JPH04332424A - Field electron emitter - Google Patents

Field electron emitter

Info

Publication number
JPH04332424A
JPH04332424A JP3101320A JP10132091A JPH04332424A JP H04332424 A JPH04332424 A JP H04332424A JP 3101320 A JP3101320 A JP 3101320A JP 10132091 A JP10132091 A JP 10132091A JP H04332424 A JPH04332424 A JP H04332424A
Authority
JP
Japan
Prior art keywords
electrode
cathode electrode
light
electrons
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3101320A
Other languages
Japanese (ja)
Inventor
Hiroshi Komatsu
博志 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3101320A priority Critical patent/JPH04332424A/en
Publication of JPH04332424A publication Critical patent/JPH04332424A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate instability of electron emission and reduce noise by applying an electric field to a cathode electrode through a gate electrode, irradiating light onto the cathode electrode so as to accelerate emitted electrons. CONSTITUTION:A field electron emitting element substrate is provided with a flat quartz substrate 1 and an insulating layer 2 formed on the substrate 1. A cathode electrode 3 is formed on the insulating layer 2, and a electrons are 64 emitted from a projection 4 of the cathode electrode 3. A gate electrode 5 is disposed nearly right under the projection 4, and an anode electrode 6 is formed on the side opposite to the electrode 3 with the electrode 5 formed on the substrate 1 held therebetween. The electrode 3 is adapted to emit an electron by an electric field effect so that an electric field is applied by the electrode 5. The electrons are accelerated by the electric field to be collected in the electrode 6. An irradiating means irradiates light onto the electrode 3, to thus generate a electrons. Accordingly, noise of the discharged current and instability such as a aging are eliminated, thereby obtaining a stable electric discharge current having a large S/N ratio and high reliability.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は電界効果にて電子を放出
する電界電子放出装置に関し、さらに詳しくはカソード
電極の放出電流が安定化された電界電子放出装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field emission device that emits electrons by a field effect, and more particularly to a field emission device in which the emission current of a cathode electrode is stabilized.

【0002】0002

【従来の技術】従来の電界電子放出装置としてグレイ(
H.F.Gray)らが国際電子デバイス会議(IED
M86)、p.776 (1986)に発表したような
電子が平面基板より概ね垂直方向に放出される縦型のも
のと、伊藤が応用物理、第59巻、第2号、p.164
(1990)に報告したような電子が平面基板に概ね平
行方向に放出されるような横型のものがよく知られてい
る。このような従来の電界電子放出装置は特別なカソー
ド電極への光照射手段もなく、また、室温付近で動作さ
れるのが通常である。
[Prior Art] Gray (
H. F. Gray) et al. at the International Electronic Devices Conference (IED)
M86), p. 776 (1986), in which electrons are emitted from a flat substrate in a generally vertical direction, and the vertical type, in which electrons are emitted from a flat substrate in a generally vertical direction, and the vertical type, as published by Ito in Applied Physics, Vol. 59, No. 2, p. 164
(1990), in which electrons are emitted in a direction generally parallel to a flat substrate, is well known. Such conventional field electron emission devices do not have any special means for irradiating light to the cathode electrode, and are usually operated at around room temperature.

【0003】0003

【発明が解決しようとする課題】しかしながら従来の電
界電子放出装置は以下に述べるようないくつかの問題点
を抱えていた。すなわち、カソード電極の放出電子量は
カソード電極の表面状態に大きく左右され、駆動の途中
でその表面状態が変化した場合に放出電子量が経時的に
大きく変化するというカソード放出電流の不安定性の問
題があった。また、電子放出の際にバースト雑音が発生
し、信号対雑音比(S/N比)が悪いという問題点があ
った。さらに、放出電流を大きくするために複数のカソ
ード電極より同時に電子を放出させる手段が取られるが
、それぞれのカソード電極の放出閾値電圧の不均一性や
経時変化によってすべてのカソード電極より均一な放出
電流が得られないという問題点があった。
[Problems to be Solved by the Invention] However, conventional field electron emission devices have had several problems as described below. In other words, the amount of electrons emitted from the cathode electrode is greatly affected by the surface condition of the cathode electrode, and if the surface condition changes during driving, the amount of emitted electrons changes greatly over time, which is a problem of instability in the cathode emission current. was there. In addition, burst noise occurs during electron emission, resulting in a poor signal-to-noise ratio (S/N ratio). Furthermore, in order to increase the emission current, a method is taken to simultaneously emit electrons from multiple cathode electrodes, but due to the non-uniformity of the emission threshold voltage of each cathode electrode and changes over time, the emission current is more uniform than that of all cathode electrodes. There was a problem in that it was not possible to obtain

【0004】そこで発明者は上述の雑音や不安定性を改
善するため、精緻なる研究を重ねた結果、電界電子放出
装置の電子放出の直前もしくは電子放出時にカソード電
極の電子放出領域に光照射を行うことで、雑音および不
安定性が著しく減少し、放出電流が安定化されることを
見い出した。光照射による加熱効果もしくは光作用によ
りカソード電極の表面が安定化され、かつ、その周辺構
成材料からの脱ガスなどによるカソード電極表面の汚染
が防止されるためである。
[0004] In order to improve the above-mentioned noise and instability, the inventor conducted detailed research and discovered that the electron emitting region of the cathode electrode is irradiated with light immediately before or during electron emission of the field emission device. It has been found that this significantly reduces noise and instability and stabilizes the emission current. This is because the surface of the cathode electrode is stabilized by the heating effect or light action caused by light irradiation, and contamination of the cathode electrode surface due to degassing from surrounding constituent materials is prevented.

【0005】本発明はこのような光照射手段を従来の電
界電子放出装置に導入することで、従来技術の問題点を
克服するものであって、その目的とするところは、カソ
ード電極からの電子放出の不安定性や雑音を低減し、信
頼性とS/N比を高めたもので、かつ、放出閾値電圧を
低減し放出電流密度を大きくできる電界電子放出装置を
提供するところにある。
The present invention overcomes the problems of the prior art by introducing such a light irradiation means into a conventional field electron emission device, and its purpose is to eliminate electrons from the cathode electrode. It is an object of the present invention to provide a field electron emission device that reduces emission instability and noise, increases reliability and S/N ratio, reduces emission threshold voltage, and increases emission current density.

【0006】[0006]

【課題を解決するための手段】本発明の電界電子放出装
置は、電界効果にて電子を放出する突起形状のカソード
電極と、該カソード電極に電界を印加するゲート電極と
、前記カソード電極より放出された電子を加速し収集す
るアノード電極とを少なくも具備する電界電子放出装置
であって、前記カソード電極に光を照射する光照射手段
を具備することを特徴とし、また、光照射手段は光源と
集光光学系とから構成されることを特徴とし、さらに、
光照射手段はアノード電極に形成された電子・光変換機
能体の発光を光源とすることを特徴とする。
[Means for Solving the Problems] The field electron emission device of the present invention includes a protrusion-shaped cathode electrode that emits electrons by a field effect, a gate electrode that applies an electric field to the cathode electrode, and a field electron emission device that emits electrons from the cathode electrode. A field electron emission device comprising at least an anode electrode for accelerating and collecting the emitted electrons, and further comprising a light irradiation means for irradiating the cathode electrode with light, and the light irradiation means includes a light source. and a condensing optical system, and further,
The light irradiation means is characterized in that the light source is light emitted from an electron/light conversion function body formed on the anode electrode.

【0007】[0007]

【実施例】【Example】

(実施例1)図1は本発明の第一の実施例を説明するた
めのもので、光源と集光光学系を具備する横型電界電子
放出装置の概略断面図である。この電界電子放出装置は
電界電子放出素子基板と真空パネルおよび光照射手段と
しての光源系よりなる。
(Embodiment 1) FIG. 1 is for explaining a first embodiment of the present invention, and is a schematic cross-sectional view of a horizontal field electron emission device equipped with a light source and a condensing optical system. This field electron emission device consists of a field electron emission device substrate, a vacuum panel, and a light source system as a light irradiation means.

【0008】すなわち、電界電子放出素子基板は平面状
の石英基板1と、石英基板1の表面に形成された絶縁層
2と、絶縁層2の表面に形成され電子放出のための突起
4を5μmピッチで20個有するカソード電極3と、石
英基板1の表面に形成され突起4の直下近傍に配置され
たゲート電極5と、石英基板1の表面に形成されゲート
電極5を挟んでカソード電極3の反対側に配置されたア
ノード電極6とが主な構成要素である。絶縁層2は膜厚
4000Åの二酸化シリコン薄膜よりなり、カソード電
極2は膜厚2000Åのモリブデン薄膜よりなり、ゲー
ト電極5およびアノード電極6は膜厚1000Åのモリ
ブデン薄膜よりなる。カソード電極3の突起4は過剰エ
ッチング法によって製造され、その先端の平面内の曲率
半径は約300Åである。ゲート電極5は蒸着法などの
方向性粒子堆積法によって突起4に自己整合して製造さ
れた。突起4とゲート電極5の距離は約3000Åであ
る。
That is, the field electron emission device substrate includes a planar quartz substrate 1, an insulating layer 2 formed on the surface of the quartz substrate 1, and a protrusion 4 formed on the surface of the insulating layer 2 with a thickness of 5 μm for electron emission. There are 20 cathode electrodes 3 at a pitch, a gate electrode 5 formed on the surface of the quartz substrate 1 and placed directly under the protrusion 4, and a cathode electrode 3 formed on the surface of the quartz substrate 1 with the gate electrode 5 in between. The main component is an anode electrode 6 arranged on the opposite side. The insulating layer 2 is made of a silicon dioxide thin film with a thickness of 4000 Å, the cathode electrode 2 is made of a molybdenum thin film with a thickness of 2000 Å, and the gate electrode 5 and the anode electrode 6 are made of a molybdenum thin film with a thickness of 1000 Å. The protrusion 4 of the cathode electrode 3 is manufactured by an over-etching method, and the radius of curvature of its tip in a plane is about 300 Å. The gate electrode 5 was manufactured in self-alignment with the protrusion 4 by a directional particle deposition method such as a vapor deposition method. The distance between the protrusion 4 and the gate electrode 5 is about 3000 Å.

【0009】真空パネルは石英基板1と、それに対向し
て配置された平面状の透明基板7と、これら二枚の基板
の周辺に形成され互いに接着する低融点ガラスの挟持体
8と、二枚の基板および挟持体8に囲まれた真空層9よ
り構成される。前述のカソード電極3、ゲート電極5お
よびアノード電極6よりなる電界電子放出素子は真空層
9の内部に配置されている。真空層9の真空度は1×1
0−7Torr以下の高真空に維持される。
The vacuum panel consists of a quartz substrate 1, a planar transparent substrate 7 placed opposite to the quartz substrate 1, and a low melting point glass sandwiching body 8 formed around these two substrates and bonded to each other. It consists of a vacuum layer 9 surrounded by a substrate and a sandwiching body 8. A field emission device consisting of the cathode electrode 3, gate electrode 5, and anode electrode 6 described above is arranged inside the vacuum layer 9. The vacuum degree of vacuum layer 9 is 1×1
A high vacuum of 0-7 Torr or less is maintained.

【0010】光源系はハロゲンランプよりなる光源10
と、第一集光レンズ11および第二集光レンズ12より
なる集光光学系を構成要素とし、突起4の周辺に集光す
るよう光源10および集光光学系が設計されている。例
えば、第一集光レンズ11の焦点距離をF1=60mm
、第二集光レンズ12をF2=80mmとすると、光源
10から突起4までの光路13の最短距離は約200m
mである。
The light source system includes a light source 10 consisting of a halogen lamp.
The light source 10 and the condensing optical system are designed to condense light around the protrusion 4, with a condensing optical system consisting of a first condensing lens 11 and a second condensing lens 12 as constituent elements. For example, the focal length of the first condensing lens 11 is F1=60mm.
, assuming that the second condensing lens 12 has F2=80 mm, the shortest distance of the optical path 13 from the light source 10 to the protrusion 4 is approximately 200 m.
It is m.

【0011】ハロゲンランプの光はレンズおよび透明基
板7をよく透過し集光効率がよく、また、カソード電極
4は金属であるため光をよく吸収して加熱され、石英基
板1は熱伝導率が小さく熱放出を防止するため電界電子
放出装置の加熱効率がよい。定格が100V、300W
のハロゲンランプに60Vの電圧を印加し光照射したと
ころ、カソード電極3は約300℃まで昇温した。また
、100Vの印加電圧では約600℃まで昇温した。
The light of the halogen lamp passes through the lens and the transparent substrate 7 well and has good light collection efficiency. Furthermore, since the cathode electrode 4 is made of metal, it absorbs light well and is heated, and the quartz substrate 1 has a low thermal conductivity. The heating efficiency of the field electron emission device is good because it is small and prevents heat emission. Rating is 100V, 300W
When a voltage of 60 V was applied to the halogen lamp and the cathode electrode 3 was irradiated with light, the temperature of the cathode electrode 3 rose to about 300°C. Further, when an applied voltage of 100V was applied, the temperature rose to about 600°C.

【0012】光照射によってカソード電極3および突起
4を約300℃に加熱しながら放出電流を測定した。ア
ノード電圧を200Vとし、ゲート電圧に120Vを印
加したところ、カソード電流は平均が50μAでゆらぎ
(雑音)成分は2%以内であった。また30分間の連続
測定において、カソード電流の平均値の変化(不安定性
)は5%以内であった。光照射しない場合は雑音が30
%、不安定性が20%であるため、光照射による安定性
の効果が非常に良好であるという結果を得た。なお光源
としてハロゲンランプを利用したが、本発明ではこれに
とらわれず、高圧、低圧水銀ランプやメタルハライドラ
ンプ、レーザ光なども適用できる。水銀ランプやレーザ
など紫外線を照射する場合は、レンズあるいは透明基板
として溶融石英材料など紫外線を透過するものを利用す
ればよい。
The emission current was measured while the cathode electrode 3 and projection 4 were heated to about 300° C. by light irradiation. When the anode voltage was 200 V and the gate voltage was 120 V, the average cathode current was 50 μA and the fluctuation (noise) component was within 2%. Further, in continuous measurement for 30 minutes, the change (instability) in the average value of the cathode current was within 5%. If no light is irradiated, the noise is 30
%, and the instability was 20%, indicating that the effect of light irradiation on stability was very good. Although a halogen lamp is used as a light source, the present invention is not limited to this, and high-pressure or low-pressure mercury lamps, metal halide lamps, laser light, etc. can also be used. When irradiating ultraviolet rays using a mercury lamp or laser, a lens or transparent substrate that transmits ultraviolet rays, such as a fused silica material, may be used.

【0013】(実施例2)図2は本発明の第二の実施例
を説明するためのもので、蛍光層をアノード電極に具備
した電界電子放出装置の部分断面図である。この電界電
子放出装置は電子・光変換機能体としての蛍光層の発光
を光照射手段に利用するものである。
(Embodiment 2) FIG. 2 is a partial cross-sectional view of a field emission device having a fluorescent layer on an anode electrode, for explaining a second embodiment of the present invention. This field electron emission device utilizes light emission from a fluorescent layer as an electron/light conversion function body as a light irradiation means.

【0014】この電界電子放出装置は単結晶シリコン基
板21と、シリコン基板21の表面に形成されたカソー
ド電極22と、シリコン基板21の表面に形成されカソ
ード電極22の近傍で開口された絶縁層23と、絶縁層
23の表面に形成されカソード電極22の近傍で開口さ
れたゲート電極24と、シリコン基板21に対向して配
置されたガラス基板25と、ガラス基板25の表面に形
成されたアノード電極26と、アノード電極26の表面
に形成された蛍光層27と、これら二枚の基板に挟まれ
た領域の真空層28とがおもな構成要素である。
This field electron emission device includes a single crystal silicon substrate 21, a cathode electrode 22 formed on the surface of the silicon substrate 21, and an insulating layer 23 formed on the surface of the silicon substrate 21 and having an opening near the cathode electrode 22. , a gate electrode 24 formed on the surface of the insulating layer 23 and opened near the cathode electrode 22 , a glass substrate 25 disposed opposite to the silicon substrate 21 , and an anode electrode formed on the surface of the glass substrate 25 26, a fluorescent layer 27 formed on the surface of the anode electrode 26, and a vacuum layer 28 in the area sandwiched between these two substrates are the main components.

【0015】シリコン基板21はキャリア濃度が2×1
015cmー3で、(100)面方位を有する。カソー
ド電極22はシリコン基板21の表面を異方性エッチン
グして製造した高さ1.2μm、頂角90度の円錐形の
突起である。絶縁層23は膜厚が5000Åの二酸化シ
リコン薄膜よりなり、ゲート電極24は膜厚2000Å
のタンタル薄膜よりなる。ガラス基板25は#7740
(コーニング社製)を用い、アノード電極26は膜厚が
2000ÅのITO(インジウム・錫・オキサイド)薄
膜である。蛍光層27は粒径3μmのZnO:Zn蛍光
体よりなり、その膜厚は約10μmである。蛍光層27
とカソード電極22の距離は真空層28の厚みとほぼ同
じで約50μmである。
The silicon substrate 21 has a carrier concentration of 2×1.
015 cm-3 and has a (100) plane orientation. The cathode electrode 22 is a conical protrusion with a height of 1.2 μm and an apex angle of 90 degrees, which is manufactured by anisotropically etching the surface of the silicon substrate 21 . The insulating layer 23 is made of a silicon dioxide thin film with a thickness of 5000 Å, and the gate electrode 24 has a thickness of 2000 Å.
It consists of tantalum thin film. Glass substrate 25 is #7740
(manufactured by Corning Inc.), and the anode electrode 26 is an ITO (indium tin oxide) thin film with a film thickness of 2000 Å. The phosphor layer 27 is made of ZnO:Zn phosphor with a particle size of 3 μm, and its film thickness is about 10 μm. Fluorescent layer 27
The distance between the cathode electrode 22 and the vacuum layer 28 is approximately the same as the thickness of the vacuum layer 28, which is approximately 50 μm.

【0016】この電界電子放出装置はゲート電圧を印加
してカソード電極22の突起先端から電子を放出し、放
出電子29はアノード電圧で加速されて蛍光層27を励
起して発光させ、アノード電極26に流入するという動
作である。蛍光体27が光源となり、その発光30がシ
リコン基板21の表面、特にカソード電極22の表面を
照射する。照射強度はゲート電圧もしくはアノード電圧
によって制御される。カソード電極22の密度を106
 個/cm2 、カソード電極22の平均電子放出量を
10nA/個、アノード電圧を400V、蛍光層27の
発光効率を5lm/W、照射効率を30%とすると、カ
ソード電極22への平均照射強度は6lm/cm2 で
ある。 照射強度を増加させるにはゲート電圧をより大きくし、
電子放出量を増やせばよい。平均電子放出量を1μA/
個程度にすると、照射強度は光エネルギー換算で約0.
5W/cm2 となり、カソード電極22の放出電流の
安定化に有効な値となる。なお、照射強度は一定値以上
あれば照射強度が変動しても放出電流の安定化作用に支
障をきたさない。
This field electron emission device emits electrons from the tip of the protrusion of the cathode electrode 22 by applying a gate voltage, and the emitted electrons 29 are accelerated by the anode voltage and excite the fluorescent layer 27 to emit light. This is the action of flowing into. The phosphor 27 serves as a light source, and its emitted light 30 irradiates the surface of the silicon substrate 21, particularly the surface of the cathode electrode 22. Irradiation intensity is controlled by gate voltage or anode voltage. The density of the cathode electrode 22 is 106
particles/cm2, the average electron emission amount of the cathode electrode 22 is 10 nA/piece, the anode voltage is 400 V, the luminous efficiency of the fluorescent layer 27 is 5 lm/W, and the irradiation efficiency is 30%, then the average irradiation intensity to the cathode electrode 22 is 6 lm/cm2. To increase the irradiation intensity, increase the gate voltage,
All you have to do is increase the amount of electron emission. The average electron emission amount is 1μA/
When the number of particles is reduced, the irradiation intensity is approximately 0.
5 W/cm2, which is an effective value for stabilizing the emission current of the cathode electrode 22. Note that as long as the irradiation intensity is at least a certain value, even if the irradiation intensity fluctuates, the stabilizing effect of the emission current will not be affected.

【0017】全1000個のカソード電極を有する電界
電子放出装置に0.5W/cm2 の光エネルギーを照
射しながら放出電流を観測した。この時、平均カソード
電流は1mAであり、その雑音成分は0.5%、30分
間のカソード電流の平均値の変動は1%以内であった。 これらの値は蛍光層27の存在しない電界電子放出装置
のものに比べ約1桁良好であって、放出電流が安定化さ
れたことを示している。単結晶シリコンよりなるカソー
ド電極22を利用すると、光照射による半導体のエネル
ギー状態の変化によって電子放出の閾値電圧を低下させ
ることができる。これは同一のゲート電圧で放出電流が
増加することと等価である。本実施例の電界電子放出装
置において、前述の照射条件で閾値電圧を約20V低下
させ、同一ゲート電圧では約1桁大きな放出電流を得る
ことができた。
Emission current was observed while irradiating a field emission device having a total of 1000 cathode electrodes with a light energy of 0.5 W/cm 2 . At this time, the average cathode current was 1 mA, its noise component was 0.5%, and the fluctuation in the average value of the cathode current for 30 minutes was within 1%. These values are about one order of magnitude better than those of the field emission device without the fluorescent layer 27, indicating that the emission current is stabilized. By using the cathode electrode 22 made of single crystal silicon, the threshold voltage for electron emission can be lowered by changing the energy state of the semiconductor due to light irradiation. This is equivalent to an increase in emission current with the same gate voltage. In the field electron emission device of this example, the threshold voltage was lowered by about 20 V under the above-mentioned irradiation conditions, and an emission current that was about one order of magnitude larger could be obtained at the same gate voltage.

【0018】なお発光スペクトルがより短波長のもので
、光子エネルギーのより大きな光を照射することも放出
電流の安定化には効果的である。蛍光層27にZnS:
Znのような硫化亜鉛系の蛍光体材料を用いるかあるい
は混合することで、近紫外光を含む光を照射できる。ま
た、有機EL材料や化合物半導体材料などの電子・光変
換機能体を利用することも効果的である。
Note that it is also effective to irradiate light with a shorter wavelength emission spectrum and higher photon energy for stabilizing the emission current. ZnS in the fluorescent layer 27:
By using or mixing a zinc sulfide-based phosphor material such as Zn, it is possible to irradiate light including near-ultraviolet light. Further, it is also effective to use an electron/light conversion functional body such as an organic EL material or a compound semiconductor material.

【0019】本実施例で述べた電界電子放出装置は真空
トランジスタとして、スイッチング装置や増幅器に利用
できる。また、ディスプレイへの応用にも適したもので
ある。
The field electron emission device described in this embodiment can be used as a vacuum transistor in a switching device or an amplifier. It is also suitable for application to displays.

【0020】[0020]

【発明の効果】以上説明したように本発明の電界電子放
出装置は以下に列記するような発明の効果を有する。
As explained above, the field electron emission device of the present invention has the effects of the invention as listed below.

【0021】すなわち、放出電流の雑音や経時変化など
の不安定性を改善し、S/N比と信頼性の大きな安定し
た放出電流が得られる。
That is, instability such as noise and aging of the emission current is improved, and a stable emission current with a high S/N ratio and high reliability can be obtained.

【0022】また、光照射により電子放出の閾値電圧が
低下するため、同一のゲート電圧において約1桁も大き
な放出電流が得られる。
Furthermore, since the threshold voltage for electron emission is lowered by light irradiation, an emission current that is about one order of magnitude larger can be obtained at the same gate voltage.

【0023】また、カソード電極の表面などの吸着して
いる分子が光照射により除去されるため、カソード電極
のプラズマ損傷を防止できる。
Furthermore, since molecules adsorbed on the surface of the cathode electrode are removed by light irradiation, plasma damage to the cathode electrode can be prevented.

【0024】さらに、アノード電極に形成した蛍光層の
発光はアノード電圧で得たエネルギーを利用するため、
光源のためにエネルギーを消費する無駄がなく、装置全
体のエネルギー損失を抑えられる。
Furthermore, since the fluorescent layer formed on the anode electrode emits light using the energy obtained from the anode voltage,
There is no waste of energy consumed by the light source, and energy loss in the entire device can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第一の実施例を説明するためのもので
、光源と集光光学系を具備する横型電界電子放出装置の
概略断面図である。
FIG. 1 is a schematic cross-sectional view of a horizontal field emission device including a light source and a condensing optical system, for explaining a first embodiment of the present invention.

【図2】本発明の第二の実施例を説明するためのもので
、蛍光層をアノード電極に具備した電界電子放出装置の
部分断面図である。
FIG. 2 is a partial cross-sectional view of a field emission device including a fluorescent layer on an anode electrode, for explaining a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  石英基板 2  絶縁層 3  カソード電極 4  突起 5  ゲート電極 6  アノード電極 7  透明基板 8  挟持体 9  真空層 10  光源 11  第一集光レンズ 12  第二集光レンズ 13  光路 21  シリコン基板 22  カソード電極 23  絶縁層 24  ゲート電極 25  ガラス基板 26  アノード電極 27  蛍光層 28  真空層 29  放出電子 30  発光 1 Quartz substrate 2 Insulating layer 3 Cathode electrode 4.Protrusion 5 Gate electrode 6 Anode electrode 7 Transparent substrate 8 Holding body 9 Vacuum layer 10 Light source 11 First condenser lens 12 Second condensing lens 13. Light path 21 Silicon substrate 22 Cathode electrode 23 Insulating layer 24 Gate electrode 25 Glass substrate 26 Anode electrode 27 Fluorescent layer 28 Vacuum layer 29 Emitted electron 30 Luminescence

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  電界効果にて電子を放出する突起形状
のカソード電極と、該カソード電極に電界を印加するゲ
ート電極と、前記カソード電極より放出された電子を加
速し収集するアノード電極とを少なくも具備する電界電
子放出装置であって、前記カソード電極に光を照射する
光照射手段を具備することを特徴とする電界電子放出装
置。
1. A protruding cathode electrode that emits electrons by a field effect, a gate electrode that applies an electric field to the cathode electrode, and an anode electrode that accelerates and collects electrons emitted from the cathode electrode. What is claimed is: 1. A field electron emission device comprising: a light irradiation means for irradiating light onto the cathode electrode.
【請求項2】  請求項1の光照射手段は光源と集光光
学系とから構成されることを特徴とする電界電子放出装
置。
2. A field electron emission device according to claim 1, wherein the light irradiation means comprises a light source and a condensing optical system.
【請求項3】  請求項1の光照射手段はアノード電極
に形成された電子・光変換機能体の発光を光源とするこ
とを特徴とする電界電子放出装置。
3. A field electron emission device according to claim 1, wherein the light irradiation means uses light emission from an electron/light conversion function body formed on the anode electrode as a light source.
JP3101320A 1991-05-07 1991-05-07 Field electron emitter Pending JPH04332424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3101320A JPH04332424A (en) 1991-05-07 1991-05-07 Field electron emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3101320A JPH04332424A (en) 1991-05-07 1991-05-07 Field electron emitter

Publications (1)

Publication Number Publication Date
JPH04332424A true JPH04332424A (en) 1992-11-19

Family

ID=14297521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3101320A Pending JPH04332424A (en) 1991-05-07 1991-05-07 Field electron emitter

Country Status (1)

Country Link
JP (1) JPH04332424A (en)

Similar Documents

Publication Publication Date Title
US6844664B2 (en) Field emission electron source and production method thereof
US20100289435A1 (en) Deep Ultraviolet Semiconductor Optical Device
JPH117016A (en) Back light for color liquid crystal display
JP2987140B2 (en) Field emission electron source, method of manufacturing the same, flat light emitting device, display device, and solid-state vacuum device
EP1936661B1 (en) Electron emission light-emitting device and light emitting method thereof
US5952772A (en) Diamond electron emitter
JP4268471B2 (en) Cold cathode manufacturing method and apparatus using cold cathode
KR100615232B1 (en) A transparent conductive phosphor layer and an electron emission device comprising the same
JPH04332424A (en) Field electron emitter
JPH0935670A (en) Field emission display element and manufacture thereof
JP2009238415A (en) Deep ultraviolet phosphor thin film, and lamp using deep ultraviolet phosphor thin film
US20060012285A1 (en) Fluorescent lamp with coldcathode of graphite and its manufacture method
JP3509256B2 (en) Low pressure mercury discharge lamp for ultraviolet sterilization and method for producing the same
JP2006287028A (en) Laser luminescence structure
JP2001068011A (en) n-TYPE DIAMOND ELECTRON EMISSIVE ELEMENT AND ELECTRONIC DEVICE
JPS6349344B2 (en)
JP2003281991A (en) Hot cathode and discharge apparatus using the same
JPH10208620A (en) Thin film electron source
JP3079086B2 (en) Method for manufacturing field emission electron source
JP3508652B2 (en) Field emission type electron source and method of manufacturing the same
JP3603682B2 (en) Field emission electron source
RU2210140C2 (en) Method and device for producing optical radiation
JP4135309B2 (en) Manufacturing method of field emission electron source
WO2008017809A1 (en) Field emission backplate
JP2610414B2 (en) Display device