JPH04334527A - Removal of nitrogen oxide - Google Patents

Removal of nitrogen oxide

Info

Publication number
JPH04334527A
JPH04334527A JP3102497A JP10249791A JPH04334527A JP H04334527 A JPH04334527 A JP H04334527A JP 3102497 A JP3102497 A JP 3102497A JP 10249791 A JP10249791 A JP 10249791A JP H04334527 A JPH04334527 A JP H04334527A
Authority
JP
Japan
Prior art keywords
exhaust gas
nitrogen oxides
catalyst
nitrogen oxide
crystalline silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3102497A
Other languages
Japanese (ja)
Other versions
JP2977320B2 (en
Inventor
Shigeru Nojima
繁 野島
Kozo Iida
耕三 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3102497A priority Critical patent/JP2977320B2/en
Publication of JPH04334527A publication Critical patent/JPH04334527A/en
Application granted granted Critical
Publication of JP2977320B2 publication Critical patent/JP2977320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To remove a nitrogen oxide. CONSTITUTION:Org. matter or carbon monoxide is added to exhaust gas containing nitrogen oxide and this exhaust gas is brought into contact with a catalyst prepared by adding copper to crystalline silicate having composition represented by (1.0+ or -0.6) R2O.[a.M2O3.b.Al2O3].ySiO2 wherein M is an ion of one or more kinds of an element selected from an element of the Group VIII, a rare earth element, titanium, vanadium, chromium, niobium, antimony and gallium, a+b=1, a>=0, b>=0 and y>12 expressed in terms of molar ratio of oxide at 250-800 deg.C to remove nitrogen oxide.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は窒素酸化物(以後NOx
と略称)を除去する方法に関するものである。 【0002】 【従来の技術】排ガス及び汚染空気中のNOx除去法と
しては吸着法、酸化吸収法、接触還元法などがあるが、
後処理不要の接触還元法が経済的、技術的にも有利とさ
れている。接触還元法の中でボイラー排ガス中のNOx
はアンモニア等の還元ガスを加える選択的還元法が主流
であり、自動車排ガス中のNOx除去は共存するH2 
,CO,炭化水素の還元性ガスによる非選択的還元法が
主流である。 【0003】一方、近年、窒素酸化物の直接分解触媒に
関する研究が鋭意実施されており、Pt/Al2 O3
 ,LaSrCoOx(ペロブスカイト構造),Ag−
Co3 O4 ,Cu−ZSM−5等の触媒が報告され
ている。 しかし、いずれの触媒とも、反応速度が遅く、H2 O
,O2 等の共存ガスにより、活性が低下する問題点を
有する。 【0004】又、本発明者らは酸化物のモル比で表わし
て下記式1の組成を有し、かつ結晶構造がX線回折にて
下記表1の回折パターンを有する結晶性シリケート。     (1±0.6)R2 O・〔aM2 O3 ・
bAl2 O3 〕・y・・・(1)〔上式において、
M:VIII族元素、希土類元素、チタン、バナジウム
、クロム、ニオブ、アンチモン、ガリウムからなる群か
ら選ばれた1種以上の元素イオン、a+b=1,a≧0
,b≧0,y>12〕 【表1】 に銅を含有した触媒が窒素酸化物の直接分離反応に高活
性であることを見出しているが、(特願平1−2819
96号)必ずしも実際の排ガス条件(高SV,H2 O
,O2 多量含有)に適した脱硝活性を有しているとは
云い難い。 【0005】 【発明が解決しようとする課題】ボイラー排ガス中のN
Ox除去で用いられる触媒は通常V−W/TiO2 系
であり、還元剤はアンモニアが用いられているが高価で
あり、安全面に十分な注意を払う必要があるため代替の
還元剤を望まれている。又、自動車排ガス中のNOx除
去では、通常三元触媒(Pt−Rh/Al2 O3 系
)で空燃比14.6前後でのみNOx除去を実施してい
るが、リーンバーンガソリンエンジンやディーゼルエン
ジン等の高O2 濃度排ガス中では三元触媒によるNO
x除去は不可能である。 【0006】又、地下トンネルや駐車場等の公共の場で
の稀薄NOxの除去方法としては、PSA法による稀薄
NOxの吸着濃縮し、さらに濃縮NOxを触媒による直
接分解法が提案されているが、O2 ,H2 Oの共存
ガスが存在するため、NOx除去のためには多量の触媒
量が必要となる不具合が生じている。 【0007】本発明は上記技術水準に鑑み、従来法にお
けるような不具合のないNOxの除去方法を提供しよう
とするものである。 【0008】 【課題を解決するための手段】ここで、前記した銅を含
有した結晶性シリケート触媒の有効的な利用方法を鋭意
検討した結果、ボイラー排ガス(NO:約500ppm
,O2 :約10%,H2 O:約10%)中のNOx
除去には該触媒を用いてアンモニアの代わりに有機物又
は一酸化炭素が有効な還元剤として作用することが判明
した。 【0009】又、リーンバーンエンジン排ガス(O2 
濃度1〜10%)中のNOx除去に該触媒が有効に作用
することも明らかとなり、排ガス中の有機物や一酸化炭
素が還元剤として有効に働く。さらに、排ガス中の有機
物や一酸化炭素が少ない場合、定置型エンジンでは連続
的に移動型エンジンでは還元剤の濃度に応じて有機物や
一酸化炭素を供給すれば、所定のNOx除去性能を有す
ることが判明した。 【0010】本発明は上記知見に基づいて完成されたも
のであって、(1)窒素酸化物を含有する排ガスに、有
機物又は一酸化炭素を添加し、温度250〜800℃の
条件下において、酸化物のモル比で表わして下記式の組
成を有する結晶性シリケートに銅を含有させた触媒に接
触させることを特徴とする排ガス中の窒素酸化物の除去
方法。 (1.0±0.6)R2 O・〔a・M2 O3 ・b
Al2 O3 〕・ySiO2  〔上式において、M:VIII族元素、希土類元素、チ
タン、バナジウム、クロム、ニオブ、アンチモン、ガリ
ウムからなる群から選ばれた1種以上の元素のイオン、
a+b=1,a≧0,b≧0,y>12〕【0011】
(2)添加する有機物がエタン、プロパン、ブタン、ペ
ンタン、ヘキサンのパラフィン類、エチレン、プロピレ
ン、ブテンのオレフィン類、アセチレン、ブタジエンの
ジエン類、メタノール、エタノール、プロパノール、ブ
タノールのアルコール類、ベンゼン、トルエン、キシレ
ンの芳香族類、アセトン、メチルエチルケトンのケトン
類、ジメチルエーテル、ジエチルエーテルのエーテル類
、酢酸、ギ酸のカルボン酸類、ホルムアルデヒド、アセ
トアルデヒドのアルデヒド類、ギ酸メチルからなる群か
ら選ばれた少なくとも1種の物質又はガソリン、灯油、
軽油などの混合物燃料であることを特徴とする上記(1
)記載の排ガス中の窒素酸化物の除去方法。である。 【0012】 【作用】ここで利用する結晶性シリケートは前記式1で
示す化学組成で表され、分子篩作用を有し、前記表1の
X線回折パターンを示し、特異なペンタシル型構造を有
するものである。銅を含有させる方法はイオン交換法、
含浸法共によく、使用する塩としては、酢酸銅、塩化銅
、硝酸銅ともに使用できる。 【0013】上記触媒の前段に添加する有機物としては
、エタン、プロパン、ブタン、ペンタン、ヘキサン等の
パラフィン類、エチレン、プロピレン、ブテン等のオレ
フィン類、アセチレン、ブタジエン等のジエン類、メタ
ノール、エタノール、プロパノール、ブタノール等のア
ルコール類、ベンゼン、トルエン、キシレン等の芳香族
類、アセトン、メチルエチルケトン等のケトン類、ジメ
チルエーテル、ジエチルエーテル等のエーテル類、酢酸
、ギ酸等のカルボン酸類、ホルムアルデヒド、アセトア
ルデヒド等のアルデヒド類、ギ酸メチル等のエステル類
の中から少なくとも1種の物質又はガソリン(ナフサ類
)、灯油、軽油等の混合物燃料も可能であり、さらに一
酸化炭素も有効な還元剤として作用する。 【0014】銅を含有した結晶性シリケート触媒をNO
x除去に用いる場合、NOxの直接分解(2NO→N2
 +O2 )反応に有効に働くが、有機物が存在する場
合、系内に存在するO2 により有機物が活性化され、
活性有機化合物が生成すると考えられる。 【0015】炭化水素のC3 H6 を例に採って示す
と反応式は下記のようになると考えられる。   C3 H6 + 3/2O2 →  3CH2 O
・(これが活性有機化合物と想定)(a)  CH2 
O・+O2   →  CO2 +H2 O  ・・・
・・・・・・・・・  (b)  CH2 O・+2N
O→  N2 +CO2 +H2 O  ・・・・・・
・・・  (c)【0016】但し、CH2 O・は現
状では確認されておらず、部分酸化された反応中間体と
考えられ、この反応中間体が反応式(b),(c)でN
OとO2 とで競争的に反応が進行すると考えられる。 【0017】 【実施例】 (例1) (触媒調製)本発明にて用いる結晶性シリケートは脱水
された状態でNa2O・0.5Al2 O3 ・0.5
Fe2 O3 ・25SiO2 で表わされ、表1に示
す結晶構造を有するものを使用した。なお、この結晶性
シリケートは以下のように調製した。 【0018】水ガラス3号を水に溶解し溶液Aとする。 また硫酸第2鉄、硫酸アルミニウムを水に溶解して溶液
Bとする。なお、溶液A、溶液Bの仕込みモル数は36
Na2 O・〔0.5Fe2 O3 ・0.5Al2 
O3 〕・25SiO2 ・1600H2 Oのように
調製し、溶液Aと溶液Bを等量づつ別の容器に滴下しゲ
ルを生成させる。中和によって生成した上記スラリーゲ
ルに硫酸を適当量添加し、ゲルのpHを9に合わせる。 その後、有機窒素化合物として、テトラプロピルアンモ
ニウムブロマイドをFe2 O3 とAl2 O3 合
計モル数の10倍加え、上記スラリーとよく混合し、3
リットルのステンレスオートクレーブにはり込む。この
スラリーを300rpmにて攪拌しながら、160℃3
日間反応させた。冷却後、固形分をろ過し、洗浄水のp
Hが7になるまで充分水洗し、110℃で12時間乾燥
し、550℃で3時間焼成し結晶性シリケートAを得た
。該結晶性シリケートを0.04モル濃度酢酸水液にて
銅イオン交換を20℃、48時間連続して実施し、イオ
ン交換後、水洗、乾燥し粉末触媒Aを調製した。担持C
u量は0.70mmolであった。この粉末触媒Aにバ
インダーとしてアルミナゾル、シリカゾル、水を加えて
混合攪拌し、ウォッシュコート用スラリーを調製した。 このスラリーにコージェライトモノリス基材を浸漬させ
、余分なスラリーを吹き払い、ハニカム触媒Aを調製し
た。 【0019】(活性評価)ハニカム触媒Aを用いてディ
ーゼル排ガスの脱硝試験として下記模擬ガスにて活性評
価試験を実施した。 温  度:  350℃,450℃ GHSV:30000h−1 ガス組成:NO:400ppm,O2 :8%,CO2
 :10%,H2 O:10%,残N2  【0020】触媒の前段に還元剤としてC2 H4 を
1000ppm(C1 換算で2000ppm)均一に
上記模擬ガスに供給して脱硝反応を実施した。活性評価
結果を表2に示す。 【0021】(例2)ハニカム触媒Aを用いて還元剤と
して下記炭化水素を添加して例1と同様の活性評価条件
にて実施した。還元剤はエタン、プロパン、ブタン、ペ
ンタン、ヘキサン、プロピレン、ブテン、アセチレン、
ブタジエン、メタノール、エタノール、プロパノール、
ブタノール、ベンゼン、トルエン、キシレン、アセトン
、メチルエチルケトン、ジメチルエーテル、ジエチルエ
ーテル、酢酸、ギ酸、ホルムアルデヒド、アセトアルデ
ヒド、ギ酸メチル、ガソリン、灯油、軽油さらに一酸化
炭素を各々C1 換算で2000ppm添加した。活性
評価結果を表2に示す。 【0022】(比較例1)例1と同様の条件にハニカム
触媒Aを用いて、還元剤を添加しない場合の活性評価結
果を同様に表2に示す。 【表2】 【0023】(例3)結晶性シリケートの調合時におい
て、例1と同様に硫酸第2鉄の代わりに、塩化コバルト
、塩化ルテニウム、塩化ロジウム、塩化ランタン、塩化
セリウム、塩化チタン、塩化バナジウム、塩化クロム、
塩化ニオブ、塩化アンチモン、塩化ガリウムを各々酸化
物換算でFe2 O3 と同じモル数だけ添加した以外
は結晶性シリケートAと同じ操作を繰り返して、結晶性
シリケートB、C、D、E、F、G、H、I、J、K、
Lを調製した。これらの結晶性シリケートの有機物を除
外した組成は酸化物のモル比で(脱水した形態で)(H
,Na)2 O・(0.5Al2 O3 ・0.5M2
 O3 )・25SiO2  (ここでM:Co,Ru,Rh,La,Ce,Ti,V
,Cr,Nb,Sb,Ga…結晶性シリケートB〜Lの
順)である。 【0024】この結晶性シリケートを例1と同様の方法
でハニカム触媒化し、ハニカム触媒B〜Lを調製した。 【0025】これらのハニカム触媒を既に記述した活性
評価条件として、C2 H4 を触媒の還元剤として1
000ppm(C1 換算で2000ppm)触媒の前
段に供給して、脱硝反応試験を実施した。活性評価結果
を表3に示す。 【表3】 【0026】 【発明の効果】本発明により、銅を含有した特定の結晶
性シリケート触媒を用い、かつ還元剤として特定の有機
物、一酸化炭素を用いることにより効率よくNOxを除
去できる。
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention relates to nitrogen oxides (hereinafter referred to as NOx
(abbreviated as ). [0002] Methods for removing NOx from exhaust gas and contaminated air include adsorption methods, oxidation absorption methods, and catalytic reduction methods.
The catalytic reduction method, which does not require post-treatment, is considered to be economically and technically advantageous. NOx in boiler exhaust gas in catalytic reduction method
The mainstream is the selective reduction method that adds a reducing gas such as ammonia, and the removal of NOx from automobile exhaust gas is performed using the coexisting H2
, CO, and hydrocarbons using reducing gases are mainstream. On the other hand, in recent years, research on direct decomposition catalysts for nitrogen oxides has been intensively carried out, and Pt/Al2 O3
, LaSrCoOx (perovskite structure), Ag-
Catalysts such as Co3 O4 and Cu-ZSM-5 have been reported. However, with both catalysts, the reaction rate is slow and H2O
, O2 and other coexisting gases cause the activity to decrease. [0004] The present inventors have also created a crystalline silicate which has a composition expressed by the following formula 1 in terms of the molar ratio of oxides, and whose crystal structure has a diffraction pattern shown in Table 1 below in X-ray diffraction. (1±0.6)R2 O・[aM2 O3 ・
bAl2O3]・y...(1) [In the above formula,
M: one or more element ions selected from the group consisting of Group VIII elements, rare earth elements, titanium, vanadium, chromium, niobium, antimony, and gallium, a+b=1, a≧0
, b≧0, y>12] [Table 1] It has been found that a catalyst containing copper has high activity in the direct separation reaction of nitrogen oxides.
No. 96) does not necessarily reflect the actual exhaust gas conditions (high SV, H2O
It is difficult to say that it has denitrification activity suitable for oxidation (containing a large amount of O2). Problem to be Solved by the Invention: N in boiler exhaust gas
The catalyst used for Ox removal is usually a V-W/TiO2 system, and ammonia is used as a reducing agent, but it is expensive and requires careful attention to safety, so an alternative reducing agent is desired. ing. Additionally, when removing NOx from automobile exhaust gas, NOx is usually removed using a three-way catalyst (Pt-Rh/Al2O3 system) only at an air-fuel ratio of around 14.6. In high O2 concentration exhaust gas, NO is removed by a three-way catalyst.
x removal is not possible. [0006] Furthermore, as a method for removing diluted NOx in public places such as underground tunnels and parking lots, it has been proposed to adsorb and concentrate diluted NOx using the PSA method, and then directly decompose the concentrated NOx using a catalyst. , O2, and H2O, a problem arises in that a large amount of catalyst is required to remove NOx. [0007] In view of the above-mentioned state of the art, the present invention aims to provide a method for removing NOx without the problems encountered in conventional methods. [Means for Solving the Problems] As a result of intensive studies on the effective use of the copper-containing crystalline silicate catalyst described above, we found that boiler exhaust gas (NO: about 500 ppm
, O2: approx. 10%, H2 O: approx. 10%)
It has been found that organic matter or carbon monoxide acts as an effective reducing agent instead of ammonia using the catalyst for removal. [0009] Furthermore, lean burn engine exhaust gas (O2
It has also become clear that the catalyst effectively acts to remove NOx in the exhaust gas (concentration 1 to 10%), and organic matter and carbon monoxide in the exhaust gas act effectively as reducing agents. Furthermore, when organic matter and carbon monoxide in the exhaust gas are low, it is possible to achieve the desired NOx removal performance by continuously supplying organic matter and carbon monoxide in a stationary engine and depending on the concentration of reducing agent in a mobile engine. There was found. The present invention was completed based on the above findings, and consists of: (1) adding organic matter or carbon monoxide to exhaust gas containing nitrogen oxides, and at a temperature of 250 to 800°C; 1. A method for removing nitrogen oxides from exhaust gas, which comprises contacting a catalyst containing copper in crystalline silicate having a composition expressed by the following formula in terms of molar ratio of oxides. (1.0±0.6)R2 O・[a・M2 O3 ・b
Al2O3 ]・ySiO2 [In the above formula, M: ion of one or more elements selected from the group consisting of group VIII elements, rare earth elements, titanium, vanadium, chromium, niobium, antimony, and gallium,
a+b=1, a≧0, b≧0, y>12]0011
(2) The organic substances to be added are paraffins such as ethane, propane, butane, pentane and hexane, olefins such as ethylene, propylene and butene, dienes such as acetylene and butadiene, alcohols such as methanol, ethanol, propanol and butanol, benzene and toluene. , aromatics of xylene, acetone, ketones of methyl ethyl ketone, dimethyl ether, ethers of diethyl ether, carboxylic acids of acetic acid, formic acid, formaldehyde, aldehydes of acetaldehyde, and methyl formate. Or gasoline, kerosene,
The above (1) characterized in that it is a mixture fuel such as light oil.
) Method for removing nitrogen oxides from exhaust gas. It is. [Function] The crystalline silicate used here is represented by the chemical composition shown in Formula 1 above, has a molecular sieving action, exhibits the X-ray diffraction pattern shown in Table 1 above, and has a unique pentasil type structure. It is. The method of containing copper is ion exchange method,
Both the impregnation method and the salt used include copper acetate, copper chloride, and copper nitrate. The organic substances added before the catalyst include paraffins such as ethane, propane, butane, pentane and hexane, olefins such as ethylene, propylene and butene, dienes such as acetylene and butadiene, methanol, ethanol, Alcohols such as propanol and butanol, aromatics such as benzene, toluene and xylene, ketones such as acetone and methyl ethyl ketone, ethers such as dimethyl ether and diethyl ether, carboxylic acids such as acetic acid and formic acid, aldehydes such as formaldehyde and acetaldehyde. It is also possible to use at least one substance selected from esters such as methyl formate, etc., or a mixture fuel such as gasoline (naphthas), kerosene, light oil, etc. Furthermore, carbon monoxide also acts as an effective reducing agent. [0014] The crystalline silicate catalyst containing copper was
When used for x removal, direct decomposition of NOx (2NO→N2
+O2) works effectively in the reaction, but if organic matter is present, the organic matter is activated by O2 present in the system,
It is believed that active organic compounds are formed. Taking the hydrocarbon C3 H6 as an example, the reaction formula is considered to be as follows. C3 H6 + 3/2O2 → 3CH2O
・(Assuming this is an active organic compound) (a) CH2
O・+O2 → CO2 +H2 O...
・・・・・・・・・ (b) CH2 O・+2N
O→ N2 +CO2 +H2 O ・・・・・・
... (c) [0016] However, CH2O. has not been confirmed at present and is thought to be a partially oxidized reaction intermediate, and this reaction intermediate is the
It is thought that the reaction proceeds competitively between O and O2. Examples (Example 1) (Catalyst Preparation) The crystalline silicate used in the present invention is Na2O.0.5Al2O3.0.5 in a dehydrated state.
A material represented by Fe2 O3 .25SiO2 and having a crystal structure shown in Table 1 was used. Note that this crystalline silicate was prepared as follows. [0018] Water glass No. 3 is dissolved in water to prepare solution A. Further, a solution B is prepared by dissolving ferric sulfate and aluminum sulfate in water. In addition, the number of moles charged in solution A and solution B is 36
Na2 O・[0.5Fe2 O3 ・0.5Al2
O3].25SiO2.1600H2O is prepared as follows, and equal amounts of solution A and solution B are dropped into separate containers to form a gel. An appropriate amount of sulfuric acid is added to the slurry gel produced by neutralization to adjust the pH of the gel to 9. Then, as an organic nitrogen compound, tetrapropylammonium bromide was added 10 times the total number of moles of Fe2O3 and Al2O3, mixed well with the above slurry, and
Place in a liter stainless steel autoclave. While stirring this slurry at 300 rpm,
It was allowed to react for several days. After cooling, the solid content is filtered and the washing water is
The product was thoroughly washed with water until H became 7, dried at 110°C for 12 hours, and calcined at 550°C for 3 hours to obtain crystalline silicate A. The crystalline silicate was subjected to copper ion exchange with a 0.04 molar acetic acid aqueous solution at 20° C. for 48 hours continuously, and after the ion exchange, it was washed with water and dried to prepare powder catalyst A. Carrying C
The u amount was 0.70 mmol. Alumina sol, silica sol, and water were added as binders to this powdered catalyst A, and the mixture was mixed and stirred to prepare a slurry for wash coating. A cordierite monolith base material was immersed in this slurry, and excess slurry was blown off to prepare honeycomb catalyst A. (Activity Evaluation) An activity evaluation test was carried out using the following simulated gas as a diesel exhaust gas denitrification test using Honeycomb Catalyst A. Temperature: 350℃, 450℃ GHSV: 30000h-1 Gas composition: NO: 400ppm, O2: 8%, CO2
: 10%, H2 O: 10%, balance N2 [0020] C2 H4 was uniformly supplied at 1000 ppm (2000 ppm in terms of C1) to the above simulated gas as a reducing agent upstream of the catalyst to carry out a denitrification reaction. The activity evaluation results are shown in Table 2. (Example 2) Using honeycomb catalyst A, the following hydrocarbon was added as a reducing agent, and the activity was evaluated under the same conditions as in Example 1. Reducing agents include ethane, propane, butane, pentane, hexane, propylene, butene, acetylene,
butadiene, methanol, ethanol, propanol,
Butanol, benzene, toluene, xylene, acetone, methyl ethyl ketone, dimethyl ether, diethyl ether, acetic acid, formic acid, formaldehyde, acetaldehyde, methyl formate, gasoline, kerosene, light oil, and carbon monoxide were each added at 2000 ppm in terms of C1. The activity evaluation results are shown in Table 2. (Comparative Example 1) Table 2 also shows the activity evaluation results when honeycomb catalyst A was used under the same conditions as Example 1, but no reducing agent was added. [Table 2] (Example 3) When preparing crystalline silicate, cobalt chloride, ruthenium chloride, rhodium chloride, lanthanum chloride, cerium chloride, titanium chloride, vanadium chloride, chromium chloride,
Crystalline silicates B, C, D, E, F, and G were obtained by repeating the same operation as for crystalline silicate A, except that niobium chloride, antimony chloride, and gallium chloride were each added in the same number of moles as Fe2O3 in terms of oxides. ,H,I,J,K,
L was prepared. The composition of these crystalline silicates excluding organic matter is the molar ratio of oxides (in dehydrated form) (H
,Na)2O・(0.5Al2O3 ・0.5M2
O3 )・25SiO2 (here M: Co, Ru, Rh, La, Ce, Ti, V
, Cr, Nb, Sb, Ga...crystalline silicate B to L). [0024] This crystalline silicate was converted into a honeycomb catalyst in the same manner as in Example 1 to prepare honeycomb catalysts B to L. As the activity evaluation conditions for these honeycomb catalysts as described above, C2 H4 was used as a catalyst reducing agent at 1
000 ppm (2000 ppm in terms of C1) was supplied to the front stage of the catalyst, and a denitrification reaction test was carried out. The activity evaluation results are shown in Table 3. [Table 3] [Effects of the Invention] According to the present invention, NOx can be efficiently removed by using a specific crystalline silicate catalyst containing copper and using a specific organic substance and carbon monoxide as a reducing agent. .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  窒素酸化物を含有する排ガスに、有機
物又は一酸化炭素を添加し、温度250〜800℃の条
件下において、酸化物のモル比で表わして下記式の組成
を有する結晶性シリケートに銅を含有させた触媒に接触
させることを特徴とする排ガス中の窒素酸化物の除去方
法。 (1.0±0.6)R2 O・〔a・M2 O3 ・b
Al2 O3 〕・ySiO2  〔上式において、M:VIII族元素、希土類元素、チ
タン、バナジウム、クロム、ニオブ、アンチモン、ガリ
ウムからなる群から選ばれた1種以上の元素のイオン、
a+b=1,a≧0,b≧0,y>12〕
Claim 1: Adding organic matter or carbon monoxide to exhaust gas containing nitrogen oxides and producing a crystalline silicate having the composition of the following formula in terms of the molar ratio of oxides at a temperature of 250 to 800°C. A method for removing nitrogen oxides from exhaust gas, the method comprising bringing nitrogen oxides into contact with a catalyst containing copper. (1.0±0.6)R2 O・[a・M2 O3 ・b
Al2O3 ]・ySiO2 [In the above formula, M: ion of one or more elements selected from the group consisting of group VIII elements, rare earth elements, titanium, vanadium, chromium, niobium, antimony, and gallium,
a+b=1, a≧0, b≧0, y>12]
【請求項2】
  添加する有機物がエタン、プロパン、ブタン、ペン
タン、ヘキサンのパラフィン類、エチレン、プロピレン
、ブテンのオレフィン類、アセチレン、ブタジエンのジ
エン類、メタノール、エタノール、プロパノール、ブタ
ノールのアルコール類、ベンゼン、トルエン、キシレン
の芳香族類、アセトン、メチルエチルケトンのケトン類
、ジメチルエーテル、ジエチルエーテルのエーテル類、
酢酸、ギ酸のカルボン酸類、ホルムアルデヒド、アセト
アルデヒドのアルデヒド類、ギ酸メチルからなる群から
選ばれた少なくとも1種の物質又はガソリン、灯油、軽
油などの混合物燃料であることを特徴とする請求項1記
載の排ガス中の窒素酸化物の除去方法。
[Claim 2]
The organic substances to be added are paraffins such as ethane, propane, butane, pentane and hexane, olefins such as ethylene, propylene and butene, dienes such as acetylene and butadiene, alcohols such as methanol, ethanol, propanol and butanol, benzene, toluene and xylene. Aromatics, ketones such as acetone and methyl ethyl ketone, ethers such as dimethyl ether and diethyl ether,
2. The fuel according to claim 1, characterized in that the fuel is at least one substance selected from the group consisting of acetic acid, carboxylic acids such as formic acid, formaldehyde, aldehydes such as acetaldehyde, and methyl formate, or a mixture fuel such as gasoline, kerosene, and light oil. Method for removing nitrogen oxides from exhaust gas.
JP3102497A 1991-05-08 1991-05-08 How to remove nitrogen oxides Expired - Fee Related JP2977320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3102497A JP2977320B2 (en) 1991-05-08 1991-05-08 How to remove nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3102497A JP2977320B2 (en) 1991-05-08 1991-05-08 How to remove nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH04334527A true JPH04334527A (en) 1992-11-20
JP2977320B2 JP2977320B2 (en) 1999-11-15

Family

ID=14329053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3102497A Expired - Fee Related JP2977320B2 (en) 1991-05-08 1991-05-08 How to remove nitrogen oxides

Country Status (1)

Country Link
JP (1) JP2977320B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126818A (en) * 1994-10-28 1996-05-21 Sekiyu Sangyo Kasseika Center Catalytical reduction of nox
US5612010A (en) * 1995-01-25 1997-03-18 Gas Metropolitain & Company, Limited Selective catalytic reduction of nitrogen oxides
JP2003536011A (en) * 2000-06-06 2003-12-02 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Diesel exhaust system including NOx trap

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126818A (en) * 1994-10-28 1996-05-21 Sekiyu Sangyo Kasseika Center Catalytical reduction of nox
US5612010A (en) * 1995-01-25 1997-03-18 Gas Metropolitain & Company, Limited Selective catalytic reduction of nitrogen oxides
JP2003536011A (en) * 2000-06-06 2003-12-02 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Diesel exhaust system including NOx trap

Also Published As

Publication number Publication date
JP2977320B2 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
JP3276191B2 (en) Nitrogen oxide purification method
JPH0938464A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
JP2645614B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP2691643B2 (en) Exhaust gas purification method
JPH0483516A (en) Removal of nitrogen oxide
JPH07108136A (en) Denitrification method for methane-containing exhaust gas
JPH04334527A (en) Removal of nitrogen oxide
JPH07232035A (en) Method and apparatus for purifying nitrogen oxide
JPH08173761A (en) Method for removing nitrogen oxide
JP3510908B2 (en) Exhaust gas purification catalyst
JPH0516886B2 (en)
JP2605956B2 (en) Exhaust gas purification catalyst
JPH0647255A (en) Removing method of nitrogen oxide
JP3242126B2 (en) Nitrogen oxide removal method
JP2601018B2 (en) Exhaust gas purification catalyst
JP2506578B2 (en) Method for purifying exhaust gas containing nitrogen oxides
JPH05154349A (en) Method and catalyst for removing nitrogen oxide in combustion exhaust gas
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2695668B2 (en) Purification method of exhaust gas containing nitrogen oxides
JPH06277522A (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using same
JPH06198133A (en) Purifying method of nitrogen oxide
JPH0871423A (en) Exhaust gas purification catalyst, method for removing nox and production of zeolite
JPH05208138A (en) Production of zeolite containing cobalt and palladium and method for purifying exhaust gas
JPH0780316A (en) Waste gas purification catalyst and method for removing nox
JPH06198192A (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990810

LAPS Cancellation because of no payment of annual fees