JP2000002120A - Control device for variable turbo-charger - Google Patents

Control device for variable turbo-charger

Info

Publication number
JP2000002120A
JP2000002120A JP10167460A JP16746098A JP2000002120A JP 2000002120 A JP2000002120 A JP 2000002120A JP 10167460 A JP10167460 A JP 10167460A JP 16746098 A JP16746098 A JP 16746098A JP 2000002120 A JP2000002120 A JP 2000002120A
Authority
JP
Japan
Prior art keywords
egr
vane
amount
control
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10167460A
Other languages
Japanese (ja)
Other versions
JP4061443B2 (en
Inventor
Hiroshi Mushigami
広志 虫上
Tamon Tanaka
多聞 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP16746098A priority Critical patent/JP4061443B2/en
Publication of JP2000002120A publication Critical patent/JP2000002120A/en
Application granted granted Critical
Publication of JP4061443B2 publication Critical patent/JP4061443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/44Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which a main EGR passage is branched into multiple passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/38Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition

Abstract

PROBLEM TO BE SOLVED: To provide a control device for a variable turbo-charger which can prevent occurrence of disturbance caused by EGR control so as to carry out supercharge pressure F/B control which is always suitable. SOLUTION: A vane basic manipulated value SFF is compensated in accordance with a vane compensating coefficient Kegr which can be obtained from an EGR value Gr, and the vane opening is adjusted for restriction in accordance with thus compensated vane basic manipulated value SFF. As a result, the dynamic pressure of exhaust gas is increased so as to compensate the volume of exhaust gas for a decrease, thereby it is possible to prevent lowering of the boost pressure which is caused by the decrease in the exhaust gas volume.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関(以下、
エンジンという)の運転状態に応じて可変翼(可動ベー
ン)を変更可能な可変ターボチャージャの制御装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine (hereinafter referred to as "internal combustion engine").
The present invention relates to a variable turbocharger control device capable of changing a variable blade (movable vane) according to an operating state of an engine.

【0002】[0002]

【従来の技術】可動部材によりタービンへのガス流入速
度を変更可能な可変ターボチャージャは、可動部材を適
切に制御することによって迅速な過給圧上昇が得られ、
低速から高速まで全域でトルク向上が図れるものであ
り、近年、実用化が進んでいる。
2. Description of the Related Art A variable turbocharger capable of changing a gas inflow rate to a turbine by a movable member can rapidly increase a supercharging pressure by appropriately controlling the movable member.
The torque can be improved in all regions from low speed to high speed, and in recent years, practical use has been advanced.

【0003】一方、排気ガス中に含まれる有害性分の低
減は、近年になって一層強く要望されており、有害成分
の一つであるNOxを低減するために、排気ガスを吸気
通路側に所定割合で還流する排気ガス再循環装置(以
下、EGR装置という)が実施されている。周知のよう
に、このEGR装置は、例えば図2に示すマップに従っ
て、燃料噴射量Q及びエンジン回転速度NeよりEGR
量(吸気通路側に還流する排気ガスの量)を求め、その
EGR量に基づいて、吸気通路と排気通路との間に設け
たEGR弁の開度を制御し、その結果、吸気通路側に還
流させた排気ガスにより燃焼温度を低下させて、NOx
の発生を抑制している。
[0003] On the other hand, reduction of harmful components contained in exhaust gas has been increasingly demanded in recent years. In order to reduce NOx, one of harmful components, exhaust gas is directed to the intake passage side. An exhaust gas recirculation device (hereinafter, referred to as an EGR device) that recirculates at a predetermined ratio is implemented. As is well known, this EGR device uses the EGR based on the fuel injection amount Q and the engine rotational speed Ne according to, for example, a map shown in FIG.
The amount (the amount of exhaust gas recirculating to the intake passage) is obtained, and the opening of an EGR valve provided between the intake passage and the exhaust passage is controlled based on the EGR amount. The combustion temperature is reduced by the recirculated exhaust gas, and NOx
The occurrence of is suppressed.

【0004】ところで、前記可変ターボチャージャによ
って所望の過給圧を得るには、可動部材を運転状態によ
り決まる排ガスエネルギに応じた適切な開度に調整しな
ければならない。しかしながら、EGR装置により排ガ
スが吸気通路側に還流されると、排ガスエネルギが減少
し、所望の過給圧を得るための可動部材の開度が変化す
る。そして、可動部材の開度が変化すると、背圧(ター
ビン上流圧)も変化することとなり、背圧と過給圧の差
圧、EGR装置により還流されるEGR量にも変化を及
ぼす。
By the way, in order to obtain a desired supercharging pressure by the variable turbocharger, the movable member must be adjusted to an appropriate opening in accordance with the exhaust gas energy determined by the operating state. However, when the exhaust gas is recirculated to the intake passage side by the EGR device, the exhaust gas energy decreases, and the opening degree of the movable member for obtaining a desired supercharging pressure changes. When the opening degree of the movable member changes, the back pressure (turbine upstream pressure) also changes, which also changes the differential pressure between the back pressure and the supercharging pressure and the amount of EGR recirculated by the EGR device.

【0005】そこで、一般的にはEGR装置を作動させ
る領域では、予めEGR装置のEGR制御量と可変ター
ボチャージャの可動部材制御量とをマップに記憶させ
て、このマップに基づきEGR装置と可変ターボチャー
ジャとをそれぞれ制御している。例えば、特開平8−3
38256号公報にはその一例が開示されている。
Therefore, in general, in the region where the EGR device is operated, the EGR control amount of the EGR device and the movable member control amount of the variable turbocharger are stored in a map in advance, and the EGR device and the variable turbocharger are stored based on the map. And the charger. For example, JP-A-8-3
Japanese Patent No. 38256 discloses one example.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
通り予めEGR制御量と可動部材制御量とをマップに記
憶させている場合、例えば、EGR装置や可変ターボチ
ャージャの生産バラツキによる、EGR量や過給圧のバ
ラツキをエンジンの個体間で排除できず、排ガスや性能
がばらつくことになる。
However, as described above, when the EGR control amount and the movable member control amount are stored in the map in advance, for example, the EGR amount and the excess amount due to variations in the production of the EGR device and the variable turbocharger. Variations in charging pressure cannot be eliminated between individual engines, resulting in variations in emissions and performance.

【0007】このような問題を解消するには、過給圧や
EGR量をフィードバック制御(以下、F/B制御と称
す)することが考えられるが、EGR装置及び可変ター
ボチャージャにそれぞれF/B制御を適用すると、上述
した通り、双方がそれぞれの系に外乱として作用するた
め、収束性に問題が生じる。
In order to solve such a problem, feedback control (hereinafter referred to as F / B control) of the supercharging pressure and the EGR amount can be considered. However, the F / B control is applied to the EGR device and the variable turbocharger. When the control is applied, as described above, both act as disturbances on the respective systems, so that a problem occurs in the convergence.

【0008】本発明の目的は、EGR制御による過給圧
F/B制御系への外乱を抑制し、適切な過給圧F/B制
御を実現させる可変ターボチャージャの制御装置を提供
することにある。
An object of the present invention is to provide a control device for a variable turbocharger which suppresses disturbance to a supercharging pressure F / B control system by EGR control and realizes appropriate supercharging pressure F / B control. is there.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、EGR量に基づいて制御量補正手段に
より可動部材制御手段の制御量を補正し、補正後の制御
量に従って可動部材制御手段により可動部材を制御する
ように構成した。従って、EGRの吸気通路側への還流
により排気ガスの流量が変動しているときであっても、
それに応じて可変ターボチャージャの可動部材が制御さ
れて、可変ターボチャージャのタービンへのガス流入速
度が変更される。
In order to achieve the above object, according to the present invention, the control amount of the movable member control means is corrected by the control amount correction means based on the EGR amount, and the movable member control is performed in accordance with the corrected control amount. The movable member is controlled by the means. Therefore, even when the flow rate of the exhaust gas fluctuates due to the recirculation of the EGR to the intake passage side,
The movable member of the variable turbocharger is controlled accordingly, and the gas inflow speed into the turbine of the variable turbocharger is changed.

【0010】[0010]

【発明の実施の形態】以下、本発明をディーゼルエンジ
ン用の可変ターボチャージャの制御装置に具体化した一
実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in a control device for a variable turbocharger for a diesel engine will be described below.

【0011】図1に示すように、エンジン1の吸気ポー
ト2には吸気通路3が接続され、その吸気ポート2及び
吸気通路3に案内されて吸入空気が各気筒の燃焼室4内
に導入される。吸気通路3には、吸入空気を過給する可
変ターボチャージャ(以下、単にターボチャージャとい
う)5のコンプレッサ6、コンプレッサ6による圧縮で
温度上昇した吸入空気を冷却するインタークーラ7、ソ
レノイド8にて開閉駆動される吸気絞り弁9、及び吸気
圧力(以下、ブースト圧という)を検出するブーストセ
ンサ10が設けられている。又、エンジン1には排気通
路13が接続され、燃焼室4内で圧縮着火されて燃焼後
の排気ガスが排気通路13を経て外部に排出される。排
気通路13には、排気圧力を検出する排気圧センサ1
4、及び前記コンプレッサ6と同軸上に結合されて、排
気ガスにて回転駆動されるターボチャージャ5のタービ
ン15が設けられている。
As shown in FIG. 1, an intake passage 3 is connected to an intake port 2 of the engine 1, and the intake air is guided into the intake port 2 and the intake passage 3 to be introduced into a combustion chamber 4 of each cylinder. You. The intake passage 3 is opened and closed by a compressor 6 of a variable turbocharger (hereinafter simply referred to as a turbocharger) 5 for supercharging the intake air, an intercooler 7 for cooling the intake air whose temperature has been raised by compression by the compressor 6, and a solenoid 8. An intake throttle valve 9 to be driven and a boost sensor 10 for detecting an intake pressure (hereinafter, referred to as a boost pressure) are provided. Further, an exhaust passage 13 is connected to the engine 1, and the exhaust gas which is ignited by compression in the combustion chamber 4 and burned is discharged to the outside through the exhaust passage 13. An exhaust pressure sensor 1 for detecting an exhaust pressure is provided in the exhaust passage 13.
4 and a turbine 15 of the turbocharger 5 which is coaxially coupled with the compressor 6 and is rotationally driven by exhaust gas.

【0012】ターボチャージャ5のタービン15内に
は、タービンロータ15aを取り巻くように可動部材と
しての多数のベーン16が配設され、これらのベーン1
6はベーン調整アクチュエータ17のロッド18に連結
されて(連結状態の図示は省略)一斉に開度を変更さ
れ、その結果、タービン導入ガス流速量が調整される。
ロッド18の操作量Lvaneは、ベーン調整アクチュエー
タ17に取り付けられたポジションセンサ19にて検出
される。ベーン調整アクチュエータ17内において、ロ
ッド18はダイアフラム20に連結され、このダイアフ
ラム20に区画されて負圧室21が形成されている。負
圧室21内には圧縮ばね22が配設されて、この圧縮ば
ね22によりロッド18は常に突出側に付勢されてい
る。
In the turbine 15 of the turbocharger 5, a number of vanes 16 as movable members are arranged so as to surround the turbine rotor 15a.
6 is connected to the rod 18 of the vane adjustment actuator 17 (the connection state is not shown), and the opening is changed at the same time. As a result, the flow rate of the gas introduced into the turbine is adjusted.
The operation amount Lvane of the rod 18 is detected by a position sensor 19 attached to the vane adjustment actuator 17. In the vane adjustment actuator 17, the rod 18 is connected to a diaphragm 20, and is partitioned by the diaphragm 20 to form a negative pressure chamber 21. A compression spring 22 is provided in the negative pressure chamber 21, and the rod 18 is constantly urged to the projecting side by the compression spring 22.

【0013】ベーン調整アクチュエータ17の負圧室2
1には制御管路23を介して駆動用ソレノイド24が接
続され、このソレノイド24にはエンジン1により回転
駆動されるバキュームポンプ25及び大気と連通するフ
ィルタ26がそれぞれ接続されている。駆動用ソレノイ
ド24の励磁動作に応じて、ベーン調整アクチュエータ
17の負圧室21内にはバキュームポンプ25の負圧、
又はフィルタ26を介した大気圧が選択的に導入され、
負圧導入時には圧縮ばね22の付勢に抗してロッド18
が引込み側に操作され、大気圧導入時には圧縮ばね22
の付勢でロッド18が突出側に操作され、それに応じて
前記のようにベーン開度が調整される。
The negative pressure chamber 2 of the vane adjusting actuator 17
A drive solenoid 24 is connected to 1 via a control pipe 23, and a vacuum pump 25 rotated by the engine 1 and a filter 26 communicating with the atmosphere are connected to the solenoid 24, respectively. In accordance with the excitation operation of the drive solenoid 24, the negative pressure of the vacuum pump 25 is stored in the negative pressure chamber 21 of the vane adjustment actuator 17.
Or, the atmospheric pressure through the filter 26 is selectively introduced,
When a negative pressure is introduced, the rod 18 is pressed against the bias of the compression spring 22.
Is operated to the retraction side, and when the atmospheric pressure is introduced, the compression spring 22
The rod 18 is operated to the protruding side by the urging, and the vane opening is adjusted accordingly as described above.

【0014】吸気通路3と排気通路13とは第一のEG
R通路28により連結され、この第一のEGR通路28
には第一のEGR弁29が設けられている。又、第一の
EGR通路28の第一のEGR弁29より吸気通路3側
の部分と排気通路13とは第二のEGR通路30により
連結され、この第二のEGR通路30には第二のEGR
弁31及び排気ガスを冷却するEGRクーラ32が設け
られている。詳細は説明しないが、第一のEGR弁29
及び第二のEGR弁31には、前記したベーン調整アク
チュエータ17と同じく駆動用ソレノイドがそれぞれ接
続され、その駆動用ソレノイドの励磁動作に応じてEG
R弁29,31が駆動されて、EGR通路28,30の
開度を調整する。又、EGR弁29,31のバルブリフ
ト量Legr1,Legr2は、それぞれポジションセンサ29
a,31aにて検出される。
The intake passage 3 and the exhaust passage 13 are defined by a first EG
The first EGR passage 28
Is provided with a first EGR valve 29. Further, a portion of the first EGR passage 28 closer to the intake passage 3 than the first EGR valve 29 is connected to the exhaust passage 13 by a second EGR passage 30. EGR
A valve 31 and an EGR cooler 32 for cooling exhaust gas are provided. Although not described in detail, the first EGR valve 29
A driving solenoid is connected to the second EGR valve 31 similarly to the above-described vane adjustment actuator 17, and the EG is controlled in accordance with the excitation operation of the driving solenoid.
The R valves 29 and 31 are driven to adjust the degree of opening of the EGR passages 28 and 30. The valve lift amounts Legr1 and Legr2 of the EGR valves 29 and 31 are respectively determined by the position sensors 29 and 31.
a, 31a.

【0015】車室内には、図示しない入出力装置、制御
プログラムや制御マップ等の記憶に供される記憶装置
(ROM,RAM,BURAM等)、中央処理装置(C
PU)、タイマカウンタ等を備えたECU40(エンジ
ン制御ユニット)が設置されており、ターボチャージャ
5のベーン開度制御やEGR制御を含めたエンジン1の
総合的な制御を行う。ECU40の入力側には、上述し
た各種のセンサ類等からの検出情報が入力し、ECU4
0は、これらの検出情報に基づいてベーン開度やEGR
量等を決定し、ベーン調整用アクチュエータ17やEG
R弁29,31の駆動用ソレノイド24等を駆動制御す
る。尚、ECU40には、その入力側に図示しない多数
のスイッチやセンサ類が接続する一方で、出力側にも各
種警告灯や機器類等が接続している。
In the passenger compartment, an input / output device (not shown), a storage device (ROM, RAM, BURAM, etc.) for storing control programs and control maps, etc., and a central processing unit (C)
An ECU 40 (engine control unit) including a PU, a timer counter, and the like is installed, and performs comprehensive control of the engine 1 including vane opening control of the turbocharger 5 and EGR control. On the input side of the ECU 40, detection information from the various sensors described above is input, and the ECU 4
0 is the vane opening or EGR based on these detection information.
The amount and the like are determined, and the vane adjustment actuator 17 and the EG
The driving of the solenoids 24 for driving the R valves 29 and 31 is controlled. The ECU 40 is connected to a large number of switches and sensors (not shown) on the input side, and is also connected to various warning lights, devices, and the like on the output side.

【0016】次に、上記のように構成された可変ターボ
チャージャの制御装置のECU40によって行われるベ
ーン開度の制御処理を説明する。
Next, a description will be given of a vane opening degree control process performed by the ECU 40 of the control device for the variable turbocharger configured as described above.

【0017】ここで、本実施例のターボチャージャ5の
ベーン開度は、排気通路13から吸気通路3に還流され
るEGR量に関連して制御される。よって、まず、EG
R制御の概要を説明する。
Here, the vane opening of the turbocharger 5 of the present embodiment is controlled in relation to the amount of EGR recirculated from the exhaust passage 13 to the intake passage 3. Therefore, first, EG
An outline of the R control will be described.

【0018】EGR量は、例えば、図2のマップに従っ
て燃料噴射量Q及びエンジン回転速度Neより求めら
れ、その演算結果に応じてECU40によりEGR弁2
9,31の開度が制御される。尚、図では、EGRの実
行領域をW/−EGRで示し、EGRの非実行領域をW
/O−EGRで示している。
The EGR amount is obtained, for example, from the fuel injection amount Q and the engine rotation speed Ne in accordance with the map shown in FIG.
The opening degrees of 9, 31 are controlled. In the drawing, the EGR execution region is indicated by W / -EGR, and the EGR non-execution region is indicated by W / -EGR.
/ O-EGR.

【0019】本実施例ではEGRを必要に応じて冷却し
ている。冷却水温が所定値未満のエンジン冷機状態では
排気ガス温度が低いことから、第二のEGR弁31を全
閉保持した状態で第一のEGR弁29を開度制御して、
第一のEGR通路28を経て冷却することなくそのまま
排気ガスを還流させる。又、冷却水温が所定値以上のエ
ンジン暖気状態では、第一のEGR弁29を全閉保持し
た状態で第二のEGR弁31の開度制御して、第二のE
GR通路30を経てEGRクーラ32にて高温の排気ガ
スを冷却した後に還流させている。
In this embodiment, the EGR is cooled as required. Since the exhaust gas temperature is low in the engine cold state where the cooling water temperature is less than the predetermined value, the opening degree of the first EGR valve 29 is controlled while the second EGR valve 31 is kept fully closed,
The exhaust gas is recirculated without cooling through the first EGR passage 28. Further, in the engine warm-up state where the cooling water temperature is equal to or higher than a predetermined value, the opening degree of the second EGR valve 31 is controlled while the first EGR valve 29 is kept fully closed, and the second EGR valve 31 is controlled.
The high-temperature exhaust gas is cooled by the EGR cooler 32 via the GR passage 30 and then recirculated.

【0020】以上の制御は、図示しないEGR制御ルー
チンに従ってECU40により行われ、その際にECU
40は、EGRを実行していないときにEGR実行判別
フラグFegrをリセットし、EGRを実行しているとき
にEGR実行判別フラグFegrをセットする。
The above control is performed by the ECU 40 in accordance with an EGR control routine (not shown).
Reference numeral 40 resets the EGR execution determination flag Fegr when the EGR is not being performed, and sets the EGR execution determination flag Fegr when the EGR is being performed.

【0021】一方、ECU40は図3に示すベーン操作
量制御ルーチンを所定の制御インターバルで実行する。
まず、ECU40はステップS2で、図4に示すよう
に、燃料噴射量Q及びエンジン回転速度Neよりベーン
基本操作量SFF、つまり前記ベーン調整アクチュエータ
17のロッド18の操作量を設定する。次いで、ステッ
プS4で前記したEGR実行判別フラグFegrがセット
されているか否かを判定し、判定がNO(否定)でEG
Rを実行していない場合には(図4において、スイッチ
がW/O−EGR側に切換えられた場合)、ステップS
6でブースト圧フィードバック処理を実行する。
On the other hand, the ECU 40 executes a vane operation amount control routine shown in FIG. 3 at a predetermined control interval.
First, at step S2, the ECU 40 sets the vane basic operation amount SFF, that is, the operation amount of the rod 18 of the vane adjustment actuator 17, based on the fuel injection amount Q and the engine rotation speed Ne, as shown in FIG. Next, at step S4, it is determined whether or not the above-mentioned EGR execution determination flag Fegr has been set.
If R has not been executed (in FIG. 4, the switch has been switched to the W / O-EGR side), step S
In step 6, a boost pressure feedback process is executed.

【0022】具体的には、燃料噴射量Q及びエンジン回
転速度Neより目標ブースト圧を求めると共に、目標ブ
ースト圧とブーストセンサ10にて検出された実際のブ
ースト圧Pbとからフィードバック量(ロッド18の操
作量に換算した値)を演算し、そのフィードバック量に
より前記ベーン基本操作量SFFを補正してベーン操作量
SFBを求める。次いで、ステップS8で、ポジションセ
ンサ19が検出した現在のロッド操作量Lvaneを参照し
つつ、ベーン操作量SFBに基づいて駆動用ソレノイド2
4を駆動制御してベーン調整アクチュエータ17により
ベーン開度を調整する。本実施例では、以上のステップ
S2,ステップS6,及びステップS8の処理を実行す
るときのECU40が可動部材制御手段として機能す
る。
More specifically, a target boost pressure is obtained from the fuel injection amount Q and the engine rotation speed Ne, and a feedback amount (a value of the rod 18) is calculated from the target boost pressure and the actual boost pressure Pb detected by the boost sensor 10. Then, the vane basic operation amount SFF is corrected based on the feedback amount to obtain the vane operation amount SFB. Next, in step S8, the driving solenoid 2 is controlled based on the vane operation amount SFB with reference to the current rod operation amount Lvane detected by the position sensor 19.
4 is driven and the vane adjustment actuator 17 adjusts the vane opening. In the present embodiment, the ECU 40 at the time of executing the processes of steps S2, S6, and S8 functions as a movable member control unit.

【0023】又、ステップS4での判定がYES(肯
定)でEGRを実行中の場合(図4において、スイッチ
がW/−EGR側に切換えられた場合)、ECU40は
ステップS10に移行してベーン補正量Kegrを演算す
る。EGRの実行中において、タービン15に導入され
る排気ガスはEGR量の相当分減少するが、ベーン補正
量Kegrは、その排気ガスの減少を補うことを目的とし
て、ベーン16を絞り側に調整して排気ガスの動圧を増
大させるための補正量である。このベーン補正量Kegr
は、予め設定されたマップに従ってEGR量Grから求
められる。
If the determination in step S4 is YES (Yes) and EGR is being executed (in FIG. 4, the switch has been switched to the W / -EGR side), the ECU 40 proceeds to step S10 to execute the vane operation. The correction amount Kegr is calculated. During the execution of the EGR, the exhaust gas introduced into the turbine 15 decreases by a considerable amount of the EGR amount. However, the vane correction amount Kegr is adjusted by adjusting the vane 16 to the throttle side for the purpose of compensating the decrease in the exhaust gas. Correction amount for increasing the dynamic pressure of the exhaust gas. This vane correction amount Kegr
Is obtained from the EGR amount Gr according to a preset map.

【0024】又、EGR量Grは、次式に従って演算さ
れる。
The EGR amount Gr is calculated according to the following equation.

【0025】Gr=A×Ko×Ket×Nef×KPLoss ここに、Aは、排気通路13側と吸気通路3側との実質
的な連通面積を表わす等価開口面積定数、Koは、EG
R弁前後の差圧(排気通路13と吸気通路3との圧力
差)DEPに基づいて設定されるオリフィス係数、Ket
は、EGR温度に基づく補正のためのEGR温度補正係
数、Nefは、エンジン1の1/2回転に要する時間を表
すエンジン回転周期、KPLossは、EGRクーラ32の
圧損分の補正のための圧損補正係数である。以下、各項
の設定手順を説明する。等価開口面積定数Aは、現在開
度制御されている側のEGR弁、つまりエンジン冷機状
態であれば第一のEGR弁29、暖気状態であれば第二
のEGR弁31のバルブリフト量Legr1,Legr2から、
予め設定されたマップに従って求める。
Gr = A × Ko × Ket × Nef × KPLoss Here, A is an equivalent opening area constant representing a substantial communication area between the exhaust passage 13 side and the intake passage 3 side, and Ko is EG
An orifice coefficient Ket set based on the differential pressure before and after the R valve (the pressure difference between the exhaust passage 13 and the intake passage 3) DEP
Is an EGR temperature correction coefficient for correction based on the EGR temperature, Nef is an engine rotation cycle representing time required for 1/2 rotation of the engine 1, and KPLoss is a pressure loss correction for correcting a pressure loss of the EGR cooler 32. It is a coefficient. Hereinafter, the setting procedure of each item will be described. The equivalent opening area constant A is the valve lift amount Legr1, Legr1, of the EGR valve on the side currently controlled for the opening degree, that is, the first EGR valve 29 when the engine is cold, and the second EGR valve 31 when the engine is warm. From Legr2,
It is determined according to a preset map.

【0026】オリフィス係数Koは、まず、EGR弁前
後の差圧DEPを次式に従って演算し、その差圧DEP
から予め設定されたマップに従って求める。
The orifice coefficient Ko is calculated from the differential pressure DEP before and after the EGR valve according to the following equation.
Is determined according to a preset map.

【0027】DEP=Pex−Pbavr 尚、Pexは、排気圧センサ14にて検出された排気圧
力、Pbavrは、ブーストセンサ10にて検出されたブ
ースト圧Pbの平均値である。
DEP = Pex-Pbavr Pex is the exhaust pressure detected by the exhaust pressure sensor 14, and Pbavr is the average value of the boost pressure Pb detected by the boost sensor 10.

【0028】EGR温度補正係数Ketは、所定のEGR
温度のときを基準として、エンジン回転速度Neと燃料
噴射量Qとから、予め設定されたマップに従って演算す
る。又、エンジン回転周期Nefは、エンジン回転速度N
eより演算する。
The EGR temperature correction coefficient Ket is determined by a predetermined EGR
Based on the temperature, a calculation is made from the engine rotation speed Ne and the fuel injection amount Q according to a preset map. The engine rotation period Nef is equal to the engine rotation speed N.
Calculate from e.

【0029】クーラ圧損補正係数KPLossは、エンジン
冷機状態であればEGRクーラ32の通過によるEGR
の圧損が生じないため1.0に設定され、暖気状態では
圧損が生じるため、予め設定した所定値(KPLoss<
1.0)に設定される。
The cooler pressure loss correction coefficient KPLoss is the value of EGR due to the passage of the EGR cooler 32 when the engine is cold.
Is set to 1.0 because no pressure loss occurs, and a pressure loss occurs in a warm-up state, so that a predetermined value (KPLoss <
1.0).

【0030】ステップS10では、このようにして求め
られたEGR量Grから最終的にベーン補正量Kegrが演
算される。次いで、ECU40はステップS12でベー
ン補正量Kegrを用いてベーン基本操作量SFFを絞り側
に補正し、その後、ステップS6で前記と同様にブース
ト圧フィードバック処理を、ステップS8でベーン操作
処理を実行して、このルーチンを終了する。ここで、本
実施例では、上記ステップS12の処理を実行するとき
のECU40が制御量補正手段として機能する。
In step S10, a vane correction amount Kegr is finally calculated from the EGR amount Gr thus obtained. Next, the ECU 40 corrects the vane basic operation amount SFF to the throttle side using the vane correction amount Kegr in step S12, and thereafter executes boost pressure feedback processing in the same manner as described above in step S6, and executes vane operation processing in step S8. Then, this routine ends. Here, in the present embodiment, the ECU 40 at the time of executing the processing of step S12 functions as a control amount correction unit.

【0031】以上のように、EGR制御の実行により排
気ガスが吸気通路側に還流されているときには、ステッ
プS10及びステップS12の処理によって、EGR量
Grに応じてターボチャージャ5のベーン開度が絞り側
に調整される。その結果、排気ガスの動圧が増大して排
気ガスの減少分が補われ、排気ガスの減少によって引き
起こされるブースト圧の低下が未然に防止される。従っ
て、EGRによる過給圧F/B系への外乱が極小化さ
れ、又、これによりEGR導入中も空気量を確保でき、
吸入空気、EGR両方の増量が可能となる。
As described above, when the exhaust gas is recirculated to the intake passage side by executing the EGR control, the vane opening of the turbocharger 5 is reduced in accordance with the EGR amount Gr by the processes of steps S10 and S12. Adjusted to the side. As a result, the dynamic pressure of the exhaust gas increases to compensate for the decrease in the exhaust gas, thereby preventing a decrease in the boost pressure caused by the decrease in the exhaust gas. Therefore, disturbance to the supercharging pressure F / B system due to EGR is minimized, and the air amount can be secured even during the introduction of EGR.
It is possible to increase both the intake air and the EGR.

【0032】以上で実施例の説明を終えるが、本発明の
態様はこの実施例に限定されるものではない。例えば、
上記実施例では、ディーゼルエンジン用の可変ターボチ
ャージャの制御装置に具体化したが、要は可変ターボチ
ャージャにEGR装置を組み合わせたものであれば、本
発明を適用可能であり、エンジン1の種類をガソリンエ
ンジンに変更したり、ターボチャージャ5の形式を本実
施形態のベーンタイプではなく、ツインスクロールタイ
プ等に変更したりすることができる。
Although the description of the embodiments has been completed, the embodiments of the present invention are not limited to these embodiments. For example,
In the above embodiment, the control device of the variable turbocharger for a diesel engine is embodied. However, the present invention is applicable as long as the variable turbocharger is combined with an EGR device. The gasoline engine can be changed, and the type of the turbocharger 5 can be changed to the twin scroll type or the like instead of the vane type of the present embodiment.

【0033】又、上記実施例では、吸気通路3側に還流
されるEGR量Grを、EGR弁29,31のバルブリ
フト量Legr1,Legr2や前後差圧DEP等に基づいてス
テップS10の演算処理で推定した。これはエンジン1
に設けられている既存のセンサ類の検出情報を利用した
結果であるが、例えば、EGR量Grを直接的に計測す
る手段をEGR通路に設け、その計測結果に基づいてベ
ーン開度を調整してもよい。本発明のEGR量判定手段
は、このような場合も含む。
In the above-described embodiment, the EGR amount Gr recirculated to the intake passage 3 is calculated in step S10 based on the valve lift amounts Legr1, Legr2 of the EGR valves 29, 31 and the front-rear differential pressure DEP. Estimated. This is engine 1
For example, a means for directly measuring the EGR amount Gr is provided in the EGR passage, and the vane opening is adjusted based on the measurement result. You may. The EGR amount determination means of the present invention includes such a case.

【0034】[0034]

【発明の効果】以上説明したように本発明の可変ターボ
チャージャの制御装置によれば、EGR量に応じて可変
ターボチャージャの可動部材を制御するため、EGRの
吸気通路側への還流により排気ガスの流量が変動してい
るときであっても、ブースト圧の変動を未然に防止でき
るので、EGR制御に関係なく、過給圧F/B制御を常
に適切に実行できる。
As described above, according to the variable turbocharger control apparatus of the present invention, since the movable member of the variable turbocharger is controlled in accordance with the EGR amount, the exhaust gas is recirculated to the intake passage side of the exhaust gas. Even when the flow rate of the fuel oil is fluctuating, the fluctuation of the boost pressure can be prevented beforehand, so that the boost pressure F / B control can always be appropriately executed regardless of the EGR control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の可変ターボチャージャの制御装置を示
す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a control device of a variable turbocharger of an embodiment.

【図2】EGR量を設定するためのマップを示す説明図
である。
FIG. 2 is an explanatory diagram showing a map for setting an EGR amount.

【図3】ECUが実行するベーン操作量制御ルーチンを
示すフローチャートである。
FIG. 3 is a flowchart illustrating a vane operation amount control routine executed by an ECU.

【図4】ベーン操作量の設定手順を示すブロック図であ
る。
FIG. 4 is a block diagram showing a procedure for setting a vane operation amount.

【符号の説明】[Explanation of symbols]

1 エンジン(内燃機関) 3 吸気通路 5 ターボチャージャ 13 排気通路 16 ベーン(可動部材) 40 ECU(可動部材制御手段、制御量補正手段) DESCRIPTION OF SYMBOLS 1 Engine (internal combustion engine) 3 Intake passage 5 Turbocharger 13 Exhaust passage 16 Vane (movable member) 40 ECU (movable member control means, control amount correction means)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02M 25/07 570 F02B 37/12 301Q Fターム(参考) 3G005 DA02 EA04 EA15 EA16 FA06 GA04 GB24 GC05 GC07 GE01 GE08 GE09 HA12 HA13 JA05 JA24 JA28 JA39 JA42 JB20 3G062 AA01 AA05 BA04 EA10 ED08 FA06 FA09 FA10 FA11 FA12 FA13 FA24 GA01 GA06 GA14 GA21 GA22 3G084 AA01 BA07 BA13 BA20 DA04 EB08 EB12 EB16 EC03 FA07 FA12 FA33 FA37 3G092 AA02 AA17 AA18 AB03 BA02 BB01 DB03 DC09 DC10 DE06S DG06 DG09 EA02 EA17 EA29 EC03 EC10 FA06 HA01Z HA16X HB01Z HD07X HD08Z HE01Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02M 25/07 570 F02B 37/12 301Q F-term (Reference) 3G005 DA02 EA04 EA15 EA16 FA06 GA04 GB24 GC05 GC07 GE01 GE08 GE09 HA12 HA13 JA05 JA24 JA28 JA39 JA42 JB20 3G062 AA01 AA05 BA04 EA10 ED08 FA06 FA09 FA10 FA11 FA12 FA13 FA24 GA01 GA06 GA14 GA21 GA22 3G084 AA01 BA07 BA13 BA20 DA04 EB08 EB12 EB16 EC03 FA07 FA12 A09 ABA3A03 ABA3A02 DC10 DE06S DG06 DG09 EA02 EA17 EA29 EC03 EC10 FA06 HA01Z HA16X HB01Z HD07X HD08Z HE01Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路を流れる排気ガスに
て回転駆動されて、吸気通路中の吸入空気を過給すると
共に、可動部材によりタービンへのガス流入速度を変更
可能な可変ターボチャージャと、 前記内燃機関の運転状態に応じて前記可動部材を制御す
る可動部材制御手段と、 前記排気通路側より吸気通路側に還流されるEGR量に
基づいて、前記可動部材制御手段の制御量を補正する制
御量補正手段とを備えたことを特徴とする可変ターボチ
ャージャの制御装置。
A variable turbocharger, which is driven to rotate by exhaust gas flowing through an exhaust passage of an internal combustion engine to supercharge intake air in an intake passage and change a gas inflow speed to a turbine by a movable member. A movable member control means for controlling the movable member in accordance with an operation state of the internal combustion engine; and a control amount of the movable member control means corrected based on an EGR amount recirculated from the exhaust passage side to the intake passage side. A control device for a variable turbocharger, comprising:
JP16746098A 1998-06-15 1998-06-15 Variable turbocharger control device Expired - Fee Related JP4061443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16746098A JP4061443B2 (en) 1998-06-15 1998-06-15 Variable turbocharger control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16746098A JP4061443B2 (en) 1998-06-15 1998-06-15 Variable turbocharger control device

Publications (2)

Publication Number Publication Date
JP2000002120A true JP2000002120A (en) 2000-01-07
JP4061443B2 JP4061443B2 (en) 2008-03-19

Family

ID=15850099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16746098A Expired - Fee Related JP4061443B2 (en) 1998-06-15 1998-06-15 Variable turbocharger control device

Country Status (1)

Country Link
JP (1) JP4061443B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178192A3 (en) * 2000-07-31 2004-09-08 Kabushiki Kaisha Toyota Jidoshokki Apparatus for controlling supercharging pressure in internal combustion engine
JP2008523288A (en) * 2004-12-06 2008-07-03 インペリアル イノベーションズ リミテッド Flow limiter for turbocharger (supercharger)
JP2012017707A (en) * 2010-07-09 2012-01-26 Toyota Motor Corp Charging pressure control device for internal combustion engine
KR20180104529A (en) * 2017-03-13 2018-09-21 현대자동차주식회사 Control method for vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178192A3 (en) * 2000-07-31 2004-09-08 Kabushiki Kaisha Toyota Jidoshokki Apparatus for controlling supercharging pressure in internal combustion engine
JP2008523288A (en) * 2004-12-06 2008-07-03 インペリアル イノベーションズ リミテッド Flow limiter for turbocharger (supercharger)
US20110072815A1 (en) * 2004-12-06 2011-03-31 Imperial Innovations Innovations Limited Flow Control Device for a Turbocharger
JP2012036907A (en) * 2004-12-06 2012-02-23 Imperial Innovations Ltd Flow rate limiting device for turbocharger (supercharger)
US8904784B2 (en) 2004-12-06 2014-12-09 Imperial Innovations Limited Flow control device for a turbocharger
JP2012017707A (en) * 2010-07-09 2012-01-26 Toyota Motor Corp Charging pressure control device for internal combustion engine
KR20180104529A (en) * 2017-03-13 2018-09-21 현대자동차주식회사 Control method for vehicle
KR102201276B1 (en) 2017-03-13 2021-01-11 현대자동차주식회사 Control method for vehicle

Also Published As

Publication number Publication date
JP4061443B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
US8276378B2 (en) System and method for controlling a two-stage series sequential turbocharger using bypass valve leakage control
US7047740B2 (en) Boost pressure estimation apparatus for internal combustion engine with supercharger
EP0965740B1 (en) Turbocharger control system for turbocharged internal combustion engines equipped with exhaust gas recirculation control system
US20050228573A1 (en) Multivariable actuator control for an internal combustion engine
EP2708721B1 (en) Internal combustion engine control apparatus
EP1678412B1 (en) Exhaust gas control in an engine having a two-stage turbocharger
US10634075B2 (en) Exhaust gas recirculation control method and exhaust gas recirculation control device
US10309298B2 (en) Control device of an engine
WO2012157108A1 (en) Internal combustion engine control apparatus
JP3966243B2 (en) Internal combustion engine
RU2704592C1 (en) Control method and control device for internal combustion engine
JP3493981B2 (en) Supercharging pressure control device for internal combustion engine with EGR control device
JP4228953B2 (en) Control device for internal combustion engine
JP2000002120A (en) Control device for variable turbo-charger
JPH04334750A (en) Exhaust circulation device of diesel engine with supercharger
JP2002004904A (en) Egr device for engine with supercharger
JP3622506B2 (en) EGR control device for internal combustion engine
JP2014231821A (en) Controller for internal combustion engine equipped with supercharger
JP2019152122A (en) Internal combustion engine system
JP2000282880A (en) Gasoline engine
JP2001280150A (en) Supercharging pressure control device for engine
JP6576190B2 (en) Control device for internal combustion engine
JPH10288043A (en) Internal combustion engine with turbocharger and exhaust gas recirculation system
JP2000303895A (en) Internal combustion engine
JP4025937B2 (en) Control device for variable turbocharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees