JPH04332810A - Method for monitoring film thickness - Google Patents

Method for monitoring film thickness

Info

Publication number
JPH04332810A
JPH04332810A JP3104264A JP10426491A JPH04332810A JP H04332810 A JPH04332810 A JP H04332810A JP 3104264 A JP3104264 A JP 3104264A JP 10426491 A JP10426491 A JP 10426491A JP H04332810 A JPH04332810 A JP H04332810A
Authority
JP
Japan
Prior art keywords
rays
film thickness
substance
evaporation
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3104264A
Other languages
Japanese (ja)
Inventor
Koichi Akimoto
秋本 晃一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3104264A priority Critical patent/JPH04332810A/en
Publication of JPH04332810A publication Critical patent/JPH04332810A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To monitor film thickness of an evaporated region itself by applying X-rays to an evaporation substance flying in vacuum and measuring scattered X-rays due to interaction with incident X-rays. CONSTITUTION:An evaporation substance 6 is evaporated on a substrate 8 through a mask 7 from an electron gun 5 set in a vacuum chamber 4. Incident X-rays 2 from an X-ray generator 1 are applied through a Be window 3 to atoms of an evaporation substance 9 flying in the chamber 4. Most part of the rays become transmittant X-rays 14 to pass through the substance 9, but part of them cause scattered X-rays 10 due to interaction with the atoms. The X-rays 10 are emitted through a Be window 11 and measured by a scintillation counter 13 through a slit 12. An amount of the substance 9 is determined from the amount of the X-rays 10, thereby allowing film thickness of an evaporated region itself to be monitored. Thus film thickness is correctly obtained, wherein evaporation is possible while interaction to the substance 6 of the X-rays is small and adverse influence is not caused.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、真空中で薄膜を蒸着す
る場合に、薄膜の膜厚をモニターする方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for monitoring the thickness of a thin film when depositing the film in vacuum.

【0002】0002

【従来の技術】従来、真空中で蒸着された薄膜の膜厚を
モニターする場合には、通常水晶振動子を用いた膜厚モ
ニター法などにより、蒸着領域に隣接した場所で、膜厚
をモニターするのが一般的である。
[Prior Art] Conventionally, when monitoring the thickness of a thin film deposited in a vacuum, the film thickness is usually monitored at a location adjacent to the deposition area using a film thickness monitoring method using a crystal oscillator. It is common to do so.

【0003】0003

【発明が解決しようとする課題】しかしながら、従来の
膜厚モニター法では、蒸着領域そのものの膜厚をモニタ
ーしていないため、蒸着領域とそれに隣接してはいるも
のの膜厚をモニターしている領域で蒸着量に違いがあれ
ば、正確に蒸着領域の膜厚をモニターしているとはいえ
ないという問題がある。
[Problems to be Solved by the Invention] However, in the conventional film thickness monitoring method, the film thickness of the evaporation region itself is not monitored, so the film thickness of the evaporation region and the adjacent region is monitored. If there is a difference in the amount of evaporation, there is a problem that it cannot be said that the film thickness in the evaporation area is being accurately monitored.

【0004】本発明の目的は、蒸着領域そのものの膜厚
をモニターする方法を提供することにある。
An object of the present invention is to provide a method for monitoring the film thickness of the vapor deposition region itself.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
、本発明による膜厚モニター方法においては、真空中を
飛行する蒸着物質にX線を照射して蒸着物質による蒸着
膜の膜厚をモニターする膜厚モニター方法であって、入
射X線と、蒸着物質との相互作用から生ずる散乱X線を
測定して蒸着膜の膜厚に対応する飛行中の蒸着物質の量
を定量するものである。
[Means for Solving the Problems] In order to achieve the above object, in a film thickness monitoring method according to the present invention, a deposition material flying in a vacuum is irradiated with X-rays to monitor the thickness of a deposited film formed by the deposition material. This is a film thickness monitoring method that measures the scattered X-rays generated from the interaction between incident X-rays and the vapor-deposited material to quantify the amount of the vapor-deposited material in flight corresponding to the thickness of the vapor-deposited film. .

【0006】[0006]

【作用】蒸着領域に向かって飛行中の蒸着物質にX線を
照射すると、その物質の量に比例して散乱X線を生ずる
。従って、その散乱X線の量を測定すれば、物質の量を
求めることができる。また、X線は物質との相互作用が
小さいので、蒸着そのものに悪影響を及ぼすことはない
[Operation] When X-rays are irradiated onto a vapor-deposited substance flying toward a vapor-deposition area, scattered X-rays are generated in proportion to the amount of the substance. Therefore, by measuring the amount of scattered X-rays, the amount of the substance can be determined. Furthermore, since X-rays have a small interaction with substances, they do not have a negative effect on the vapor deposition itself.

【0007】[0007]

【実施例】以下に本発明の実施例を図によって説明する
。図1において、真空チェンバー4内にセットされた出
力1KWのエレクトロンガン5から蒸着物質6を、マス
ク7を経て基板8に蒸着させる。本発明は、基板8に向
けて飛行中の蒸着物質9にX線を照射するものである。 真空チェンバー4は、対向面にBe窓3,11を有し、
一方のBe窓3にX線発生装置1を向き合せ、他方のB
e窓11に向けてシンチレーションカウンター13を設
置する。
[Embodiments] Examples of the present invention will be explained below with reference to the drawings. In FIG. 1, a deposition substance 6 is deposited from an electron gun 5 with an output of 1 KW set in a vacuum chamber 4 onto a substrate 8 through a mask 7. In the present invention, X-rays are irradiated onto the vapor deposition material 9 while it is flying toward the substrate 8 . The vacuum chamber 4 has Be windows 3 and 11 on opposing surfaces,
The X-ray generator 1 is facing one Be window 3, and the other B
e Install the scintillation counter 13 facing the window 11.

【0008】銅を回転陽極とした出力60KW,300
mAのX線発生装置1より発した入射X線2は、Be窓
3を通して真空チェンバー4内に導入される。チェンバ
ー4内で飛行中の蒸着物質9の原子にX線が照射される
と入射X線の大部分は、透過X線14となり、飛行中の
蒸着物質9を通過するが、一部は原子との相互作用で散
乱X線10を生じる。散乱X線10は、Be窓11を通
して出射され、出射された散乱X線10をスリット12
を通してシンチレーションカウンター13で計測し、散
乱X線10の量から蒸着物質9の量を定量し、それによ
り蒸着領域の膜厚をモニターする。
[0008] Output 60KW, 300 using copper as a rotating anode
Incident X-rays 2 emitted from the mA X-ray generator 1 are introduced into the vacuum chamber 4 through the Be window 3 . When the atoms of the vapor deposition material 9 flying in the chamber 4 are irradiated with X-rays, most of the incident X-rays become transmitted X-rays 14 and pass through the flying vapor deposition material 9, but some of the incident X-rays become atoms and The interaction produces scattered X-rays 10. The scattered X-rays 10 are emitted through the Be window 11, and the emitted scattered X-rays 10 are passed through the slit 12.
The amount of vapor deposited substance 9 is determined from the amount of scattered X-rays 10 through the scintillation counter 13, thereby monitoring the film thickness of the vapor deposition region.

【0009】実験によれば、蒸着レート0.1nm/s
ecの蒸着に対し、散乱X線の強度は、1000cou
nts/sec(バックグラウンド2counts/s
ec)であり、膜厚モニターとして実用上十分な性能を
発揮した。
According to experiments, the deposition rate is 0.1 nm/s.
For ec deposition, the intensity of scattered X-rays is 1000cou
nts/sec (background 2 counts/s
ec), and exhibited sufficient performance for practical use as a film thickness monitor.

【0010】0010

【発明の効果】以上のように本発明によるときには、蒸
着領域そのものの膜厚をモニターするため、正確に蒸着
物質による膜厚を知ることができ、また、X線は、蒸着
物質に対する相互作用が小さいため、悪影響を及ぼすこ
となく蒸着を行うことができる。
As described above, according to the present invention, since the film thickness of the evaporation region itself is monitored, the film thickness due to the evaporation material can be accurately determined, and X-rays do not interact with the evaporation material. Because of their small size, vapor deposition can be performed without adverse effects.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  X線発生装置 2  入射X線 3  Be窓 4  真空チェンバー 5  エレクトロンガン 6  蒸着物質 7  マスク 8  基板 9  飛行中の蒸着物質 10  散乱X線 11  Be窓 12  スリット 13  シンチレーションカウンター 14  透過X線 1. X-ray generator 2 Incident X-rays 3 Be window 4 Vacuum chamber 5 Electron gun 6 Vapor deposition substance 7 Mask 8 Board 9. Deposited substances during flight 10 Scattered X-rays 11 Be window 12 Slit 13. Scintillation counter 14 Transmission X-ray

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  真空中を飛行する蒸着物質にX線を照
射して蒸着物質による蒸着膜の膜厚をモニターする膜厚
モニター方法であって、入射X線と、蒸着物質との相互
作用から生ずる散乱X線を測定して蒸着膜の膜厚に対応
する飛行中の蒸着物質の量を定量することを特徴とする
膜厚モニター方法。
Claim 1: A film thickness monitoring method for monitoring the thickness of a vapor-deposited film by irradiating a vapor-deposited material flying in a vacuum with X-rays, the method comprising: monitoring the thickness of a vapor-deposited film formed by the vapor-depositing material by irradiating the vapor-depositing material flying in a vacuum; A film thickness monitoring method characterized in that the amount of a deposited substance in flight corresponding to the thickness of a deposited film is determined by measuring the scattered X-rays generated.
JP3104264A 1991-05-09 1991-05-09 Method for monitoring film thickness Pending JPH04332810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3104264A JPH04332810A (en) 1991-05-09 1991-05-09 Method for monitoring film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3104264A JPH04332810A (en) 1991-05-09 1991-05-09 Method for monitoring film thickness

Publications (1)

Publication Number Publication Date
JPH04332810A true JPH04332810A (en) 1992-11-19

Family

ID=14376072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3104264A Pending JPH04332810A (en) 1991-05-09 1991-05-09 Method for monitoring film thickness

Country Status (1)

Country Link
JP (1) JPH04332810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2729157A1 (en) * 1995-01-11 1996-07-12 Houget Duesberg Bosson Atel REGULATION OF THE FLOW OF A CARD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2729157A1 (en) * 1995-01-11 1996-07-12 Houget Duesberg Bosson Atel REGULATION OF THE FLOW OF A CARD

Similar Documents

Publication Publication Date Title
US5456205A (en) System for monitoring the growth of crystalline films on stationary substrates
US5065697A (en) Laser sputtering apparatus
US2883257A (en) Electron beam recording
JPH04332810A (en) Method for monitoring film thickness
JP2001108832A5 (en)
US3829728A (en) Inlet screen for an electronic optical image amplifier and method of making it
JP3130550B2 (en) Vapor deposition equipment
JPS61104075A (en) Device for controlling ionizing vaporization velocity
JP2756309B2 (en) Laser PVD equipment
JP2589495B2 (en) Vacuum deposition equipment
JPS6315769Y2 (en)
JP2625760B2 (en) Vacuum deposition equipment
JPS5739169A (en) Preparation of thin film vapor deposited object
JPS6465254A (en) Production of thin metallic film
JPH0754131A (en) Thin film forming device
JPH04168311A (en) Quartz film thickness detector
JPH0721950A (en) X-ray generator and x-ray irradiation method
SU510978A1 (en) Device for applying thin films to object holder of electronic microscope
JPH0230442Y2 (en)
Mertler et al. A new method of target preparation for measuring stopping powers of metals for channeled ions in the low energy region
SU1597539A1 (en) Thickness gauge for coatings
Gorshkov et al. Study of the zones of damage caused by fission fragments of heavy nuclei
JPS62121384A (en) Corpuscular ray energy measuring instrument
JP2625107B2 (en) Manufacturing method of exposure mask
JPH0378733B2 (en)