10 Charged particle deflecting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3105391A JPH04334899A (en) 1991-05-10 1991-05-10 Charged particle deflecting magnet

Publications (1)

Publication Number Publication Date
JPH04334899A true JPH04334899A (en) 1992-11-20

Family

ID=14406347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3105391A Pending JPH04334899A (en) 1991-05-10 1991-05-10 Charged particle deflecting magnet

Country Status (1)

Country Link
JP (1) JPH04334899A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077457A1 (en) * 2003-02-27 2004-09-10 Neomax Co., Ltd. Permanent magnet for particle beam accelerator and magnetic field generator
JP2014518443A (en) * 2011-07-07 2014-07-28 イオネティックス コーポレイション Compact low-temperature superconducting isochronous cyclotron

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077457A1 (en) * 2003-02-27 2004-09-10 Neomax Co., Ltd. Permanent magnet for particle beam accelerator and magnetic field generator
JPWO2004077457A1 (en) * 2003-02-27 2006-06-08 株式会社Neomax Permanent magnet and magnetic field generator for particle beam accelerator
US7570142B2 (en) 2003-02-27 2009-08-04 Hitachi Metals, Ltd. Permanent magnet for particle beam accelerator and magnetic field generator
JP4697961B2 (en) * 2003-02-27 2011-06-08 日立金属株式会社 Permanent magnet and magnetic field generator for particle beam accelerator
JP2014518443A (en) * 2011-07-07 2014-07-28 イオネティックス コーポレイション Compact low-temperature superconducting isochronous cyclotron

Similar Documents

Publication Publication Date Title
US8390201B2 (en) Multi-column electron beam exposure apparatus and magnetic field generation device
US6573817B2 (en) Variable-strength multipole beamline magnet
JPH06132119A (en) Superconductive magnet
JP2003322189A (en) Magnetic spring device having negative stiffness
JPH04273409A (en) Superconducting magnet device; particle accelerator using said superconducting magnet device
JP3249930B2 (en) Insert light source
JPS5961763A (en) Apparatus for generating uniform magnetic field
US6556595B2 (en) Hybrid wiggler
JPH04334899A (en) Charged particle deflecting magnet
US5528211A (en) Magnetic focusing device
JP2000517095A5 (en)
JP3867668B2 (en) Bending electromagnet, charged particle transport path, and circular accelerator
JPH06349593A (en) Sheet plasma generation method and device
US3324433A (en) Electron lens system excited by at least one permanent magnet
JP3324748B2 (en) Magnetic field variable magnet
EP4276878A1 (en) Adjustable permanent magnetic lens having shunting device
KR20230123360A (en) Variable quadrupole magnet system for controlling charged particles
EP4318542A2 (en) Adjustable permanent magnetic lens having thermal control device
JPH04242196A (en) Controlling of magnetic field intensity in magnetic circuit for insertion light source
JP2002151298A (en) Electromagnetic device and charged particle accelerator
CN115426762A (en) Permanent magnet quadrupole magnet based on motor control is adjusted
JP3204920B2 (en) Permanent magnet type bending magnet device and electron storage ring
US20220208427A1 (en) A multipole magnet
JPH04269700A (en) Magnetic field intensity controlling method for magnetism circuit for insertion light source
JPS63224230A (en) X-ray exposure device