JPH04332837A - Manufacture of hydraulic pressure sensor - Google Patents

Manufacture of hydraulic pressure sensor

Info

Publication number
JPH04332837A
JPH04332837A JP10168291A JP10168291A JPH04332837A JP H04332837 A JPH04332837 A JP H04332837A JP 10168291 A JP10168291 A JP 10168291A JP 10168291 A JP10168291 A JP 10168291A JP H04332837 A JPH04332837 A JP H04332837A
Authority
JP
Japan
Prior art keywords
pressure
output
container
temperature
hydraulic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10168291A
Other languages
Japanese (ja)
Inventor
Akira Okubo
大久保 旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10168291A priority Critical patent/JPH04332837A/en
Publication of JPH04332837A publication Critical patent/JPH04332837A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce an error due to a change in temperature without enlarging the diameter of a seal film, by eliminating the effect of the change in temperature on a pressure transmitting medium by making negative 4 temperature coefficient of an output of a pressure-sensitive semiconductor before incorporation in a container. CONSTITUTION:A pressure-sensitive semiconductor chip 1 has a diaphragm whereon strain gages are formed and an output signal processing circuit of a bridge composed of the strain gages. A seal film 2, a spacer 3 supporting this film, a container stem 4 supporting the chip 1 and a cap 5 are joined together and a pressure transmitting medium 9 is sealed hermetically in a space formed by the seal film 2, the spacer 3 and the stem 4. A liquid for measuring a pressure entering a container through hole 15 of the cap 5 applies the pressure to the diaphragm of the chip 1 through the intermediary of the seal film 2 and the medium 9. At this time, a temperature coefficient of an output before incorporation in the container is made negative by adjustment of the output signal processing circuit, so as to offset an error occurring in the medium 9 due to a change in temperature. In this way, precision is made high, it is made unnecessary to enlarge the dimensions of the seal film 2 and a sensor can be made small in size.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、被測定圧力を封じ込め
た液体を介して半導体素体に設けられたダイヤフラムに
加え、そのダイヤフラムの変形によりダイヤフラムに形
成された歪ゲージ抵抗の抵抗値が変化することによって
圧力を検知する液圧センサの製造方法に関する。
[Industrial Application Field] The present invention is applicable to a diaphragm provided in a semiconductor element through a liquid containing a pressure to be measured, and the resistance value of a strain gauge resistor formed on the diaphragm changes due to deformation of the diaphragm. The present invention relates to a method of manufacturing a hydraulic pressure sensor that detects pressure by doing so.

【0002】0002

【従来の技術】従来、水圧あるいは油圧検出用の半導体
型液圧センサは、水あるいは油のような圧力媒体が感圧
チップに直接ふれると、チップに集積された回路の汚染
, 破損等を生ずるため、絶縁性のシリコーン油あるい
はシリコーンゲルを封入し、間接的に水や油の媒体圧力
を伝達する構造となっている。圧力媒体とシリコーン油
あるいはシリコーンゲルは、弾性を有するステンレス鋼
SUS316Lのような耐食性のすぐれた材料からなる
波形のシール膜により隔てられる。このシール膜は圧力
媒体からチップを保護するとともに、封入されたシリコ
ーン油, シリコーンゲルの温度変化に伴う体積膨張収
縮による液圧変化を吸収する働きをもつ。しかし、温度
上昇の際封入媒体の体積膨張に対してシール膜の変形が
充分でないと、シール膜の応力が大きくなり、封入媒体
の液圧が上昇する。この液圧の上昇が誤差の原因となる
ので、シール膜の直径を大きくすることによりシール膜
の変形量を充分大きくし、シール膜の応力を小さくして
センサ出力の温度依存性を小さくしていた。
[Prior Art] Conventionally, in semiconductor hydraulic pressure sensors for detecting water pressure or oil pressure, if a pressure medium such as water or oil comes into direct contact with the pressure-sensitive chip, the circuit integrated in the chip may be contaminated or damaged. Therefore, the structure is such that insulating silicone oil or silicone gel is sealed to indirectly transmit the media pressure of water or oil. The pressure medium and the silicone oil or gel are separated by a corrugated sealing membrane made of a highly corrosion-resistant material such as elastic stainless steel SUS316L. This sealing film protects the chip from the pressure medium and has the function of absorbing fluid pressure changes due to volumetric expansion and contraction associated with temperature changes of the enclosed silicone oil and silicone gel. However, if the deformation of the seal membrane is not sufficient in response to the volumetric expansion of the enclosed medium when the temperature rises, the stress of the seal membrane becomes large and the hydraulic pressure of the enclosed medium increases. This increase in fluid pressure causes errors, so by increasing the diameter of the seal membrane, the amount of deformation of the seal membrane is sufficiently increased, and the stress of the seal membrane is reduced, thereby reducing the temperature dependence of the sensor output. Ta.

【0003】0003

【発明が解決しようとする課題】このような液圧センサ
は、通常−20℃から100 ℃の温度範囲で使用され
る。この範囲での温度変化に伴う封入圧力伝達媒体の体
積膨張, 収縮によるシール膜の応力の影響を除去する
には、シール膜の有効 (可動) 径を大きくして、圧
力伝達媒体の液圧上昇をフルスケールに対し数%以内に
押さえる必要がある。一方、製品の小型, 軽量化が要
請されており、そのためにはシール膜の直径を小さくす
る必要があるが、小さくすると変形量が小さくなる事か
ら温度変化に伴う液圧変化が大きく、数%以内の誤差を
維持できない問題があった。また、シール膜を薄くした
り、波形であるものを平板にする事により変形量を大き
くする方法も考えられるが、これらはシール膜の材質に
大きな歪を発生させ、オフセット電圧を移動させる問題
がある。従ってシール膜の直径を大きくせざるを得なか
った。
Problems to be Solved by the Invention Such hydraulic pressure sensors are normally used in a temperature range of -20°C to 100°C. In order to eliminate the influence of stress on the seal membrane due to volumetric expansion and contraction of the enclosed pressure transmission medium due to temperature changes within this range, the effective (movable) diameter of the seal membrane is increased to increase the hydraulic pressure of the pressure transmission medium. must be kept within a few percent of full scale. On the other hand, there is a demand for products to be smaller and lighter, and for this purpose it is necessary to reduce the diameter of the seal membrane. However, as the diameter of the seal membrane is made smaller, the amount of deformation is reduced, so the fluid pressure changes due to temperature changes are large, and the diameter of the seal membrane is reduced by several percent. There was a problem in which it was not possible to maintain an error within In addition, it is possible to increase the amount of deformation by making the seal membrane thinner or by making it flat from a corrugated one, but these methods generate large distortions in the seal membrane material and cause the offset voltage to shift. be. Therefore, it was necessary to increase the diameter of the seal membrane.

【0004】本発明の目的は、上記の問題を解決し、シ
ール膜の直径を大きくしないで温度変化による誤差を少
なくした液圧センサの製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a hydraulic pressure sensor that solves the above problems and reduces errors due to temperature changes without increasing the diameter of the seal membrane.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の液圧センサの製造方法は、歪ゲージが形
成されたダイヤフラム部とその歪ゲージからなるブリッ
ジの出力信号処理回路を備え、処理後の出力が所定の負
の温度係数を有する半導体素体を容器の底板上に支持し
、開口部を有する容器上蓋に固定されたシール膜と容器
底板の半導体素体支持面との間の空間に圧力伝達媒体を
密封するものとする。そして、出力信号処理回路中の拡
散抵抗に直列接続された薄膜抵抗の抵抗値を調整して出
力に所定の負の温度係数を持たせることが有効であり、
その調整はレーザトリミングで行うことが有効である。 また、シール膜の材料に析出硬化ステンレス鋼を用いる
ことも有効である。
[Means for Solving the Problems] In order to achieve the above object, the method for manufacturing a hydraulic pressure sensor of the present invention includes a diaphragm portion in which a strain gauge is formed and an output signal processing circuit of a bridge made up of the strain gauge. A semiconductor element whose output after processing has a predetermined negative temperature coefficient is supported on the bottom plate of the container, and a sealing film fixed to the upper lid of the container having an opening is connected to the semiconductor element supporting surface of the bottom plate of the container. The space between them shall be sealed with a pressure transmission medium. Then, it is effective to adjust the resistance value of the thin film resistor connected in series to the diffused resistor in the output signal processing circuit so that the output has a predetermined negative temperature coefficient.
It is effective to perform this adjustment by laser trimming. It is also effective to use precipitation hardening stainless steel as the material for the seal membrane.

【0006】[0006]

【作用】ゲージ抵抗ブリッジの出力信号を処理回路で処
理して生ずる出力が温度依存性をもたないようにされた
場合には、その半導体素体を容器に収容後、圧力伝達媒
体を封入すると、圧力伝達媒体の温度変化に伴う膨張収
縮による液圧変化により出力は正の温度係数を有する。 容器に収容前の出力信号処理回路の出力がその正の温度
係数を相殺するような負の温度係数を持つようにすれば
、容器収容後のセンサ出力には圧力伝達媒体の温度変化
の影響がなくなる。そのような出力の負の温度係数は、
歪ゲージの温度依存性補償のために出力信号処理回路に
正の大きな抵抗温度係数を持つ拡散抵抗に直列接続され
ている薄膜抵抗をトリミングして抵抗値を大きくするこ
とで容易に得られる。なお、シール膜の材料は引張り強
さの高い析出硬化ステンレス鋼を用いることにより、シ
ール膜への歪みの発生が小さくなり、圧力伝達媒体の温
度変化によるセンサ出力の温度依存性を小さくすること
ができる。
[Operation] If the output signal produced by processing the output signal of the gauge resistance bridge is made to have no temperature dependence by processing the output signal in the processing circuit, the semiconductor element is placed in a container and then the pressure transmission medium is enclosed. , the output has a positive temperature coefficient due to changes in hydraulic pressure due to expansion and contraction of the pressure transmission medium due to temperature changes. If the output of the output signal processing circuit before being placed in the container has a negative temperature coefficient that offsets its positive temperature coefficient, the sensor output after being placed in the container will not be affected by the temperature change of the pressure transmission medium. It disappears. The negative temperature coefficient of such an output is
In order to compensate for the temperature dependence of the strain gauge, this can be easily obtained by increasing the resistance value by trimming a thin film resistor connected in series with a diffused resistor having a large positive resistance temperature coefficient in the output signal processing circuit. In addition, by using precipitation hardened stainless steel with high tensile strength as the material for the seal membrane, the occurrence of distortion in the seal membrane is reduced, and the temperature dependence of the sensor output due to temperature changes in the pressure transmission medium is reduced. can.

【0007】[0007]

【実施例】図1は本発明によって製造される液圧センサ
の構造を示し、ダイヤフラム部にゲージ抵抗の形成され
た感圧半導体チップ1のダイヤフラムに直接流体を接触
させないためと、衝撃的な圧力波からのチップを保護す
るためにSUS630のような析出硬化ステンレス鋼か
らなり、有効直径10mmで厚さ30μmの薄い波形シ
ール膜2を設け、これを支持するためにスペーサ3が用
いられ、シール膜2, スペーサ3, 容器ステム4お
よびキャップ5の相互間は溶接あるいは銀ろうにより結
合されている。感圧チップ1が台座7を介して接着剤6
によりステム4に支持されており、感圧チップ1上のゲ
ージ抵抗出力信号処理回路とリード線8とは導線13で
接続されている。そして、シール膜2, スペーサ3お
よびステム4により囲まれた空間には圧力伝達媒体9と
して、例えばシリコーン油が注入管10から注入され、
注入管は封じ切られる。圧力を測定する液体は、キャッ
プ5の穴15から容器内に入り、その圧力がシール膜2
と圧力伝達媒体9を介して感圧チップ1のダイヤフラム
に加わる。図2は出力信号処理回路の回路図で、2重の
4角形はチップに不純物を拡散して形成した拡散抵抗で
ある。歪ゲージ21〜24により構成されるブリッジ回
路のゲージ21とゲージ23との接続点Aに、VCC端
子から電源電圧が印加され、ゲージ22とゲージ24と
の接続点BがGND端子によって地電位に接続される。 ブリッジ回路のゲージ21とゲージ22との接続点Cは
ブリッジ出力端子の片側であり、感圧チップ1のダイヤ
フラムの歪ゲージが形成されている面からの加圧により
C点の電位は下がる。この電位は演算増幅器OP1によ
るボルテージフォロワ回路でインピーダンス変換される
。演算増幅器OP1と抵抗35,36,43,51 で
差動増幅器が構成される。ブリッジ回路のゲージ24と
ゲージ23の接続点Dはブリッジ出力端子のもう片側で
あり、歪ゲージ面からの加圧によりD点の電位が上昇す
る。この電位とOP1の出力電位の差動電圧をこの差動
増幅器で増幅してVout 端子に出力する。この回路
の増幅度、すなわちセンサの圧力感度は薄膜抵抗35を
トリミングすることにより調整される。抵抗51は、チ
ップ外に設けられた可変抵抗で、この抵抗値を変えるこ
とにより、抵抗35と同様圧力感度の調整が可能である
。拡散抵抗43は、例えば3000〜4000 ppm
/℃の正の大きな温度依存性を有しており、薄膜抵抗3
6を並列接続して用いることにより差動増幅器の増幅度
に正の温度依存性を持たせ、歪ゲージブリッジの加圧に
よって生じる信号電圧の負の温度依存性を補償している
。薄膜抵抗31,32,抵抗41,42 およびチップ
外に設けられた可変抵抗52は零電位の補償, 調整に
関する抵抗である。抵抗41,42 は抵抗43と同じ
く正の温度係数を有しており、それぞれ直列に接続され
ている温度係数の1けた小さい薄膜抵抗33,34 い
ずれかをトリミングすることにより、センサ出力端子V
out の零電位の温度特性を正, 負両方向に調整す
ることが可能である。そこでまず、抵抗32をレーザを
用いてトリミングし、出力レベルを所定値に下げ、その
あと抵抗33をトリミングして大きくすることにより出
力レベルを元に戻し、負方向に温度依存性を持たせた。 図3はこの段階で測定した出力特性の温度依存性を示し
、演算増幅器OP2に接続されるVout 端子の出力
は、負方向に15mV/℃の温度係数を持つ。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the structure of a hydraulic pressure sensor manufactured according to the present invention. In order to protect the chip from waves, a thin corrugated sealing membrane 2 made of precipitation-hardened stainless steel such as SUS630 and having an effective diameter of 10mm and a thickness of 30μm is provided, and a spacer 3 is used to support this. 2. The spacer 3, the container stem 4, and the cap 5 are connected to each other by welding or silver soldering. The pressure sensitive chip 1 is attached to the adhesive 6 via the pedestal 7.
The gauge resistance output signal processing circuit on the pressure sensitive chip 1 and the lead wire 8 are connected by a conductive wire 13. Then, silicone oil, for example, is injected from the injection pipe 10 as the pressure transmission medium 9 into the space surrounded by the seal membrane 2, the spacer 3, and the stem 4.
The injection tube is sealed off. The liquid whose pressure is to be measured enters the container through the hole 15 in the cap 5, and the pressure is applied to the sealing membrane 2.
is applied to the diaphragm of the pressure-sensitive chip 1 via the pressure transmission medium 9. FIG. 2 is a circuit diagram of the output signal processing circuit, and the double squares are diffused resistors formed by diffusing impurities into the chip. A power supply voltage is applied from the VCC terminal to the connection point A between the gauge 21 and the gauge 23 of the bridge circuit constituted by the strain gauges 21 to 24, and the connection point B between the gauge 22 and the gauge 24 is connected to earth potential by the GND terminal. Connected. A connection point C between the gauge 21 and the gauge 22 of the bridge circuit is on one side of the bridge output terminal, and the potential at point C decreases due to pressure applied from the surface of the diaphragm of the pressure-sensitive chip 1 on which the strain gauge is formed. This potential is impedance-converted by a voltage follower circuit including an operational amplifier OP1. A differential amplifier is constituted by operational amplifier OP1 and resistors 35, 36, 43, and 51. Connection point D between gauge 24 and gauge 23 of the bridge circuit is the other side of the bridge output terminal, and the potential at point D rises due to pressure applied from the strain gauge surface. A differential voltage between this potential and the output potential of OP1 is amplified by this differential amplifier and output to the Vout terminal. The amplification of this circuit, ie the pressure sensitivity of the sensor, is adjusted by trimming the thin film resistor 35. The resistor 51 is a variable resistor provided outside the chip, and by changing the resistance value, the pressure sensitivity can be adjusted similarly to the resistor 35. The diffusion resistance 43 is, for example, 3000 to 4000 ppm.
It has a large positive temperature dependence of /℃, and has a thin film resistance of 3
6 are connected in parallel, the amplification degree of the differential amplifier is made to have a positive temperature dependence, and the negative temperature dependence of the signal voltage caused by pressurization of the strain gauge bridge is compensated for. The thin film resistors 31 and 32, the resistors 41 and 42, and the variable resistor 52 provided outside the chip are resistors related to zero potential compensation and adjustment. The resistors 41 and 42 have positive temperature coefficients like the resistor 43, and by trimming either of the thin film resistors 33 or 34, which are connected in series and have a temperature coefficient one order of magnitude smaller, the sensor output terminal V
It is possible to adjust the temperature characteristics of the zero potential of out in both positive and negative directions. Therefore, first, the resistor 32 was trimmed using a laser to lower the output level to a predetermined value, and then the resistor 33 was trimmed and made larger to restore the output level to the original value and make it temperature dependent in the negative direction. . FIG. 3 shows the temperature dependence of the output characteristics measured at this stage, and the output of the Vout terminal connected to the operational amplifier OP2 has a temperature coefficient of 15 mV/° C. in the negative direction.

【0008】このような出力温度係数をもつ感圧チップ
1を支持する金属ステム4とシール膜2と結合したスペ
ーサ3とを溶接し、注入管10より100cStの粘度
のシリコーン油9を注入してシール膜2, スペーサ3
, ステム4で形成される中空部を充填し、注入管10
を溶接封止した。このようにして液圧センサが製造され
た。
The metal stem 4 supporting the pressure sensitive chip 1 having such an output temperature coefficient and the spacer 3 combined with the sealing film 2 are welded together, and silicone oil 9 having a viscosity of 100 cSt is injected through the injection pipe 10. Seal membrane 2, spacer 3
, filling the hollow formed by the stem 4 and inserting the injection tube 10
were welded and sealed. A hydraulic pressure sensor was manufactured in this way.

【0009】図4は、抵抗32のレーザトリミングをし
ないで出力の温度依存性のない感圧チップを同様に組立
てた液圧センサの出力特性の温度依存性を示す。図のよ
うにこの場合は正の方向に約15mV/℃の出力温度係
数をもつ。従って、薄膜抵抗32,33をトリミングし
て図3に示した温度依存性をもつ感圧チップ1を組み込
んだ液圧センサでは、シリコーン油9の温度変化に伴う
液圧で生ずる温度依存性を相殺することができ図5に示
すように出力特性は各温度で一致した。この圧力センサ
のスパンレベルを外部取付け抵抗51,52 で調整す
ることで、さらに高精度の小型液圧センサが製造できる
FIG. 4 shows the temperature dependence of the output characteristics of a hydraulic pressure sensor in which a pressure sensitive chip with no temperature dependence of output is assembled in the same manner without laser trimming of the resistor 32. As shown in the figure, this case has an output temperature coefficient of about 15 mV/°C in the positive direction. Therefore, in a hydraulic sensor incorporating the pressure-sensitive chip 1 having the temperature dependence shown in FIG. As shown in FIG. 5, the output characteristics were consistent at each temperature. By adjusting the span level of this pressure sensor using externally attached resistors 51 and 52, a compact hydraulic pressure sensor with even higher accuracy can be manufactured.

【0010】0010

【発明の効果】本発明によれば、温度変化の際の圧力伝
達媒体の膨脹, 収縮により生ずる誤差を容器組込み前
の感圧半導体チップ自体での出力の温度係数を負にして
おくことにより相殺させることによって、温度が変化し
ても出力特性の変化しない高精度の液圧センサを得るこ
とができた。従って、シール膜の寸法を大きくする必要
がなくなり、水圧センサあるいは油圧センサ等の液圧セ
ンサを小型化する事が可能になった。しかも出力の温度
係数の調整は薄膜抵抗のレーザトリミングで簡単にでき
るので、工業的に得られる効果は極めて大きい。
[Effects of the Invention] According to the present invention, errors caused by expansion and contraction of the pressure transmission medium during temperature changes are offset by making the temperature coefficient of the output of the pressure-sensitive semiconductor chip itself negative before it is incorporated into the container. By doing so, we were able to obtain a highly accurate hydraulic pressure sensor whose output characteristics do not change even when the temperature changes. Therefore, it is no longer necessary to increase the size of the seal membrane, and it has become possible to downsize hydraulic sensors such as water pressure sensors or oil pressure sensors. Furthermore, since the temperature coefficient of the output can be easily adjusted by laser trimming of the thin film resistor, the industrial effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施される液圧センサの断面図FIG. 1 is a sectional view of a hydraulic pressure sensor in which the present invention is implemented.

【図2
】本発明の実施される液圧センサの回路図
[Figure 2
]Circuit diagram of a hydraulic pressure sensor in which the present invention is implemented

【図3】拡散
抵抗トリミング後の感圧チップの温度をパラメータとし
た出力特性線図
[Figure 3] Output characteristic diagram with the temperature of the pressure-sensitive chip as a parameter after diffusion resistance trimming

【図4】拡散抵抗のトリミングをしない感圧チップを用
いた液圧センサの温度をパラメータとした出力特性線図
[Figure 4] Output characteristic diagram with temperature as a parameter for a hydraulic pressure sensor using a pressure-sensitive chip without trimming the diffused resistance

【図5】本発明の一実施例により製造された液圧センサ
の温度をパラメータとした出力特性線図
[Fig. 5] Output characteristic diagram using temperature as a parameter of a hydraulic pressure sensor manufactured according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1    感圧半導体チップ 2    シール膜 3    スペーサ 4    ステム 5    キャップ 7    台座 9    圧力伝達媒体 10    注入管 15    穴 1 Pressure-sensitive semiconductor chip 2 Seal membrane 3 Spacer 4 Stem 5 Cap 7 Pedestal 9 Pressure transmission medium 10 Injection tube 15 Hole

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】歪ゲージが形成されたダイヤフラム部とそ
の歪ゲージからなるブリッジの出力信号処理回路を備え
、処理後の出力が所定の負の温度係数を有する半導体素
体を容器の底板上に支持し、開口部を有する容器上蓋に
固定されたシール膜と容器底板の半導体素体支持面との
間の空間に圧力伝達媒体を密封することを特徴とする液
圧センサの製造方法。
Claim 1: A semiconductor element comprising a diaphragm portion on which a strain gauge is formed and an output signal processing circuit of a bridge made up of the strain gauge, and whose output after processing has a predetermined negative temperature coefficient is mounted on the bottom plate of a container. A method of manufacturing a hydraulic pressure sensor, comprising: sealing a pressure transmission medium in a space between a sealing membrane fixed to a container top lid having an opening and a semiconductor element supporting surface of a container bottom plate.
【請求項2】出力信号処理回路中の拡散抵抗に直列接続
された薄膜抵抗の抵抗値を調整して出力に所定の負の温
度係数を持たせる請求項1記載の液圧センサの製造方法
2. The method of manufacturing a hydraulic pressure sensor according to claim 1, wherein the resistance value of a thin film resistor connected in series with the diffused resistor in the output signal processing circuit is adjusted so that the output has a predetermined negative temperature coefficient.
【請求項3】薄膜抵抗の抵抗値の調整をレーザトリミン
グで行う請求項2記載の液圧センサの製造方法。
3. The method of manufacturing a hydraulic pressure sensor according to claim 2, wherein the resistance value of the thin film resistor is adjusted by laser trimming.
【請求項4】シール膜の材料に析出硬化ステンレス鋼を
用いる請求項1, 2あるいは3記載の液圧センサの製
造方法。
4. The method of manufacturing a hydraulic pressure sensor according to claim 1, wherein precipitation hardening stainless steel is used as the material of the sealing film.
JP10168291A 1991-05-08 1991-05-08 Manufacture of hydraulic pressure sensor Pending JPH04332837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10168291A JPH04332837A (en) 1991-05-08 1991-05-08 Manufacture of hydraulic pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10168291A JPH04332837A (en) 1991-05-08 1991-05-08 Manufacture of hydraulic pressure sensor

Publications (1)

Publication Number Publication Date
JPH04332837A true JPH04332837A (en) 1992-11-19

Family

ID=14307119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10168291A Pending JPH04332837A (en) 1991-05-08 1991-05-08 Manufacture of hydraulic pressure sensor

Country Status (1)

Country Link
JP (1) JPH04332837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070191A (en) * 2006-09-13 2008-03-27 Denso Corp Pressure sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070191A (en) * 2006-09-13 2008-03-27 Denso Corp Pressure sensor

Similar Documents

Publication Publication Date Title
US5481905A (en) Transducer circuit having negative integral feedback
US4658651A (en) Wheatstone bridge-type transducers with reduced thermal shift
US4675643A (en) Pressure transducer utilizing a transduction element
US5335549A (en) Semiconductor pressure sensor having double diaphragm structure
US6655216B1 (en) Load transducer-type metal diaphragm pressure sensor
JPH01141328A (en) Differential pressure transmitter
JP2597042B2 (en) Differential pressure measuring device
US4695817A (en) Environmentally protected pressure transducers employing two electrically interconnected transducer arrays
EP3287758B1 (en) Differential pressure sensor incorporating common mode error compensation
US4414837A (en) Apparatus and methods for the shunt calibration of semiconductor strain gage bridges
US7714591B2 (en) Apparatus and methods for linearizing piezoresistive wheatstone bridges
CN110220636B (en) Capillary communicating pipe type differential pressure sensor and measuring method
KR19980025190A (en) Film stress compensation circuit and method in sensor
US3739644A (en) Linearization of differential pressure integral silicon transducer
US4476726A (en) Pressure transducers exhibiting linear pressure operation
JPH04332837A (en) Manufacture of hydraulic pressure sensor
US20060157133A1 (en) Combustion transducer apparatus employing pressure restriction means
US3427885A (en) Differential pressure transducer
JPH0542613B2 (en)
JPH02196938A (en) Pressure sensor
JPH0455542B2 (en)
JPS6222272B2 (en)
JPS5845533A (en) Pressure detector
US4140023A (en) Differential pressure transducer
JP2859982B2 (en) Semiconductor pressure sensor