JPS5961763A - Apparatus for generating uniform magnetic field - Google Patents

Apparatus for generating uniform magnetic field

Info

Publication number
JPS5961763A
JPS5961763A JP57172600A JP17260082A JPS5961763A JP S5961763 A JPS5961763 A JP S5961763A JP 57172600 A JP57172600 A JP 57172600A JP 17260082 A JP17260082 A JP 17260082A JP S5961763 A JPS5961763 A JP S5961763A
Authority
JP
Japan
Prior art keywords
magnetic field
circular
annular permanent
permanent magnets
correction member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57172600A
Other languages
Japanese (ja)
Other versions
JPH0378592B2 (en
Inventor
Takahisa Nishikawa
西川 隆久
Kimifumi Suzuki
鈴木 公文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Mitsubishi Steel Magnetics KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Mitsubishi Steel Magnetics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK, Mitsubishi Steel Magnetics KK filed Critical Shimadzu Corp
Priority to JP57172600A priority Critical patent/JPS5961763A/en
Publication of JPS5961763A publication Critical patent/JPS5961763A/en
Publication of JPH0378592B2 publication Critical patent/JPH0378592B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/383Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using permanent magnets

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To compensate the magnetic field of an annular permanent magnet to form a uniform magnetic field, by a method wherein a pair of annular permanent magnets are provided so as to leave the interval therebetween toward the same direction and a circular magnetic field compensating member is provided to the space between said annular permanent magnets. CONSTITUTION:A magnetic field generating apparatus 15 is formed by providing a pair of annular permanent magnets 8, 9 so as to leave the space (a) therebetween in coaxial relation to each other while coaxially providing a cylindrical solenoid to the gap between the annular permanent magnets 8, 9. By this constitution, the formation of a uniform magnetic field is enabled by compensating the magnetic field of the annular permanent magnets and, because a power consumption amount can be remarkably reduced, running cost can be reduced, a cooling system become a small scale and apparatus cost is lowered.

Description

【発明の詳細な説明】 この発明は、均一磁界発生装置に関し、さらに詳しくは
、一対の円環形永久磁石にJ:り均一磁界を発生させる
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a uniform magnetic field generating device, and more particularly to a device for generating a uniform magnetic field between a pair of annular permanent magnets.

たとえば核磁気共鳴(NMR>映像装置において均一な
磁界を発生させることが必要Cあり。従来このような均
一磁界は特別に設置1されたコイルに電流を流すことに
より発生さゼるのが一般的である。
For example, it is necessary to generate a uniform magnetic field in nuclear magnetic resonance (NMR) imaging equipment. Conventionally, such a uniform magnetic field is generally generated by passing a current through a specially installed coil. It is.

しかし、コイルに大電流(たとえば2’00△)を定常
的に流りために、ランニング・コス1〜が高額となり、
また大規模な冷却システムを必要とする欠点がある。
However, since a large current (e.g. 2'00△) is constantly flowing through the coil, the running cost is high.
It also has the disadvantage of requiring a large-scale cooling system.

この発明は、上記欠点を解消づべくなされたもので、永
久磁石を利用して磁界の大半または全部を永久磁石に受
けもたせることにより、定常的に流す電流を減少するか
またはミノ〕を全く使用しないようにし、ランニング・
コス1〜を少なくしかつ大規模な冷却システムを不要と
したものである。
This invention was made to solve the above-mentioned drawbacks, and by using a permanent magnet to receive most or all of the magnetic field, it is possible to reduce the constantly flowing current, or to use a permanent magnet at all. Try not to run,
This reduces the cost of 1~ and eliminates the need for a large-scale cooling system.

以下、図面を参照して、この発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図に示すように、軸(1Q)方向の一側面(1a)
にN極、他側面(1b)にs [!を設けた円環形永久
磁石(1)と、同じく軸(29)方向の一側面(2a)
にN極、他側面(2b)にS極を設けた円環形永久磁石
(2)どを、同軸に、同方向を向、けて、かつ間隔dを
あけて対向させて設置し、間隔dを適当に調節すると、
これら一対の円環形永久磁石(1)。
As shown in Figure 1, one side (1a) in the axis (1Q) direction
N pole on the other side (1b), S [! An annular permanent magnet (1) with
Annular permanent magnets (2) having an N pole on one side and an S pole on the other side (2b) are installed coaxially, facing the same direction, and facing each other with a distance d between them. By adjusting appropriately,
These are a pair of annular permanent magnets (1).

(2)間の空隙付近に第2図に示すような磁界が生じそ
れは以下に示すような特徴を持っている。(なお、第2
図で示している部分以外に−b 11界を生じているが
、この発明には直接の関係がないので、省略している。
A magnetic field as shown in Figure 2 is generated near the gap between (2) and has the following characteristics. (In addition, the second
Although -b 11 fields are generated in areas other than those shown in the figure, they are omitted because they have no direct relation to this invention.

) (1)空VA(31の中央に位置し、軸(IN>(2g
)に垂直な平面を考えると、この平面内の磁界<30)
(31)  (32)の大きさは軸(IQ>(2ρ)に
近い程大きく、方向は軸(IQ>’(2ρ)に平行であ
る。
) (1) Empty VA (located in the center of 31, shaft (IN>(2g
), the magnetic field in this plane <30)
(31) The magnitude of (32) increases as it approaches the axis (IQ>(2ρ)), and the direction is parallel to the axis (IQ>'(2ρ)).

(i)  (Dで述べた平面よりも上方に位置し、軸(
1Ω)(2ρ)に垂直な平面を考えると、この平面内の
磁界(10)  (11)  (12)の大きさは軸(
IQ)(2Q>に近い程大きく、方向は軸(1Q、)<
29)から遠い程外向ぎになる。
(i) (located above the plane mentioned in D, axis (
Considering a plane perpendicular to 1Ω) (2ρ), the magnitude of the magnetic field (10) (11) (12) in this plane is the axis (
IQ) (2Q>, the larger it is, the direction is along the axis (1Q,)<
29) The further away you are, the more outward you become.

(ト) (Dで述べた平面よりも下方に位置し、軸(I
Q)(2Q)に垂直な平面を考えると、この平面内の磁
界(20)  (21)  (22)の大きさは軸(1
1Q>(2Q>に近い程大きく、方向は軸(1Q)(2
ρ)から遠い程内向きになる。
(g) (Located below the plane mentioned in D, axis (I
Q) Considering a plane perpendicular to (2Q), the magnitude of the magnetic field (20) (21) (22) in this plane is the axis (1
The closer it is to 1Q>(2Q>, the larger it is, and the direction is the axis (1Q) (2
The further away from ρ), the more inward one becomes.

00  磁界(30)より磁界(10)  (20)の
方が大きく、磁界〈31)より磁界(11)  (2’
l)の方が大きく、磁界(32)、I:り磁界(12)
  (22)の方が大きい。
00 The magnetic field (10) (20) is larger than the magnetic field (30), and the magnetic field (11) (2'
l) is larger, magnetic field (32), I: magnetic field (12)
(22) is larger.

以上の特徴(1)〜00は、間隔dを変えることにJ:
って異ったものとなり、かなり均一磁界に近付けること
ができるが、充分均一な磁界を形成づることは困難であ
る。
The above features (1) to 00 are J:
However, it is difficult to form a sufficiently uniform magnetic field.

どころで、第3図に示すような円形ソレノイド(4)に
、図中矢印のごとく電流工を流すと、第4図に示づ“よ
うな磁界が生じる。(ただし、図で、この発明と直接関
係のない磁界は省略している。)この磁界の特徴を列挙
覆ると、 (ν) ソレノイド(4)の内部空間(力の中央に位置
し、軸(4g)に垂直な平面を考えると、この平面内の
磁界(40)  (41)  (42)の大きさは軸(
4Q)に近い程小さく、方向は軸(4g)に平行である
On the other hand, when an electric current is passed through a circular solenoid (4) as shown in Fig. 3 as shown by the arrow in the figure, a magnetic field as shown in Fig. 4 is generated. Magnetic fields that are not directly related are omitted.) Enumerating the characteristics of this magnetic field, (ν) Internal space of solenoid (4) (Considering the plane located at the center of the force and perpendicular to the axis (4g) , the magnitude of the magnetic field (40) (41) (42) in this plane is the axis (
The closer it is to 4Q), the smaller it is, and the direction is parallel to the axis (4g).

υD  CV)で述べた平面よりも上方に位置し、軸(
4Q)に垂直な平面を考えると、この平面内の磁界(5
0)  (51)  (52)の大きさは軸(4Q)に
近い程小ざく、方向は軸(4Q)から遠い程内向きにな
る。
It is located above the plane mentioned in υD CV), and the axis (
Considering a plane perpendicular to 4Q), the magnetic field in this plane (5
0) (51) (52) The closer it is to the axis (4Q), the smaller it is, and the further away from the axis (4Q), the more inward the direction.

fpiil(v)で述べた平面よりも下方に位fi’f
f シ、軸(4Q)に垂直な平面を考えると、この平面
内の磁界(60)  (61)  (62)の大きさは
軸(4Q)に近い程小さく、方向は軸(4Q)から遠い
程外向きになる。
fi'f below the plane mentioned in fpiil(v)
f, considering a plane perpendicular to the axis (4Q), the magnitude of the magnetic field (60) (61) (62) in this plane is smaller as it is closer to the axis (4Q), and the direction is farther from the axis (4Q) Become more outward-looking.

に) 磁界(40)より磁界(50)  ((io)の
方が小さく、磁界(41)より磁界(51)  (Gl
)の方が小さく、磁界(42)より磁界(52)  (
(32)の方が小さい。
) The magnetic field (50) ((io) is smaller than the magnetic field (40), and the magnetic field (51) (Gl
) is smaller than the magnetic field (42), and the magnetic field (52) (
(32) is smaller.

以上の特徴(V)〜に)と、前記特徴(1)〜(へ)と
を比較すると、互いに正反対の特徴であるから、これら
を合成づれば互いに相補い合って、全ての場所で磁界の
大きさが等しくかつ方向が軸に平行となる均一な磁界を
形成できることが分る。
Comparing the above characteristics (V) to (v) with the characteristics (1) to (f) above, it is found that they are opposite features to each other, so if they are combined, they complement each other and the magnitude of the magnetic field is increased at all locations. It can be seen that a uniform magnetic field can be formed in which the values are equal and the direction is parallel to the axis.

第5図は、このようにして均一な磁界を形成する、この
発明の均一磁界発生装置の一実施例である。
FIG. 5 shows an embodiment of the uniform magnetic field generating device of the present invention, which forms a uniform magnetic field in this manner.

この均一磁界発生装置(15)は、−幻の円環形永久磁
石(8]、(9)を間隔dをあけて同軸に設置すると共
に、それら円環形永久磁石(8)、(9)のあいだの空
隙に同軸に円筒形ソレノイド(10)を設置したもので
ある。ソレノイド(10)は、原理的には、軸方向の長
さがごく小さい単なる円形コイルでもよい。成る程度の
長さを持った円筒ソレノイドと円形コイルとを含め、「
円形ソレノイド」と呼ぶことにする。間隔dは、間隔コ
ントローラ(11)で永久磁石ホルダ(12) 、  
(13)を移動させることにより調節可能である。また
、円形ソレノイド(10)に流す電流■は、電流コント
ローラ(14)で調節可能である。注意すべきことは、
永久磁石(81,(9)による磁界の軸(g)上の方向
と、ソレノイド(10)による磁界の軸(ρ)上の方向
とを一致させるように電流■の方向を決めるべきことで
ある。第5図のソレノイド(10)中に示した記号は、
電流工の方向をあられしている。
This uniform magnetic field generator (15) consists of - phantom annular permanent magnets (8) and (9) installed coaxially with an interval d between them; A cylindrical solenoid (10) is installed coaxially in the air gap.In principle, the solenoid (10) may be a simple circular coil with a very small axial length. including a cylindrical solenoid and a circular coil.
We will call it a circular solenoid. The distance d is determined by the distance controller (11) between the permanent magnet holder (12),
It can be adjusted by moving (13). Further, the current (2) flowing through the circular solenoid (10) can be adjusted by a current controller (14). Things to note are:
The direction of the current ■ should be determined so that the direction on the axis (g) of the magnetic field from the permanent magnets (81, (9)) and the direction on the axis (ρ) of the magnetic field from the solenoid (10) match. The symbol shown in the solenoid (10) in Fig. 5 is:
It is raining in the direction of the electrician.

この均一磁界発生装置(15)によれば、第5図中(0
)で示J空間において、均一磁界が得られ、定常電流I
は従来に比べて著しく小さくてすむようになる。
According to this uniform magnetic field generator (15), (0
), a uniform magnetic field is obtained in J space, and the steady current I
can now be significantly smaller than before.

第6図は、第5図に示ず装置(15)を実際に構成して
磁界を測定した結果を示すものである。図中(a)は永
久磁石+81.[91間の中央に位置覆る平面内のデー
タ、山)はその中央平面より5 mm下の平面内のデー
タ、(C)は前記中央平面より10mm下の平面内のデ
ータ、(小は前記中央平面より13mm下の平面内のデ
ータ、(e)は前記中央平面より18mm下の平面内の
データ、([)は前記中央平面J、す2 S mm下の
平面内のデータである。こ、の結果から判るように、軸
i)から半径3 cm に<内でかつ中央平面からその
20 mm下の平面までの間の空間で、527.4ガウ
スの高磁界が3X10−’の均一性で得られている。磁
界の大きさは中央平面の上下で対称であるから、軸N2
)から半径3cm以内でかつ中火平面からその20 m
m上の平面までの間の空間でも同じ均一磁界が得られる
。なお、円環形永久磁石(8)。
FIG. 6 shows the results of measuring the magnetic field using an actual device (15) not shown in FIG. 5. In the figure (a) is a permanent magnet +81. [Data in the plane located at the center between 91 and 91, the mountain) is the data in the plane 5 mm below the central plane, (C) is the data in the plane 10 mm below the central plane, (the small is the data in the plane 5 mm below the central plane, Data in a plane 13 mm below the plane, (e) data in a plane 18 mm below the central plane, ([) is data in a plane 2 S mm below the central plane J. As can be seen from the results of It has been obtained. Since the magnitude of the magnetic field is symmetric above and below the central plane, the axis N2
) within a radius of 3 cm from
The same uniform magnetic field can be obtained even in the space up to the plane above m. In addition, an annular permanent magnet (8).

(9)は内径380柵、外形700mm、高さ 150
mm、内部空間中火位置での磁界の強さ500ガウスの
ものであり、間隔dは63 mmであり、円形ソレノイ
ド(10)は内径370mm、外径407mm、高さ6
0mm、巻数120のものであり、電流■は18Δであ
る。
(9) is a fence with an inner diameter of 380 mm, an outer diameter of 700 mm, and a height of 150 mm.
mm, the magnetic field strength at the internal space medium heat position is 500 Gauss, the interval d is 63 mm, and the circular solenoid (10) has an inner diameter of 370 mm, an outer diameter of 407 mm, and a height of 6 mm.
0 mm, the number of turns is 120, and the current ■ is 18Δ.

第7図は、この発明の他の実施例を模式的に示1もので
、前記実施例の円形ソレノイド(10)に代えて、軸(
f2)方向の一側面(20a)にN極。
FIG. 7 schematically shows another embodiment of the present invention, in which the circular solenoid (10) of the previous embodiment is replaced with a shaft (
N pole on one side (20a) in the f2) direction.

他側面(2011)にS 4f8を有する円環形永久磁
石(20)を用いたものである。円環形永久磁石(20
)は単独では第4図に示したと同様の磁界を形成するの
で、この装置(25)によっても空間、:(O)に均一
磁界を形成することができる。
A circular permanent magnet (20) having S4f8 on the other side (2011) is used. Annular permanent magnet (20
) alone forms a magnetic field similar to that shown in FIG. 4, so this device (25) can also form a uniform magnetic field in the space, :(O).

第8図は、さらに他の実施例を模式的に示すも・ので、
前記実施例の円環形永久磁石(20)に代えて、円環形
磁性体(30)を用いたものである。この磁性体(30
)は、下側の永久磁石(9)のN極から上側の永久磁石
(E3)のS極へ向かう磁界によりあたかも二側面(3
0a )にN極、他側面(30b )にS極をもつ磁石
のようにふるまうので、第7図の装置(25)と同様に
、この装置(25)によっても空間(0)の均一磁界を
形成することができる。
FIG. 8 schematically shows yet another embodiment.
In place of the annular permanent magnet (20) of the previous embodiment, an annular magnetic body (30) is used. This magnetic material (30
) is caused by a magnetic field directed from the N pole of the lower permanent magnet (9) to the S pole of the upper permanent magnet (E3).
Since it behaves like a magnet with an N pole at 0a) and an S pole at the other side (30b), this device (25), like the device (25) in Fig. 7, can generate a uniform magnetic field in space (0). can be formed.

第9図、は、また他の実施例を模式的に示すもので、第
7図の実施例の円環形永久磁石(20)に代えて、博い
円環形非磁性体(43)の上下に円し′:5形永久慟石
(41) 、  (42)をvi層してなる磁石アセン
ブリ(40)を用いたものである。円環形非磁性体(4
3)の厚さを変えることで磁石アセンブリ(40)の磁
界の調整を容易に行える。
FIG. 9 schematically shows another embodiment, in which instead of the annular permanent magnet (20) in the embodiment of FIG. Circle': This uses a magnet assembly (40) consisting of a VI layer of 5-shaped permanent chlorine stones (41) and (42). Annular non-magnetic material (4
3) The magnetic field of the magnet assembly (40) can be easily adjusted by changing the thickness of the magnet assembly (40).

第10図は、さらにまた他の実施例を模式的に示ずもの
で、円環形永久磁石(53)の上下に円形ソレノ、イド
(51) 、  (52)を積層しである。ソレノイド
(51) 、  (52)の電流を変えることで磁石ア
センブリ(50)の磁界の調整を容易に行える。
FIG. 10 does not schematically show yet another embodiment, in which circular solenoids (51) and (52) are laminated above and below a circular permanent magnet (53). The magnetic field of the magnet assembly (50) can be easily adjusted by changing the currents of the solenoids (51) and (52).

第11図はまた他の実施例を模式的に示すもので、円環
形磁性体(63)の上下に円形ソレノイド(61) 、
  (62)を配置してなる磁界補正部材(60)が円
環形永久”磁石(81,(91の間の間隙の配置されて
いる。ソレノイド(+31) 、  (62)の電流値
、磁性体の厚さの一方または両者を調整でることにより
、磁石アセンブリ(60)の磁界を調整づることができ
る。
FIG. 11 schematically shows another embodiment, in which a circular solenoid (61) is placed above and below a circular magnetic body (63).
A magnetic field correction member (60) formed by arranging (62) is arranged in the gap between annular permanent magnets (81, (91). By adjusting one or both of the thicknesses, the magnetic field of the magnet assembly (60) can be adjusted.

第12図は、またさらに他の実施例を模式的に示すもの
で、これは第5図に示すツレ71イド(10)の代えて
いわゆる差動巻きソレノイド(70)を用いたものであ
る。第12図のソレノイド〈70)中の記号は電流の向
きを示している。
FIG. 12 schematically shows still another embodiment, in which a so-called differential winding solenoid (70) is used in place of the thread 71id (10) shown in FIG. The symbol inside the solenoid (70) in FIG. 12 indicates the direction of the current.

なお以上の各実施例において、円環状永久磁石と磁界神
用部祠とは原則として互いに同軸に配置されるが、つね
に厳密に同軸関係に配置されなりればならないものでは
−なく、最良の補正結果を得るため、・磁石の磁束分布
等に応じ、補正要素の一部又は全部を同軸から多少ずら
せて配置する場合がある。
Furthermore, in each of the above embodiments, the annular permanent magnet and the magnetic field shrine are arranged coaxially with each other in principle, but they do not always have to be arranged in a strictly coaxial relationship, and the best correction is required. In order to obtain the results, some or all of the correction elements may be arranged somewhat offset from the same axis depending on the magnetic flux distribution of the magnet, etc.

以上の説明から叩解されるように、この発明は、軸方向
の一側面にN極、他側面にS極を有する一対の円環形永
久磁石を同方向に向けて同軸にかつ間隔をあ(プて設置
すると共に、それら円環状永久磁石間の空隙に同軸に円
形ソレノイドや円環形永久磁石や円環形磁性体やこれら
を組合せた円形磁界補正部材を設置し、その円形磁界補
正部材により前記円環形永久磁石の磁界を補正して均一
な磁界を形成可能どしてなる均一磁界発生装置を提供す
るものであって、これにより電力消費量を著しく減少さ
せうるのでランニングコストを低減でき、;1、た小規
模な冷却シス7ムで1むので装置コス1−を低減でき、
さらにメインテナンスも容易になる。
As can be understood from the above description, the present invention provides a pair of annular permanent magnets having an N pole on one side in the axial direction and an S pole on the other side, coaxially oriented in the same direction and spaced apart. At the same time, a circular solenoid, a circular permanent magnet, a circular magnetic body, or a circular magnetic field correction member combining these is installed coaxially in the gap between the circular permanent magnets, and the circular magnetic field correcting member corrects the circular magnetic field. To provide a uniform magnetic field generating device capable of forming a uniform magnetic field by correcting the magnetic field of a permanent magnet, which can significantly reduce power consumption and thus reduce running costs; 1. The equipment cost can be reduced by 1-1, since the small-scale cooling system requires only 7 systems.
Furthermore, maintenance becomes easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一対の円環形永久磁石の配置を示す斜視図、第
2図は第1図に示1一対の円環形永久磁石による磁界を
示す模式的断面図、第3図は円形ソレノイドの斜視図、
第4図は第3図に示1円形ソレノイドにJ:る磁界を示
す模式的断面図、第5図はこの発明の均一磁界発生装置
の一実施例の構成説明図、第6図は第5図に示す構成の
装置にJ:る磁界の強さの実験データのグラフ、第7図
〜第12図はこの発明の均一磁界発生装置の様々な実施
例の要部を示す模式的断面図である。 (1) (2) (8) (91・・・円環形永久磁石
、(1a)  (2a)  (8a)  (9a)・・
・−側面、(Ib)  (2b)  (8b)  (9
b)・・・他側面、゛(1Q)(2g)  (412)
 i)・・・軸、(4) (,10)  (51)  
(!i2)  (61)  (62)  (70)・・
・円形ソレノイド、 (20)  (41)  (42)  (53)・・・
円環形永久磁石、(30)  (G3)・・・円環形磁
性体、(15)  (25)  (35)  (4!i
>  (55)  (65) −(75)・・・均一磁
界発生装置。 菊7図 第8図 第6図
Fig. 1 is a perspective view showing the arrangement of a pair of annular permanent magnets, Fig. 2 is a schematic cross-sectional view showing the magnetic field produced by the pair of annular permanent magnets shown in Fig. 1, and Fig. 3 is a perspective view of a circular solenoid. figure,
FIG. 4 is a schematic cross-sectional view showing the magnetic field in the first circular solenoid shown in FIG. 3, FIG. Figures 7 to 12 are graphs of experimental data on magnetic field strength for the device having the configuration shown in the figure, and are schematic cross-sectional views showing essential parts of various embodiments of the uniform magnetic field generating device of the present invention. be. (1) (2) (8) (91... Annular permanent magnet, (1a) (2a) (8a) (9a)...
・-Side, (Ib) (2b) (8b) (9
b)...Other side, ゛(1Q)(2g) (412)
i)...Axis, (4) (,10) (51)
(!i2) (61) (62) (70)...
・Circular solenoid, (20) (41) (42) (53)...
Annular permanent magnet, (30) (G3)... Annular magnetic body, (15) (25) (35) (4!i
> (55) (65) - (75)...Uniform magnetic field generator. Chrysanthemum 7 Figure 8 Figure 6

Claims (1)

【特許請求の範囲】 1 軸方向の一側面にN極、他側面にS極を有する一対
の円環形永久磁石を同方向に向けてかつ間隔をあ()−
C設置”Jると共に、それら円環形永久磁石間の空隙に
円形磁界補正部材を設置し、その円形磁界補正部材によ
り前記円環形永久母石の磁界を補正して均一な磁界を形
成可能としてなる均一磁界発生装置。 2 円形磁界補正部材が、円形ソレノイドである請求の
範(lII第1項記載の装置。 3 円形磁界補正部材が、軸方向の一側面にN極、他側
面にS極を有する円環形永久磁石である請求の範囲第1
項記載の装置。 4 円形磁界補正部材が、円環形出性体である請求の範
囲第1項記載の装置。 5 円形磁界補正部材が、円形ソレノイドと円環形永久
磁石の組み合せからなる請求の範囲第1項記載の装置。 6 円形磁界補正部材が、円形ソレノイドと円環形出性
体の組み合せからなる請求の範囲第1項記載の装置。 7 円形磁界補正部材が、円環形永久磁石と円環形出性
体の組み合ヒからなる請求の範囲第1項記載の装置。
[Claims] 1. A pair of annular permanent magnets having an N pole on one side in the axial direction and an S pole on the other side are oriented in the same direction and spaced apart from each other.
At the same time as C installation, a circular magnetic field correction member is installed in the gap between the annular permanent magnets, and the circular magnetic field correction member corrects the magnetic field of the annular permanent base stone, making it possible to form a uniform magnetic field. Uniform magnetic field generating device. 2. Claim in which the circular magnetic field correction member is a circular solenoid (device according to Section 1 of II. 3. The circular magnetic field correction member has an N pole on one side in the axial direction and an S pole on the other side. Claim 1, which is an annular permanent magnet having
Apparatus described in section. 4. The device according to claim 1, wherein the circular magnetic field correction member is a circularly shaped body. 5. The device according to claim 1, wherein the circular magnetic field correction member comprises a combination of a circular solenoid and an annular permanent magnet. 6. The device according to claim 1, wherein the circular magnetic field correction member comprises a combination of a circular solenoid and an annular shaped body. 7. The device according to claim 1, wherein the circular magnetic field correction member comprises a combination of a circular permanent magnet and a circular extruded body.
JP57172600A 1982-09-30 1982-09-30 Apparatus for generating uniform magnetic field Granted JPS5961763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57172600A JPS5961763A (en) 1982-09-30 1982-09-30 Apparatus for generating uniform magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57172600A JPS5961763A (en) 1982-09-30 1982-09-30 Apparatus for generating uniform magnetic field

Publications (2)

Publication Number Publication Date
JPS5961763A true JPS5961763A (en) 1984-04-09
JPH0378592B2 JPH0378592B2 (en) 1991-12-16

Family

ID=15944855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57172600A Granted JPS5961763A (en) 1982-09-30 1982-09-30 Apparatus for generating uniform magnetic field

Country Status (1)

Country Link
JP (1) JPS5961763A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179009U (en) * 1984-05-08 1985-11-28 住友特殊金属株式会社 magnetic field generator
JPS61743A (en) * 1984-06-13 1986-01-06 Shimadzu Corp Nmr imaging apparatus
JPS61116321U (en) * 1984-12-28 1986-07-23
US4672346A (en) * 1984-04-11 1987-06-09 Sumotomo Special Metal Co., Ltd. Magnetic field generating device for NMR-CT
JP2010245520A (en) * 2009-03-19 2010-10-28 Hitachi Metals Ltd Magnetic field generation device
DE102009027119A1 (en) * 2009-06-23 2010-12-30 Sirona Dental Systems Gmbh Magnetic field unit of an MRI system for the imaging acquisition of a head area
WO2014141246A1 (en) * 2013-03-13 2014-09-18 Aspect Imaging Ltd. Mri safety device means
US10191127B2 (en) 2012-10-31 2019-01-29 Aspect Imaging Ltd. Magnetic resonance imaging system including a protective cover and a camera
US10426376B2 (en) 2013-11-17 2019-10-01 Aspect Imaging Ltd. MRI-incubator's closure assembly
US10695249B2 (en) 2010-09-16 2020-06-30 Aspect Imaging Ltd. Premature neonate closed life support system
US10750973B2 (en) 2010-07-07 2020-08-25 Aspect Imaging Ltd. Devices and methods for a neonate incubator, capsule and cart
US10794975B2 (en) 2010-09-16 2020-10-06 Aspect Imaging Ltd. RF shielding channel in MRI-incubator's closure assembly
US10847295B2 (en) 2016-08-08 2020-11-24 Aspect Imaging Ltd. Device, system and method for obtaining a magnetic measurement with permanent magnets
US11278461B2 (en) 2010-07-07 2022-03-22 Aspect Imaging Ltd. Devices and methods for a neonate incubator, capsule and cart
US11287497B2 (en) 2016-08-08 2022-03-29 Aspect Imaging Ltd. Device, system and method for obtaining a magnetic measurement with permanent magnets
US11399732B2 (en) 2016-09-12 2022-08-02 Aspect Imaging Ltd. RF coil assembly with a head opening and isolation channel
US11988730B2 (en) 2016-08-08 2024-05-21 Aspect Imaging Ltd. Device, system and method for obtaining a magnetic measurement with permanent magnets

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672346A (en) * 1984-04-11 1987-06-09 Sumotomo Special Metal Co., Ltd. Magnetic field generating device for NMR-CT
JPS60179009U (en) * 1984-05-08 1985-11-28 住友特殊金属株式会社 magnetic field generator
JPS61743A (en) * 1984-06-13 1986-01-06 Shimadzu Corp Nmr imaging apparatus
JPH0568253B2 (en) * 1984-06-13 1993-09-28 Shimadzu Corp
JPS61116321U (en) * 1984-12-28 1986-07-23
JPH0123127Y2 (en) * 1984-12-28 1989-07-17
JP2010245520A (en) * 2009-03-19 2010-10-28 Hitachi Metals Ltd Magnetic field generation device
US8847597B2 (en) 2009-06-23 2014-09-30 Sirona Dental Systems Gmbh Magnetic field unit of an MRT system for image capturing a head region
JP2012530574A (en) * 2009-06-23 2012-12-06 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Magnetic field unit of MRT system for head imaging
DE102009027119B4 (en) * 2009-06-23 2013-01-17 Sirona Dental Systems Gmbh Magnetic field unit of an MRI system for the imaging acquisition of a head area
DE102009027119A1 (en) * 2009-06-23 2010-12-30 Sirona Dental Systems Gmbh Magnetic field unit of an MRI system for the imaging acquisition of a head area
CN102803982A (en) * 2009-06-23 2012-11-28 塞隆纳牙科系统有限责任公司 Magnetic field unit of an MRI system for image capturing a head region
CN102803982B (en) * 2009-06-23 2015-09-30 西诺德牙科设备有限公司 For the magnetic field units of the MRT system in the mode head region to provide image
US10750973B2 (en) 2010-07-07 2020-08-25 Aspect Imaging Ltd. Devices and methods for a neonate incubator, capsule and cart
US11278461B2 (en) 2010-07-07 2022-03-22 Aspect Imaging Ltd. Devices and methods for a neonate incubator, capsule and cart
US10794975B2 (en) 2010-09-16 2020-10-06 Aspect Imaging Ltd. RF shielding channel in MRI-incubator's closure assembly
US10695249B2 (en) 2010-09-16 2020-06-30 Aspect Imaging Ltd. Premature neonate closed life support system
US10191127B2 (en) 2012-10-31 2019-01-29 Aspect Imaging Ltd. Magnetic resonance imaging system including a protective cover and a camera
US9535141B2 (en) 2013-03-13 2017-01-03 Aspect Imaging Ltd. MRI safety device means and methods thereof
EP2837948A1 (en) * 2013-03-13 2015-02-18 Aspect Imaging Ltd. MRI safety device
WO2014141246A1 (en) * 2013-03-13 2014-09-18 Aspect Imaging Ltd. Mri safety device means
US10426376B2 (en) 2013-11-17 2019-10-01 Aspect Imaging Ltd. MRI-incubator's closure assembly
US10847295B2 (en) 2016-08-08 2020-11-24 Aspect Imaging Ltd. Device, system and method for obtaining a magnetic measurement with permanent magnets
US11287497B2 (en) 2016-08-08 2022-03-29 Aspect Imaging Ltd. Device, system and method for obtaining a magnetic measurement with permanent magnets
US11988730B2 (en) 2016-08-08 2024-05-21 Aspect Imaging Ltd. Device, system and method for obtaining a magnetic measurement with permanent magnets
US11399732B2 (en) 2016-09-12 2022-08-02 Aspect Imaging Ltd. RF coil assembly with a head opening and isolation channel

Also Published As

Publication number Publication date
JPH0378592B2 (en) 1991-12-16

Similar Documents

Publication Publication Date Title
JPS5961763A (en) Apparatus for generating uniform magnetic field
JPH06304150A (en) Magnet for magnetic resonance image
JPS63241905A (en) Magnetic field generating equipment
CN101922510B (en) Inner rotor permanent magnet biased radial magnetic bearing with double permanent magnets
CN111313763B (en) Gravity compensator with low rigidity and large suspension force
JPH03501076A (en) Electromagnet and its manufacturing method
US5864236A (en) Open configuration MRI magnetic flux path
Peng et al. Axial magnetic field produced by axially and radially magnetized permanent rings
EP0764853B1 (en) Magnet assembly in MRI instrument
KR100262477B1 (en) Magnetic focusing device
JPH0531115B2 (en)
WO2003001542A1 (en) Ferromagnetic force field generator
JPH03141619A (en) Magnet for generating magnetic field uniform in wide region
CN1248895A (en) MRI magnetic field generator
JPH05291026A (en) Magnetic field generating device for mri
JPS6365848A (en) Nuclear magnetic resonance imaging apparatus
JPS6343304A (en) Uniform field magnet of permanent magnet type
JPH0244482Y2 (en)
JP2658491B2 (en) Deflection magnet for charged particle devices
JPS6050442A (en) Magnetic-field generator for nuclear-magnetic- resonance imaging apparatus
JPS63199403A (en) Magnetic field generator
JPS63266804A (en) Magnetic field generator
JPS63244546A (en) Malti-pole lens employing permanent magnet
JPH0479935A (en) Magnetic field generater
JP2536297Y2 (en) Magnetic circuit for sputtering equipment