JPH04334750A - Exhaust circulation device of diesel engine with supercharger - Google Patents

Exhaust circulation device of diesel engine with supercharger

Info

Publication number
JPH04334750A
JPH04334750A JP3102350A JP10235091A JPH04334750A JP H04334750 A JPH04334750 A JP H04334750A JP 3102350 A JP3102350 A JP 3102350A JP 10235091 A JP10235091 A JP 10235091A JP H04334750 A JPH04334750 A JP H04334750A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust gas
gas recirculation
lever opening
exhaust recirculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3102350A
Other languages
Japanese (ja)
Other versions
JP2583361B2 (en
Inventor
Masahiro Nakajima
正博 中島
Norio Kubo
則夫 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3102350A priority Critical patent/JP2583361B2/en
Priority to DE4214880A priority patent/DE4214880C2/en
Publication of JPH04334750A publication Critical patent/JPH04334750A/en
Application granted granted Critical
Publication of JP2583361B2 publication Critical patent/JP2583361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • F02M26/57Systems for actuating EGR valves using vacuum actuators having pressure modulation valves using electronic means, e.g. electromagnetic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To prevent generation of smoke due to delay of building up of supercharging as well as heightening exhaust purification performance by circulating rather more smoke at the time of supercharging when smoke is hard to generate. CONSTITUTION:An exhaust circulation rate of a diesel engine 21 with a turbo supercharger 24 can be gradually controlled by full opening and half opening of an exhaust circulation control valve 28 and opening-closing of a throttle valve 38. A control unit 42 corrects a control territory, which makes number of rotation and throttle lever opening as its parameter, on the basis of a detection signal of a supercharging pressure sensor 46.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、NOx低減のために
排気の一部を吸気系に還流させるディーゼルエンジンの
排気還流装置とりわけ過給機を備えた過給機付ディーゼ
ルエンジンの排気還流装置に関する。
[Field of Industrial Application] This invention relates to an exhaust gas recirculation device for a diesel engine that recirculates a portion of exhaust gas to the intake system in order to reduce NOx, and more particularly to an exhaust gas recirculation device for a turbocharged diesel engine equipped with a supercharger. .

【0002】0002

【従来の技術】排気中のNOxを低減するために不活性
ガスである排気の一部を吸気系に還流させるようにした
排気還流装置は、ディーゼルエンジンにおいても従来か
ら広く採用されているが、このディーゼルエンジンの場
合には、排気還流量の新気に対する割合つまり排気還流
率の上限は、スモークの発生によって制限される。すな
わち、排気還流率を高めて行くと、それに伴って排気中
のスモークが増加するので、ある限界以上に排気還流を
行うことはできない。そして、このスモークは、高負荷
領域ほど発生し易いので、一般にエンジンの運転条件に
よって目標排気還流率を変化させ、スモークが過度に発
生しない範囲内で最大限の排気還流を行うように制御し
ている。
[Prior Art] Exhaust recirculation devices that recirculate part of the exhaust gas, which is an inert gas, back to the intake system in order to reduce NOx in the exhaust gas have been widely used in diesel engines. In the case of this diesel engine, the ratio of the amount of exhaust recirculation to fresh air, that is, the upper limit of the exhaust recirculation rate, is limited by the generation of smoke. That is, as the exhaust gas recirculation rate is increased, smoke in the exhaust gas increases accordingly, and therefore exhaust gas recirculation cannot be performed beyond a certain limit. Since this smoke is more likely to occur in high-load regions, the target exhaust recirculation rate is generally changed depending on the engine operating conditions, and control is performed to maximize exhaust recirculation within a range that does not cause excessive smoke. There is.

【0003】例えば、特開昭62−271940号公報
には、エンジン回転数と燃料噴射ポンプのスロットルレ
バー開度(アクセル操作量)とをパラメータとしたマッ
プに基づいて、最適な排気還流率を決定し、この目標値
に沿って排気還流量を制御するようにしたディーゼルエ
ンジンの排気還流装置が開示されている。尚、上記公報
ではターボ過給機を備えた構成が例示されている。
For example, Japanese Patent Laid-Open No. 62-271940 discloses that the optimum exhaust gas recirculation rate is determined based on a map using the engine speed and the throttle lever opening (accelerator operation amount) of the fuel injection pump as parameters. However, an exhaust gas recirculation device for a diesel engine is disclosed in which the amount of exhaust gas recirculation is controlled in accordance with this target value. Incidentally, the above publication exemplifies a configuration including a turbo supercharger.

【0004】0004

【発明が解決しようとする課題】ところで、ターボ過給
機等の過給機を備えたディーゼルエンジンでは、過給に
よって一層多くの空気がシリンダ内に送り込まれること
から、スモークは発生しにくくなる。そのため、このス
モークによって制約される排気還流率は、過給機を具備
しない場合よりも高めることができる。
By the way, in a diesel engine equipped with a supercharger such as a turbo supercharger, more air is sent into the cylinder due to supercharging, so smoke is less likely to occur. Therefore, the exhaust gas recirculation rate, which is restricted by this smoke, can be increased compared to the case without a supercharger.

【0005】しかしながら、単純に、エンジン回転数と
スロットルレバー開度とに対応する目標排気還流率を過
給域で高く設定したとすると、スロットルレバー開度が
変化してから実際に過給圧が高まるまでなどの過渡時に
、排気還流率がスモーク発生限界を越えてしまい、多量
のスモークを発生する虞れがある。それ故、実際には、
過給機付ディーゼルエンジンであっても目標排気還流率
をそれ程高く設定することができず、排気浄化性能の上
で改善の余地があった。
However, if the target exhaust recirculation rate corresponding to the engine speed and throttle lever opening is simply set high in the supercharging range, the actual supercharging pressure will increase after the throttle lever opening changes. During a transient period such as when the exhaust gas recirculation rate increases, there is a risk that the exhaust gas recirculation rate may exceed the smoke generation limit and generate a large amount of smoke. Therefore, in reality,
Even with a turbocharged diesel engine, the target exhaust recirculation rate could not be set that high, and there was room for improvement in exhaust purification performance.

【0006】[0006]

【課題を解決するための手段】この発明に係る過給機付
ディーゼルエンジンの排気還流装置は、図1に示すよう
に、過給機を備えたディーゼルエンジン1と、このディ
ーゼルエンジン1の排気通路2と吸気通路3とを連通し
た排気還流通路4に介装された排気還流制御弁5と、エ
ンジン1の回転数を検出する回転数検出手段6と、燃料
噴射ポンプのスロットルレバー開度を検出するレバー開
度検出手段7と、検出した回転数とレバー開度とを、段
階的に設定した複数の目標排気還流率領域と比較して、
目標排気還流率を選択する目標排気還流率設定手段8と
、この目標排気還流率に沿って排気還流量を制御する排
気還流制御手段9と、上記過給機によるエンジン1の過
給圧を検出する過給圧検出手段10と、検出した過給圧
に応じて上記目標排気還流率領域を、高過給時に大とな
るように補正する補正手段11とを備えて構成されてい
る。
[Means for Solving the Problems] As shown in FIG. 1, an exhaust gas recirculation system for a diesel engine with a supercharger according to the present invention includes a diesel engine 1 equipped with a supercharger, and an exhaust passage of the diesel engine 1. an exhaust gas recirculation control valve 5 interposed in an exhaust gas recirculation passage 4 that communicates between the engine 2 and the intake passage 3; a rotation speed detection means 6 for detecting the rotation speed of the engine 1; and a rotation speed detection means 6 for detecting the throttle lever opening of the fuel injection pump. The lever opening degree detection means 7 compares the detected rotation speed and lever opening degree with a plurality of target exhaust gas recirculation rate regions set in stages.
A target exhaust recirculation rate setting means 8 for selecting a target exhaust recirculation rate, an exhaust recirculation control means 9 for controlling the amount of exhaust recirculation in accordance with the target exhaust recirculation rate, and detecting the supercharging pressure of the engine 1 by the above-mentioned supercharger. and a correction means 11 that corrects the target exhaust gas recirculation rate range so that it becomes large at the time of high supercharging in accordance with the detected supercharging pressure.

【0007】[0007]

【作用】目標排気還流率設定手段8は、エンジン1の回
転数とスロットルレバー開度とを所定の目標排気還流率
領域と比較することで、目標排気還流率を決定する。上
記目標排気還流率領域は、高速高負荷領域ほど排気還流
率が低くなるように段階的に設定されている。そして、
排気還流制御手段9は、この目標排気還流率に沿って、
例えば排気還流制御弁5の開度制御あるいは吸気通路3
と排気通路2との圧力差の制御等により排気還流量を制
御する。
[Operation] The target exhaust gas recirculation rate setting means 8 determines the target exhaust gas recirculation rate by comparing the rotational speed of the engine 1 and the throttle lever opening with a predetermined target exhaust gas recirculation rate range. The target exhaust gas recirculation rate range is set in stages such that the higher the speed and the higher the load, the lower the exhaust gas recirculation rate. and,
The exhaust gas recirculation control means 9, in accordance with this target exhaust gas recirculation rate,
For example, the opening degree control of the exhaust recirculation control valve 5 or the intake passage 3
The amount of exhaust gas recirculated is controlled by controlling the pressure difference between the exhaust gas passage 2 and the exhaust passage 2.

【0008】ここで、エンジン1の過給域においては、
過給圧検出手段10により検出された実際の過給圧に基
づいて、上記目標排気還流率領域が拡大補正される。つ
まり、過給圧が高い場合には、より高速高負荷側で高い
目標排気還流率が与えられるようになる。
[0008] Here, in the supercharging region of the engine 1,
Based on the actual boost pressure detected by the boost pressure detection means 10, the target exhaust gas recirculation rate region is expanded and corrected. In other words, when the boost pressure is high, a high target exhaust recirculation rate is given at higher speeds and higher loads.

【0009】[0009]

【実施例】以下、この発明の一実施例を図面に基づいて
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings.

【0010】図2は、この発明に係る排気還流装置の一
実施例を示す構成説明図であって、21は例えば渦流室
式のディーゼルエンジン、22はこのディーゼルエンジ
ン21の排気通路、23は吸気通路、24は排気タービ
ン25とコンプレッサ26とが同軸状に連結されてなる
ターボ過給機を示している。
FIG. 2 is a configuration explanatory diagram showing one embodiment of the exhaust gas recirculation system according to the present invention, in which 21 is, for example, a swirl chamber type diesel engine, 22 is an exhaust passage of this diesel engine 21, and 23 is an intake air passage. A passage 24 indicates a turbocharger in which an exhaust turbine 25 and a compressor 26 are coaxially connected.

【0011】排気還流通路27は、排気通路22の排気
タービン25上流側と吸気通路23のコンプレッサ26
下流側とを連通しており、その通路中には、負圧式ダイ
ヤフラム弁からなる排気還流制御弁28が介装されてい
る。この排気還流制御弁28は、ダイヤフラム29に対
し中間のリテーナを介して2段にリターンスプリング3
0,31が設けられており、負圧に応じて全開状態と半
開状態とが安定的に得られるようになっている。
The exhaust gas recirculation passage 27 connects the exhaust passage 22 upstream of the exhaust turbine 25 and the intake passage 23 upstream of the compressor 26.
It communicates with the downstream side, and an exhaust gas recirculation control valve 28 made of a negative pressure diaphragm valve is interposed in the passage. This exhaust gas recirculation control valve 28 is connected to a return spring 3 in two stages via an intermediate retainer with respect to a diaphragm 29.
0 and 31 are provided, so that a fully open state and a half open state can be stably obtained depending on the negative pressure.

【0012】上記排気還流制御弁28に導入される負圧
は、バキュームポンプ32を負圧源としており、これを
第1電磁弁33および第2電磁弁34により適宜に大気
で希釈して所定圧力に制御している。第1電磁弁33お
よび第2電磁弁34は、いずれも3方電磁弁からなり、
排気還流制御弁28に至る負圧通路35が接続された第
1ポート33a,34aを、第2ポート33b,34b
もしくは第3ポート33c,34cに選択的に連通させ
るようになっている。尚、図中矢印のように、第2ポー
ト33b,34b側に連通した状態を流路α、第3ポー
ト33c,34c側に連通した状態を流路βとして示す
。第1電磁弁33,第2電磁弁34の第2ポート33b
,34bはいずれも図示せぬエアクリーナを介して大気
開放されている。また第1電磁弁33の第3ポート33
cは、負圧源となるバキュームポンプ32に連通してお
り、かつ第2電磁弁34の第3ポート34cは封止され
ている。尚、各第1ポート33a,34aと負圧通路3
5との間には、それぞれオリフィス37が介装されてい
る。
The negative pressure introduced into the exhaust recirculation control valve 28 uses a vacuum pump 32 as a negative pressure source, and is appropriately diluted with the atmosphere by a first solenoid valve 33 and a second solenoid valve 34 to a predetermined pressure. is controlled. The first solenoid valve 33 and the second solenoid valve 34 are both three-way solenoid valves,
The first ports 33a, 34a to which the negative pressure passage 35 leading to the exhaust gas recirculation control valve 28 is connected are connected to the second ports 33b, 34b.
Alternatively, it is configured to selectively communicate with the third ports 33c and 34c. As shown by the arrows in the figure, a state in which the flow path communicates with the second ports 33b and 34b is shown as a flow path α, and a state in which it communicates with the third ports 33c and 34c is shown as a flow path β. The second port 33b of the first solenoid valve 33 and the second solenoid valve 34
, 34b are all exposed to the atmosphere via an air cleaner (not shown). Also, the third port 33 of the first solenoid valve 33
c is in communication with the vacuum pump 32 which serves as a negative pressure source, and the third port 34c of the second solenoid valve 34 is sealed. In addition, each of the first ports 33a, 34a and the negative pressure passage 3
5, an orifice 37 is interposed between each of them.

【0013】またコンプレッサ26上流側の吸気通路2
3には、吸気通路23内に負圧を生成させるためのスロ
ットル弁38が介装されている。このスロットル弁38
は、負圧ダイヤフラム式アクチュエータ39によって開
閉駆動されるもので、該アクチュエータ39に至る負圧
通路40に、やはり3方電磁弁からなる第3電磁弁41
が介装されている。上記第3電磁弁41は、負圧通路4
0が接続された第1ポート41aを第2ポート41bも
しくは第3ポート41cに選択的に連通させる構成であ
って、第2ポート41bが大気開放されているとともに
、第3ポート41cが負圧源となるバキュームポンプ3
2に接続されている。尚、この第3電磁弁41について
も、第2ポート41b側に連通した状態を流路α、第3
ポート41c側に連通した状態を流路βとして示す。
[0013] Also, the intake passage 2 on the upstream side of the compressor 26
3 is provided with a throttle valve 38 for generating negative pressure within the intake passage 23. This throttle valve 38
is driven to open and close by a negative pressure diaphragm actuator 39, and a third solenoid valve 41, which is also a three-way solenoid valve, is installed in the negative pressure passage 40 leading to the actuator 39.
is interposed. The third electromagnetic valve 41 includes a negative pressure passage 4
0 is connected to the second port 41b or the third port 41c selectively, the second port 41b is open to the atmosphere, and the third port 41c is connected to a negative pressure source. Vacuum pump 3
Connected to 2. Note that this third solenoid valve 41 also has a state in which it communicates with the second port 41b side through the flow path α and the third solenoid valve 41.
The state in which it communicates with the port 41c side is shown as a flow path β.

【0014】上記スロットル弁38は、その閉弁により
吸気通路23の負圧を強め、排気還流制御弁28の前後
圧力差を高めて排気還流量を増大させる機能を有してい
る。すなわち、この実施例では、排気還流制御弁28の
開度を直接に制御する第1,第2電磁弁33,34等と
圧力差を制御する上記スロットル弁38等とによって排
気還流制御手段が構成されている。
The throttle valve 38 has the function of increasing the negative pressure in the intake passage 23 by closing it, increasing the pressure difference across the exhaust gas recirculation control valve 28, and increasing the amount of exhaust gas recirculation. That is, in this embodiment, the exhaust recirculation control means is constituted by the first and second electromagnetic valves 33, 34, etc., which directly control the opening degree of the exhaust recirculation control valve 28, and the throttle valve 38, etc., which controls the pressure difference. has been done.

【0015】上記各電磁弁33,34,41は、マイク
ロコンピュータシステムを利用したエンジンコントロー
ルユニット42によってON,OFF制御される。43
はエンジン1の回転数を検出する例えばパルスジュネレ
ータからなる回転数センサ、44は図示せぬ燃料噴射ポ
ンプのスロットルレバー開度を検出する例えばポテンシ
ョメータからなるレバー開度センサ、45は冷却水温を
検出する水温センサをそれぞれ示しており、これらの検
出信号は上記コントロールユニット42に入力されてい
る。またコンプレッサ26下流の吸気通路23において
、例えば半導体圧力センサ等からなる過給圧センサ46
が配設されており、その検出信号が上記コントロールユ
ニット42に入力されている。
Each of the electromagnetic valves 33, 34, and 41 is ON/OFF controlled by an engine control unit 42 using a microcomputer system. 43
Reference numeral 44 detects the rotational speed of the engine 1 and includes a pulse generator, for example. Reference numeral 44 indicates a lever opening sensor such as a potentiometer that detects the throttle lever opening of a fuel injection pump (not shown). Reference numeral 45 detects the cooling water temperature. The detection signals of these water temperature sensors are input to the control unit 42. In addition, in the intake passage 23 downstream of the compressor 26, a boost pressure sensor 46 consisting of, for example, a semiconductor pressure sensor, etc.
is provided, and its detection signal is input to the control unit 42.

【0016】次に上記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.

【0017】上記構成の排気還流装置においては、基本
的にエンジン21の回転数と燃料噴射ポンプのスロット
ルレバー開度とに基づいて所定の制御マップから目標排
気還流率が選択される。図3は、無過給時の目標排気還
流率を定めた基本的な制御マップを示すもので、低速低
負荷側から高速高負荷側へ向かって、最も排気還流率の
大きな領域Aから排気還流が0となる領域Dまでが段階
的に設定されている。そして、この各領域A〜Dに対し
、各電磁弁33,34,41、排気還流率制御弁28お
よびスロットル弁38は次の表1に示すように制御され
る。
In the exhaust gas recirculation system configured as described above, the target exhaust gas recirculation rate is basically selected from a predetermined control map based on the rotational speed of the engine 21 and the throttle lever opening degree of the fuel injection pump. Figure 3 shows a basic control map that determines the target exhaust recirculation rate during non-supercharging. Exhaust recirculation starts from region A with the highest exhaust recirculation rate from the low speed, low load side to the high speed, high load side. The range up to region D where is 0 is set in stages. For each region A to D, the electromagnetic valves 33, 34, 41, exhaust recirculation rate control valve 28, and throttle valve 38 are controlled as shown in Table 1 below.

【0018】[0018]

【表1】[Table 1]

【0019】すなわち、領域Aでは、排気還流制御弁2
8が全開になるとともに、スロットル弁38が閉じて高
い排気還流率が与えられる。このときの目標排気還流率
は例えば40%である。また領域Bでは、排気還流制御
弁28が全開でかつスロットル弁38が開いた状態とな
って中間的な排気還流率が与えられる。このときの目標
排気還流率は例えば20%である。また領域Cでは、排
気還流制御弁28が半開状態となり、低い排気還流率が
与えられる。このときの目標排気還流率は例えば10%
である。更に、領域Dでは、排気還流制御弁28が全閉
となり、排気還流率は0となる。
That is, in region A, the exhaust recirculation control valve 2
8 is fully opened, and the throttle valve 38 is closed to provide a high exhaust gas recirculation rate. The target exhaust gas recirculation rate at this time is, for example, 40%. In region B, the exhaust gas recirculation control valve 28 is fully open and the throttle valve 38 is open, providing an intermediate exhaust gas recirculation rate. The target exhaust gas recirculation rate at this time is, for example, 20%. Further, in region C, the exhaust gas recirculation control valve 28 is in a half-open state, and a low exhaust gas recirculation rate is provided. The target exhaust recirculation rate at this time is, for example, 10%.
It is. Further, in region D, the exhaust gas recirculation control valve 28 is fully closed, and the exhaust gas recirculation rate becomes zero.

【0020】一方、過給圧の変化に対しては、排気還流
を行う各領域A〜Cの大きさが過給圧に応じて補正され
、高過給時ほどその領域が高速高負荷側に拡大する。 具体的には、過給圧に応じて3段階の制御マップM1 
,M2 ,M3 が図4に示すように予め設定されてお
り、これらの制御マップに基づき補間計算を行うことで
過給圧に応じた補正が行われる。尚、各制御マップM1
 ,M2 ,M3 自体も実際には8×8程度の格子点
を有するテーブルとなっており、格子点間では補間計算
を行うようになっている。
On the other hand, in response to changes in supercharging pressure, the size of each region A to C where exhaust gas recirculation is performed is corrected according to the supercharging pressure, and the higher the supercharging, the more the region is on the high-speed, high-load side. Expanding. Specifically, a three-stage control map M1 is created depending on the boost pressure.
, M2, and M3 are set in advance as shown in FIG. 4, and correction according to the boost pressure is performed by performing interpolation calculations based on these control maps. In addition, each control map M1
, M2, and M3 themselves are actually tables having about 8×8 grid points, and interpolation calculations are performed between the grid points.

【0021】図5に示すフローチャートは、上記の過給
圧に応じた補正の具体的な処理の流れを示しており、以
下、これを説明する。先ず、ステップ1では、そのとき
のエンジン冷却水温TWを所定値T1 と比較する。T
1以下の低温時には、レバー開度等に拘わらず排気還流
を行わないものとし、ステップ13へ進んで領域Dを選
択する。
The flowchart shown in FIG. 5 shows a specific process flow for the correction according to the boost pressure, which will be explained below. First, in step 1, the engine cooling water temperature TW at that time is compared with a predetermined value T1. T
When the temperature is below 1, exhaust gas recirculation is not performed regardless of the lever opening degree, etc., and the process proceeds to step 13, where region D is selected.

【0022】水温TWがT1以上の場合は、エンジン回
転数Rおよび過給圧Pを読み込み(ステップ2,3)、
これらに基づいて領域Aと領域Bとの境界となるレバー
開度L1 を求める(ステップ4)。これは、図6の説
明図に示すように、前述した3段階の制御マップM1 
,M2 ,M3 の対応値から補間計算により求められ
る。そして、そのときの実際のレバー開度Lと上記の境
界値L1 を比較し(ステップ5)、レバー開度Lが境
界値L1 以下であればステップ6へ進んで領域Aを選
択する。
If the water temperature TW is higher than T1, read the engine speed R and boost pressure P (steps 2 and 3),
Based on these, the lever opening degree L1, which is the boundary between area A and area B, is determined (step 4). As shown in the explanatory diagram of FIG. 6, this is the three-stage control map M1 described above.
, M2, M3 by interpolation calculation. Then, the actual lever opening degree L at that time is compared with the above-mentioned boundary value L1 (step 5), and if the lever opening degree L is less than the boundary value L1, the process proceeds to step 6 and area A is selected.

【0023】またレバー開度Lが境界値L1 より大き
い場合には、次の領域Bと領域Cとの境界となるレバー
開度L2 を同様の補間計算により求め(ステップ7)
、これとレバー開度Lとを比較する(ステップ8)。こ
こでレバー開度Lが境界値L2 以下であればステップ
9へ進んで領域Bを選択する。境界値L2 より大きい
場合には、次の領域Cと領域Dとの境界となるレバー開
度L3 を同様の補間計算により求め(ステップ10)
、これとレバー開度Lとを比較する(ステップ11)。 ここでレバー開度Lが境界値L3 以下であればステッ
プ12へ進んで領域Cを選択し、また境界値L3 より
大きい場合にはステップ13へ進んで排気還流停止領域
となる領域Dを選択する。
If the lever opening degree L is larger than the boundary value L1, the next lever opening degree L2, which is the boundary between area B and area C, is determined by similar interpolation calculation (step 7).
, and this is compared with the lever opening degree L (step 8). Here, if the lever opening degree L is less than or equal to the boundary value L2, the process proceeds to step 9 and area B is selected. If it is larger than the boundary value L2, the lever opening degree L3, which is the boundary between the next area C and area D, is determined by similar interpolation calculation (step 10).
, and this is compared with the lever opening degree L (step 11). Here, if the lever opening degree L is less than or equal to the boundary value L3, the process proceeds to step 12 and selects area C, and if it is greater than the boundary value L3, the process proceeds to step 13 and selects area D, which is the exhaust gas recirculation stop area. .

【0024】このように、上記実施例では、スモークが
発生しにくい高過給時には、無過給時に比して相対的に
高い排気還流率が与えられることになり、一層良好な排
気浄化性能が得られる。特に、実際の過給圧を検出し、
該過給圧に基づいて排気還流率の補正が行われるので、
加速時のような過渡時においても適切な排気還流率とな
り、スモークの発生が確実に防止される。
As described above, in the above embodiment, during high supercharging when smoke is less likely to occur, a relatively high exhaust recirculation rate is provided compared to when no supercharging is performed, and even better exhaust purification performance is achieved. can get. In particular, it detects the actual boost pressure,
Since the exhaust recirculation rate is corrected based on the boost pressure,
Even during transient times such as during acceleration, the exhaust gas recirculation rate is maintained at an appropriate rate, and smoke generation is reliably prevented.

【0025】尚、上記実施例では、排気還流制御弁28
の開度制御と併せてスロットル弁38の開閉制御を行い
、排気還流量を段階的に制御するようにしているが、排
気還流制御弁28の段階的な開度制御もしくは該制御弁
28の開閉のデューティ比制御のみによって各領域に対
応した排気還流制御を行うように構成することもできる
In the above embodiment, the exhaust recirculation control valve 28
The opening/closing control of the throttle valve 38 is performed in conjunction with the opening control of the exhaust recirculation control valve 28, and the exhaust gas recirculation amount is controlled in stages. It is also possible to perform exhaust gas recirculation control corresponding to each region only by controlling the duty ratio of .

【0026】[0026]

【発明の効果】以上の説明で明らかなように、この発明
に係る過給機付ディーゼルエンジンの排気還流装置によ
れば、スモークが発生しにくい過給時に過給圧に応じて
一層高い排気還流率が与えられるため、従来のものに比
して排気浄化性能の一層の向上が図れる。また実際の過
給圧を検出し、これに基づいて排気還流率が補正される
ため、過渡時に過給の立ち上がりが遅れたような場合で
もスモークの発生を確実に防止することができる。
[Effects of the Invention] As is clear from the above explanation, according to the exhaust gas recirculation device for a supercharged diesel engine according to the present invention, the exhaust gas recirculation is increased according to the boost pressure during supercharging where smoke is less likely to occur. Since the ratio is given, the exhaust purification performance can be further improved compared to the conventional one. Furthermore, since the actual supercharging pressure is detected and the exhaust gas recirculation rate is corrected based on this, it is possible to reliably prevent the occurrence of smoke even if the rise of supercharging is delayed during a transient period.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の構成を示すクレーム対応図。FIG. 1 is a claim correspondence diagram showing the configuration of the present invention.

【図2】この発明の一実施例を示す構成説明図。FIG. 2 is a configuration explanatory diagram showing an embodiment of the present invention.

【図3】無過給時の目標排気還流率領域を示す制御マッ
プの特性図。
FIG. 3 is a characteristic diagram of a control map showing a target exhaust recirculation rate region during no supercharging.

【図4】過給圧に応じた3段階の制御マップを示す説明
図。
FIG. 4 is an explanatory diagram showing a three-stage control map according to boost pressure.

【図5】各領域を選択する際の処理の流れを示すフロー
チャート。
FIG. 5 is a flowchart showing the flow of processing when selecting each area.

【図6】過給圧に応じたレバー開度の境界値L1 〜L
3 を決定する際の説明図。
[Figure 6] Boundary values L1 to L of lever opening according to boost pressure
3 is an explanatory diagram for determining.

【符号の説明】[Explanation of symbols]

1…ディーゼルエンジン 5…排気還流制御弁 6…回転数検出手段 7…レバー開度検出手段 8…目標排気還流率設定手段 9…排気還流制御手段 10…過給圧検出手段 11…補正手段 1...Diesel engine 5...Exhaust recirculation control valve 6...Rotation speed detection means 7... Lever opening detection means 8...Target exhaust gas recirculation rate setting means 9...Exhaust recirculation control means 10...Supercharging pressure detection means 11...Correction means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  過給機を備えたディーゼルエンジンと
、このディーゼルエンジンの排気通路と吸気通路とを連
通した排気還流通路に介装された排気還流制御弁と、エ
ンジンの回転数を検出する回転数検出手段と、燃料噴射
ポンプのスロットルレバー開度を検出するレバー開度検
出手段と、検出した回転数とレバー開度とを、段階的に
設定した複数の目標排気還流率領域と比較して、目標排
気還流率を選択する目標排気還流率設定手段と、この目
標排気還流率に沿って排気還流量を制御する排気還流制
御手段と、上記過給機によるエンジンの過給圧を検出す
る過給圧検出手段と、検出した過給圧に応じて上記目標
排気還流率領域を、高過給時に大となるように補正する
補正手段とを備えてなる過給機付ディーゼルエンジンの
排気還流装置。
Claim 1: A diesel engine equipped with a supercharger, an exhaust recirculation control valve interposed in an exhaust recirculation passage that communicates an exhaust passage and an intake passage of the diesel engine, and a rotation valve for detecting the engine rotation speed. a lever opening detection means for detecting a throttle lever opening of the fuel injection pump, and a lever opening detection means that detects a throttle lever opening of the fuel injection pump, and compares the detected rotational speed and lever opening with a plurality of target exhaust recirculation ratio regions set in stages. , a target exhaust recirculation rate setting means for selecting a target exhaust recirculation rate; an exhaust recirculation control means for controlling the amount of exhaust recirculation in accordance with the target exhaust recirculation rate; An exhaust gas recirculation device for a diesel engine with a supercharger, comprising a boost pressure detection means and a correction means for correcting the above-mentioned target exhaust recirculation rate range in accordance with the detected boost pressure so that it increases at the time of high supercharging. .
JP3102350A 1991-05-08 1991-05-08 Exhaust recirculation system for a turbocharged diesel engine Expired - Fee Related JP2583361B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3102350A JP2583361B2 (en) 1991-05-08 1991-05-08 Exhaust recirculation system for a turbocharged diesel engine
DE4214880A DE4214880C2 (en) 1991-05-08 1992-05-05 Exhaust gas recirculation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3102350A JP2583361B2 (en) 1991-05-08 1991-05-08 Exhaust recirculation system for a turbocharged diesel engine

Publications (2)

Publication Number Publication Date
JPH04334750A true JPH04334750A (en) 1992-11-20
JP2583361B2 JP2583361B2 (en) 1997-02-19

Family

ID=14325034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3102350A Expired - Fee Related JP2583361B2 (en) 1991-05-08 1991-05-08 Exhaust recirculation system for a turbocharged diesel engine

Country Status (1)

Country Link
JP (1) JP2583361B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896141A2 (en) 1997-08-04 1999-02-10 Toyota Jidosha Kabushiki Kaisha Combustion and gas recirculation control in an internal-combustion engine
US5890360A (en) * 1997-09-16 1999-04-06 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
EP0907016A2 (en) 1997-09-16 1999-04-07 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
EP0921285A2 (en) 1997-12-04 1999-06-09 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
EP0947685A2 (en) 1998-03-30 1999-10-06 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
EP0964140A2 (en) 1998-03-17 1999-12-15 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
US6109025A (en) * 1998-03-17 2000-08-29 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
US6131388A (en) * 1997-11-25 2000-10-17 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
US6152118A (en) * 1998-06-22 2000-11-28 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2017048739A (en) * 2015-09-02 2017-03-09 川崎重工業株式会社 Engine system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896141A3 (en) * 1997-08-04 2000-08-30 Toyota Jidosha Kabushiki Kaisha Combustion and gas recirculation control in an internal-combustion engine
EP0896141A2 (en) 1997-08-04 1999-02-10 Toyota Jidosha Kabushiki Kaisha Combustion and gas recirculation control in an internal-combustion engine
US6055968A (en) * 1997-08-04 2000-05-02 Toyota Jidosha Kabushiki Kaisha Engine
US5890360A (en) * 1997-09-16 1999-04-06 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
EP0907013A2 (en) 1997-09-16 1999-04-07 Toyota Jidosha Kabushiki Kaisha A compression ignition type engine
EP0907016A2 (en) 1997-09-16 1999-04-07 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
US6142119A (en) * 1997-09-16 2000-11-07 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
US6131388A (en) * 1997-11-25 2000-10-17 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
EP0921285A2 (en) 1997-12-04 1999-06-09 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
US6240723B1 (en) 1997-12-04 2001-06-05 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
US6109025A (en) * 1998-03-17 2000-08-29 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
US6129075A (en) * 1998-03-17 2000-10-10 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
EP0964140A2 (en) 1998-03-17 1999-12-15 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
US6101999A (en) * 1998-03-30 2000-08-15 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
EP0947685A2 (en) 1998-03-30 1999-10-06 Toyota Jidosha Kabushiki Kaisha Compression ignition type engine
US6152118A (en) * 1998-06-22 2000-11-28 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2017048739A (en) * 2015-09-02 2017-03-09 川崎重工業株式会社 Engine system
WO2017038033A1 (en) * 2015-09-02 2017-03-09 川崎重工業株式会社 Engine system

Also Published As

Publication number Publication date
JP2583361B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
US6314735B1 (en) Control of exhaust temperature in lean burn engines
US6662562B2 (en) Method and device for regulating the boost pressure of an internal combustion engine
US7748218B2 (en) System and method for achieving engine back-pressure set-point by selectively bypassing a stage of a two-stage turbocharger
US20120055152A1 (en) Method for controlling a turbocharger system of an internal combustion engine, and turbocharger system
KR101951613B1 (en) Exhaust recirculation control method and exhaust recirculation control device
JP4492406B2 (en) Diesel engine intake / exhaust system
JPS6118659B2 (en)
JP2583361B2 (en) Exhaust recirculation system for a turbocharged diesel engine
US6705303B2 (en) Air-fuel ratio control apparatus and method for internal combustion engine
US11274616B2 (en) Control method and control device for internal combustion engine
JP2019152190A (en) Engine system
JP3826592B2 (en) Control device for turbocharged engine
EP0992663B1 (en) Control system for supercharged engine
JP6907977B2 (en) Turbocharger controller
JP3005718B2 (en) Exhaust gas recirculation control system for diesel engine
JPH04342862A (en) Exhaust gas rotary flow device of diesel engine with supercharger
JPH06272565A (en) Control device of engine with turbo charger
JP3622506B2 (en) EGR control device for internal combustion engine
JP2605053B2 (en) Engine boost pressure control device
JP2001280150A (en) Supercharging pressure control device for engine
JP2000002120A (en) Control device for variable turbo-charger
JPS6235028A (en) Exhaust turbo supercharger
JP4395975B2 (en) Engine supercharging pressure control device
JP2005036813A (en) Supercharger controller
JPH0223804Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees