JPH04332390A - Heat pipe type heat exchanger and manufacture thereof - Google Patents

Heat pipe type heat exchanger and manufacture thereof

Info

Publication number
JPH04332390A
JPH04332390A JP13060091A JP13060091A JPH04332390A JP H04332390 A JPH04332390 A JP H04332390A JP 13060091 A JP13060091 A JP 13060091A JP 13060091 A JP13060091 A JP 13060091A JP H04332390 A JPH04332390 A JP H04332390A
Authority
JP
Japan
Prior art keywords
heat pipe
heat
heat transfer
transfer member
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13060091A
Other languages
Japanese (ja)
Inventor
Aritaka Tatsumi
辰巳 有孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP13060091A priority Critical patent/JPH04332390A/en
Publication of JPH04332390A publication Critical patent/JPH04332390A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive the improvement of workability as well as cost down without increasing thermal resistance in the interface between a heat pipe and a heat transfer member. CONSTITUTION:A sealed vessel 5 is contacted closely with heat transfer members 4 by the plastic deformation, generated by the expanding of the sealed vessel 5 due to the vapor pressure of the operating liquid 2 of a predetermined amount, while the sealed vessel 5 is connected to the heat transfer members 4 through fusion of low-melting point connecting metal 3 applied on the surface of the sealed vessel 5 or the heat transfer members 4. In this case, the surface of the heat transfer members 4, having inserting holes 4a with an inner diameter larger than the heat pipe 1 by a predetermined size, or the surface of the heat pipe 1 is coated with the low-melting point connecting metal 3, then, the heat pipe 1 is inserted into the inserting holes 4a and both of them are heated at a predetermined temperature for a predetermined period of time whereby the low-melting point connecting metal 3 is melted, the operating liquid 2 sealed into the heat pipe 1 is heated to provide the heat pipe 1 with the vapor pressure of the operating liquid 2 as well as plastic deformation based on the thermal expansion of the same and contact the outer surface of the heat pipe 1 closely to the inserting holes 4a, then, the heat pipe 1 and the heat transfer members 4 are cooled to connect them.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ヒートパイプの周囲に
伝熱部材を配置して成るヒートパイプ式熱交換器および
その製造方法に関し、特に、ヒートパイプと伝熱部材の
界面における熱抵抗を増大させずに、作業性の向上,お
よびコストダウンを図ったヒートパイプ式熱交換器およ
びその製造方法に関する。
[Field of Industrial Application] The present invention relates to a heat pipe type heat exchanger comprising a heat transfer member disposed around a heat pipe and a method for manufacturing the same, and particularly relates to a heat pipe type heat exchanger comprising a heat transfer member disposed around a heat pipe and a method for manufacturing the same. The present invention relates to a heat pipe type heat exchanger that improves workability and reduces costs without increasing the size of the heat exchanger, and a method for manufacturing the same.

【0002】0002

【従来の技術】ヒートパイプは、密閉容器内に作動液を
封入するという比較的簡単な構造を有し、小さい温度差
で大量の熱移動を行えるため、熱交換器として近年種々
の分野で利用されている。このようなヒートパイプを利
用した熱交換器は、一般にヒートパイプの外周に放熱フ
ィンが形成された伝熱部材を配置している。
[Prior Art] Heat pipes have a relatively simple structure in which a working fluid is sealed in a sealed container, and can transfer a large amount of heat with a small temperature difference, so they have been used as heat exchangers in various fields in recent years. has been done. A heat exchanger using such a heat pipe generally has a heat transfer member having radiation fins formed around the outer periphery of the heat pipe.

【0003】このようなヒートパイプ熱交換器において
は、ヒートパイプと伝熱部材との間の熱抵抗値を低減さ
せる手段として、従来より以下のような種々の方法が採
られている。
[0003] In such a heat pipe heat exchanger, the following various methods have been conventionally adopted as means for reducing the thermal resistance value between the heat pipe and the heat transfer member.

【0004】■  伝熱部材にヒートパイプの外径より
若干径の小さな挿入孔を形成し、この挿入孔にヒートパ
イプを圧入してヒートパイプと伝熱部材とを密着させる
(圧入法)。
[0004] ■ An insertion hole having a diameter slightly smaller than the outer diameter of the heat pipe is formed in the heat transfer member, and the heat pipe is press-fitted into the insertion hole to bring the heat pipe and the heat transfer member into close contact (press-fitting method).

【0005】■  伝熱部材にヒートパイプ用密閉容器
の外径より若干径の大きな挿入孔を形成し、この挿入孔
に当該容器を挿入し、マンドレルや液圧によって機械的
に容器を膨張させて、当該容器と伝熱部材とを密着させ
た後、当該容器にヒートパイプの加工を施して作動液を
封入する(機械的拡管法)。
[0005] ■ An insertion hole with a diameter slightly larger than the outer diameter of the sealed container for the heat pipe is formed in the heat transfer member, the container is inserted into this insertion hole, and the container is expanded mechanically using a mandrel or hydraulic pressure. After the container and the heat transfer member are brought into close contact with each other, the container is processed into a heat pipe and the working fluid is sealed therein (mechanical tube expansion method).

【0006】■  伝熱部材にヒートパイプの外径より
若干径の大きな挿入孔を形成し、この挿入孔に当該ヒー
トパイプを挿入し、両者の隙間に高熱伝導性樹脂や半田
を充填する(充填法)。
[0006] ■ An insertion hole with a diameter slightly larger than the outside diameter of the heat pipe is formed in the heat transfer member, the heat pipe is inserted into this insertion hole, and the gap between the two is filled with highly thermally conductive resin or solder. law).

【0007】■  伝熱部材にヒートパイプの外径より
若干径の大きな挿入孔を形成し、この挿入孔に当該ヒー
トパイプを挿入した後、これらを加熱し、密閉容器内の
作動液の蒸気圧によって伝熱部材とヒートパイプとを密
着させる(加熱拡管法)。尚、このように製造されたヒ
ートパイプをモータのシャフトに適用した例が特開昭5
9−110432号公報に示されている。
[0007] ■ An insertion hole with a diameter slightly larger than the outside diameter of the heat pipe is formed in the heat transfer member, and after the heat pipe is inserted into this insertion hole, these are heated to increase the vapor pressure of the working fluid in the closed container. The heat transfer member and the heat pipe are brought into close contact with each other (heating tube expansion method). An example of applying a heat pipe manufactured in this way to the shaft of a motor is disclosed in Japanese Patent Application Laid-open No. 5
It is shown in the publication No. 9-110432.

【0008】[0008]

【発明が解決しようとする課題】しかし、上記のような
従来のヒートパイプ式熱交換は以下のような不都合を有
している。
However, the conventional heat pipe type heat exchanger described above has the following disadvantages.

【0009】■(圧入法)においては、ヒートパイプの
圧入作業自体が煩雑、且つ困難であり、フィン枚数が多
くなると、圧入に多大な手間を要し、コストアップとな
る。
[0009] In the (press-fitting method), the heat pipe press-fitting operation itself is complicated and difficult, and as the number of fins increases, a great deal of effort is required for press-fitting, leading to an increase in cost.

【0010】■(機械的拡管法)においては、拡管作業
時の管内潤滑剤,液圧媒体等の残渣の除去に多くの手間
がかかり、作業効率が悪いと共にヒートパイプ本数が多
い場合には、拡管後のヒートパイプ加工が難しくなる(
パイプ端末加工,作動液封入及び封じきり等について実
用上難点が多い)。
[0010] ■ (Mechanical pipe expansion method) requires a lot of effort to remove residues of lubricant, hydraulic medium, etc. inside the pipe during pipe expansion work, resulting in poor work efficiency and when there are a large number of heat pipes. Heat pipe processing after expansion becomes difficult (
There are many practical difficulties in pipe end processing, hydraulic fluid filling, sealing, etc.).

【0011】■(充填法)においては、充填作業に大き
なコストがかかる。また、充填剤の熱伝導率は一般に伝
熱部材やヒートパイプ用密閉容器に比べて低いことと、
充填剤の充填によりヒートパイプと伝熱部材間に境界面
が増加し、熱抵抗値の低減の妨げになる。
[0011] In (filling method), the filling operation requires a large cost. In addition, the thermal conductivity of fillers is generally lower than that of heat transfer members and sealed containers for heat pipes.
The filling of the filler increases the interface between the heat pipe and the heat transfer member, which hinders the reduction in thermal resistance.

【0012】■(加熱拡管法)は、作業性の面では優れ
ているが、一般に伝熱部材の熱膨張率がヒートパイプよ
り小さく、例えば、中空鋼シャフト内に銅やアルミ等を
容器材料とするヒートパイプを挿入して加熱し、拡管す
る場合、鋼材の熱膨張率(〜11x10−6/℃)に比
較して内側に入る銅,或いはアルミの熱膨張率(それぞ
れ〜17x10−6/℃,〜23x10−6/℃)の方
が大きく、加熱時に密着していても冷却すると内部の銅
,或いはアルミ部材の方が大きく収縮し、両者の境界部
にギャップが形成されてしまう。その結果、熱抵抗が大
きくなる。
[0012] ■ (Heating tube expansion method) is excellent in terms of workability, but the coefficient of thermal expansion of the heat transfer member is generally lower than that of a heat pipe. When inserting a heat pipe to heat and expand the pipe, the coefficient of thermal expansion of copper or aluminum (~17x10-6/°C, respectively) inside the material is lower than that of steel (~11x10-6/°C). , ~23x10-6/°C), and even if they are in close contact during heating, the internal copper or aluminum member will shrink more when cooled, and a gap will be formed at the boundary between the two. As a result, thermal resistance increases.

【0013】[0013]

【目的】従って、本発明の目的はヒートパイプと伝熱部
材の界面における熱抵抗を増大させずに作業性の向上,
およびコストダウンを図ることができるヒートパイプ式
熱交換器およびその製造方法を提供することである。
[Objective] Therefore, the object of the present invention is to improve workability without increasing the thermal resistance at the interface between the heat pipe and the heat transfer member.
Another object of the present invention is to provide a heat pipe type heat exchanger that can reduce costs and a method for manufacturing the same.

【0014】[0014]

【課題を解決するための手段】本発明は、ヒートパイプ
と伝熱部材の界面における熱抵抗を増大させずに作業性
の向上,およびコストダウンを図るため、密閉容器と伝
熱部材を所定量の作動液の蒸気圧による密閉容器の拡管
に基づく塑性変形によって密着させ、前記密閉容器,或
いは前記伝熱部材の表面に施された低融点接合用金属の
溶融によって接合したヒートパイプ式熱交換器を提供す
るものである。
[Means for Solving the Problems] The present invention aims to improve workability and reduce costs without increasing the thermal resistance at the interface between the heat pipe and the heat transfer member. A heat pipe heat exchanger in which the sealed container or the heat transfer member is brought into close contact by plastic deformation based on tube expansion due to the vapor pressure of the working fluid, and joined by melting a low melting point joining metal applied to the surface of the sealed container or the heat transfer member. It provides:

【0015】また、本発明に係るヒートパイプ式熱交換
器の製造方法は、所定の外径を有し、所定量の作動液を
封入したヒートパイプを加工し;前記所定の外径より所
定の寸法だけ大なる所定の内径の挿入孔を有した伝熱部
材を加工し;前記伝熱部材,或いは前記ヒートパイプの
表面に半田等の低融点接合用金属を被覆し;前記伝熱部
材の前記挿入孔に前記ヒートパイプを挿入し;両者を所
定の温度で所定時間加熱することにより前記低融点接合
用金属を溶融させると共に、前記ヒートパイプに封入さ
れた作動液を加熱して、前記ヒートパイプに前記作動液
の蒸気圧と熱膨張に基づく塑性変形を与え、この塑性変
形によって前記ヒートパイプの外面を前記伝熱部材の前
記挿入孔の内壁に密着させ;密着した前記ヒートパイプ
と前記伝熱部材を冷却して前記ヒートパイプと前記伝熱
部材の界面を前記低融点接合用金属で接合させるという
各工程を有している。
[0015] Furthermore, the method for manufacturing a heat pipe type heat exchanger according to the present invention includes processing a heat pipe having a predetermined outer diameter and containing a predetermined amount of working fluid; Processing a heat transfer member having an insertion hole with a predetermined inner diameter larger by the dimension; coating the surface of the heat transfer member or the heat pipe with a low melting point bonding metal such as solder; Insert the heat pipe into the insertion hole; heat both at a predetermined temperature for a predetermined time to melt the low melting point bonding metal, and heat the working fluid sealed in the heat pipe to insert the heat pipe into the heat pipe. is subjected to plastic deformation based on the vapor pressure and thermal expansion of the working fluid, and this plastic deformation brings the outer surface of the heat pipe into close contact with the inner wall of the insertion hole of the heat transfer member; The method includes steps of cooling the member and joining the interface between the heat pipe and the heat transfer member with the low melting point joining metal.

【0016】上記所定の温度は、前記作動液が加熱温度
における前記ヒートパイプの破裂強度値(常温における
値よりはるかに小さくなる)以上の蒸気圧にならない温
度であり、また、作動液の封入量は、前記加熱温度にお
ける蒸気の比容積(単位重量あたりの蒸気容積)と容器
の内容積との積の値以下、即ち、加熱温度において作動
液の液相が存在しない量である。
The predetermined temperature is a temperature at which the vapor pressure of the working fluid does not exceed the bursting strength value of the heat pipe at the heating temperature (which is much smaller than the value at room temperature), and the predetermined amount of the working fluid is is equal to or less than the product of the specific volume of steam (vapor volume per unit weight) at the heating temperature and the internal volume of the container, that is, the amount at which no liquid phase of the working fluid exists at the heating temperature.

【0017】[0017]

【作用】本発明は、以上のように所定量の作動液の蒸気
圧に基づいてヒートパイプを塑性変形させて伝熱部材に
密着させると共に、加熱時に溶融した低融点接合用金属
で密着した界面を接合するため、極めて容易な作業によ
ってヒートパイプと伝熱部材との密着を適確に行うこと
ができる。即ち、密着状態が良好となるため、界面の熱
抵抗を抑えることができ、また、作業性の向上によって
コストダウンを図ることができる。
[Operation] As described above, the present invention plastically deforms the heat pipe based on the vapor pressure of a predetermined amount of the working fluid to bring it into close contact with the heat transfer member, and also creates a close interface with the low melting point joining metal that melts during heating. Since the heat pipe and the heat transfer member are joined together, the heat pipe and the heat transfer member can be accurately brought into close contact with each other by an extremely easy operation. That is, since the adhesion state becomes good, the thermal resistance at the interface can be suppressed, and the cost can be reduced by improving the workability.

【0018】[0018]

【実施例】以下、本発明のヒートパイプ式熱交換器およ
びその製造方法を添付図面を参照しつつ詳細に説明する
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a heat pipe type heat exchanger and a method for manufacturing the same according to the present invention will be explained in detail with reference to the accompanying drawings.

【0019】図1の(a)には最終加工が終了する前の
ヒートパイプ熱交換器の構成が示されている。このヒー
トパイプ熱交換器は、ヒートパイプ1と、このヒートパ
イプ1を包囲する銅フィン(伝熱部材)4から構成され
ており、ヒートパイプ1の表面には、低融点接合用金属
(半田等)3が被覆されている。
FIG. 1(a) shows the configuration of the heat pipe heat exchanger before final processing is completed. This heat pipe heat exchanger is composed of a heat pipe 1 and a copper fin (heat transfer member) 4 surrounding the heat pipe 1. The surface of the heat pipe 1 is coated with a low melting point bonding metal (such as solder). )3 is coated.

【0020】ヒートパイプ1は、円筒状の密閉容器5と
、この密閉容器5内に封入された所定量の作動液2とか
ら構成されている。密閉容器の材質としては銅、作動液
2としては水を用いる。尚、作動液2の封入量は、後述
する所定の温度Tにおいて全て気化する量とする。
The heat pipe 1 is composed of a cylindrical sealed container 5 and a predetermined amount of working fluid 2 sealed within the sealed container 5. Copper is used as the material for the sealed container, and water is used as the working fluid 2. The amount of hydraulic fluid 2 sealed is such that it will all vaporize at a predetermined temperature T, which will be described later.

【0021】銅フィン4は、中央にヒートパイプ1を挿
入するための挿入孔4aが形成されている。この挿入孔
4aは、ヒートパイプ1の外径より若干大なる内径を有
している。
[0021] The copper fin 4 has an insertion hole 4a formed in the center thereof into which the heat pipe 1 is inserted. This insertion hole 4a has an inner diameter slightly larger than the outer diameter of the heat pipe 1.

【0022】このような構成において、ヒートパイプ1
を銅フィン4の挿入孔4a内に挿入した後、熱交換器全
体を所定の温度Tで加熱し、ヒートパイプ1の表面に被
覆された低融点接合用金属3を溶融させると共に、図1
の(b)のように作動液2の蒸気圧によって密閉容器5
を拡管し、その際の塑性変形によって当該容器5を挿入
孔4aの内壁に密着させる。そして、ヒートパイプ熱交
換器全体を冷却して、密着したヒートパイプ1と銅フィ
ン4の界面を低融点接合用金属で接合することにより、
全製造工程が終了する。
In such a configuration, the heat pipe 1
is inserted into the insertion hole 4a of the copper fin 4, and then the entire heat exchanger is heated to a predetermined temperature T to melt the low melting point bonding metal 3 coated on the surface of the heat pipe 1, and
As shown in (b), the airtight container 5 is closed due to the vapor pressure of the working fluid 2.
is expanded, and the container 5 is brought into close contact with the inner wall of the insertion hole 4a by plastic deformation at that time. Then, by cooling the entire heat pipe heat exchanger and joining the interface between the heat pipe 1 and the copper fin 4, which are in close contact with each other, with a low melting point joining metal,
The entire manufacturing process is completed.

【0023】次に、上記実施例におけるヒートパイプ熱
交換器の加熱温度T,作動液2の封入量Xについて考察
する。加熱温度Tは、密閉容器5内の作動液2の蒸気圧
が密閉容器5の破裂圧を越えない温度とする。例えば、
銅製の密閉容器5の外径を9.52mm,肉厚を0.3
4mm,有効長さを1000mmとした場合には、加熱
温度T=299℃とする。これは、図2に示されている
ように、加熱温度Tに対する作動液2である水の蒸気圧
P1 (実線)と、加熱温度Tに対する銅管の破裂圧P
2 (破線)との関係により、両曲線P1 ,P2 が
交差する点(304℃)が限界温度となるため、加熱温
度Tをこれより低い近似した値に設定する。また、この
温度は、低融点接合用金属(半田等)3を溶融させるに
十分な温度である。
Next, the heating temperature T of the heat pipe heat exchanger and the sealed amount X of the working fluid 2 in the above embodiment will be considered. The heating temperature T is a temperature at which the vapor pressure of the working fluid 2 in the closed container 5 does not exceed the bursting pressure of the closed container 5. for example,
The outer diameter of the copper airtight container 5 is 9.52 mm, and the wall thickness is 0.3 mm.
4 mm, and the effective length is 1000 mm, the heating temperature T is 299°C. As shown in FIG. 2, the vapor pressure P1 (solid line) of water, which is the working fluid 2, with respect to the heating temperature T, and the bursting pressure P of the copper pipe with respect to the heating temperature T.
2 (broken line), the point (304° C.) where both curves P1 and P2 intersect becomes the limit temperature, so the heating temperature T is set to an approximate value lower than this. Further, this temperature is sufficient to melt the low melting point joining metal (solder, etc.) 3.

【0024】このように設定された加熱温度Tに対し、
作動液2の封入量Xを求めると、作動液2の量Xは3.
0g以下となる。これは、限界温度304℃の時に飽和
液が残存しない量であり、密閉容器5の内容積(61.
4cm3 )を飽和蒸気の比容積(20.3cm3 )
で除することによって求められる。
For the heating temperature T set in this way,
When calculating the sealed amount X of the hydraulic fluid 2, the amount X of the hydraulic fluid 2 is 3.
It will be 0g or less. This is the amount at which no saturated liquid remains when the limit temperature is 304°C, and the internal volume of the closed container 5 (61.
4cm3) is the specific volume of saturated steam (20.3cm3)
It is found by dividing by.

【0025】仮に、作動液2の封入量Xを2.8gとす
ると、加熱温度T≒299℃において飽和液が存在しな
くなり、加熱温度T=299℃〜310℃の間での蒸気
圧は1℃に対し1/571kgf/cm2 と非常に小
さな値となるため、加熱温度Tの調整が容易になる。ま
た、2.8gという作動液2の量は、密閉容器2の内容
積R(61.4cm3 )の約4.6%に相当し、ヒー
トパイプのボトムヒートモードでの使用において十分な
量となる。
[0025] If the sealed amount Since it is a very small value of 1/571 kgf/cm2 relative to °C, the heating temperature T can be easily adjusted. In addition, the amount of the working fluid 2, which is 2.8 g, corresponds to about 4.6% of the internal volume R (61.4 cm3) of the closed container 2, and is a sufficient amount for use in the bottom heat mode of the heat pipe. .

【0026】一方、作動液2の量Xを3.0g以上にし
た場合、温度上昇に伴う密閉容器5の外径変化量は、図
2の曲線l(一点鎖線)に示されているように、極めて
急激に変化し、当該密閉容器5が破壊し易くなるため、
実用化は非常に困難となる。これはヒートパイプ1の作
動液2を増加させた場合、限界温度(304℃)付近で
加熱温度Tを上昇させるとヒートパイプの外径が限界温
度を示す直線Lに沿って急激に大になるという事実によ
るものであり、通常の加熱炉の温度制御可能範囲よりも
はるかに狭い範囲でしか加熱できないことになる。
On the other hand, when the amount X of the hydraulic fluid 2 is set to 3.0 g or more, the amount of change in the outer diameter of the closed container 5 due to the temperature rise is as shown by the curve l (dotted chain line) in FIG. , changes extremely rapidly and the sealed container 5 becomes easy to break.
Practical application will be extremely difficult. This is because when the working fluid 2 in the heat pipe 1 is increased and the heating temperature T is raised near the limit temperature (304°C), the outer diameter of the heat pipe suddenly increases along the straight line L indicating the limit temperature. This is due to the fact that heating can only be done within a much narrower range than the temperature controllable range of a normal heating furnace.

【0027】以上のように製造されたヒートパイプ熱交
換器の使用に際しては、被冷却体の熱がヒートパイプ1
の一端(下部)に与えられ、この熱によりヒートパイプ
1内の作動液2が蒸発し、ヒートパイプ1の他端(上部
)に熱伝達を行う。伝達された熱は銅フィン(伝熱部材
)4から放出され、蒸発気体の凝縮が行われ、凝縮され
た作動液2がヒートパイプ1の受熱部(下部)に戻され
る。このような動作の繰り返しにより、ヒートパイプ1
を介して被冷却体と放熱雰囲気(大気,水等の冷却媒体
)間で熱交換が行われる。
When using the heat pipe heat exchanger manufactured as described above, the heat of the object to be cooled is transferred to the heat pipe 1.
This heat evaporates the working fluid 2 in the heat pipe 1 and transfers heat to the other end (upper part) of the heat pipe 1. The transferred heat is released from the copper fins (heat transfer member) 4, the evaporated gas is condensed, and the condensed working fluid 2 is returned to the heat receiving part (lower part) of the heat pipe 1. By repeating this operation, heat pipe 1
Heat exchange occurs between the object to be cooled and the heat radiation atmosphere (air, cooling medium such as water).

【0028】この際、ヒートパイプ1と銅フィン4とが
良好に密着しているため、両者の境界部分においての熱
損失がほとんどない。その密着度は、加工時の温度との
温度差が大になればなるほど大になる。
At this time, since the heat pipe 1 and the copper fins 4 are in good contact with each other, there is almost no heat loss at the boundary between the two. The degree of adhesion increases as the temperature difference from the temperature during processing increases.

【0029】[0029]

【発明の効果】以上説明した通り、本発明のヒートパイ
プ式熱交換器およびその製造方法によると、ヒートパイ
プの密閉容器内の蒸気圧によって当該密閉容器を拡管し
、その時の塑性変形によって密閉容器と伝熱部材とを密
着させ、密閉容器,或いは伝熱部材の表面に施された半
田等の低融点接合用金属の溶融によって両者を接合させ
るため、ヒートパイプと伝熱部材の界面における熱抵抗
を増大させずに、作業性の向上,およびコストダウンを
図ることができる。
Effects of the Invention As explained above, according to the heat pipe type heat exchanger and the manufacturing method of the present invention, the airtight container is expanded by the vapor pressure inside the airtight container of the heat pipe, and the airtight container is expanded by the plastic deformation at that time. Since the heat pipe and the heat transfer member are brought into close contact with each other, and the two are joined by melting a low melting point bonding metal such as solder applied to the surface of the airtight container or the heat transfer member, the thermal resistance at the interface between the heat pipe and the heat transfer member is reduced. It is possible to improve workability and reduce costs without increasing.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示す説明図。FIG. 1 is an explanatory diagram showing one embodiment of the present invention.

【図2】実施例の作用を説明するためのグラフ。FIG. 2 is a graph for explaining the effect of the embodiment.

【符号の説明】[Explanation of symbols]

1      ヒートパイプ 2      作動液 3      低融点接合用金属 4      銅フィン 4a    挿入孔 5      密閉容器 1 Heat pipe 2 Hydraulic fluid 3. Low melting point joining metal 4 Copper fins 4a Insertion hole 5 Sealed container

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  密閉容器内に所定量の作動液を封入し
たヒートパイプと、前記ヒートパイプを若干の余裕をも
って包囲する伝熱部材と、前記密閉容器,或いは前記伝
熱部材の表面に施された半田等の低融点接合用金属を備
え、前記密閉容器と前記伝熱部材が、前記作動液の蒸気
圧による前記密閉容器の拡管に基づく塑性変形によって
密着し、前記低融点接合用金属の溶融によって接合され
ていることを特徴とするヒートパイプ式熱交換器。
1. A heat pipe having a predetermined amount of working fluid sealed in an airtight container, a heat transfer member surrounding the heat pipe with some margin, and a heat transfer member provided on the surface of the airtight container or the heat transfer member. The closed container and the heat transfer member are brought into close contact with each other by plastic deformation based on the tube expansion of the closed container due to the vapor pressure of the working fluid, and the low melting point joining metal is melted. A heat pipe type heat exchanger characterized by being joined by.
【請求項2】  所定の外径を有し、所定量の作動液を
封入したヒートパイプを加工し、前記所定の外径より所
定の寸法だけ大なる所定の内径の挿入孔を有した伝熱部
材を加工し、前記伝熱部材,或いは前記ヒートパイプの
表面に半田等の低融点接合用金属を被覆し、前記伝熱部
材の前記挿入孔に前記ヒートパイプを挿入し、両者を所
定の温度で所定時間加熱することにより前記低融点接合
用金属を溶融させると共に、前記作動液を加熱して、前
記ヒートパイプに前記作動液の蒸気圧と熱膨張に基づく
塑性変形を与え、この塑性変形によって前記ヒートパイ
プの外面を前記伝熱部材の前記挿入孔の内壁に密着させ
、密着した前記ヒートパイプと前記伝熱部材を冷却して
、前記ヒートパイプと前記伝熱部材の界面を接合するこ
とを特徴とするヒートパイプ式熱交換器の製造方法。
2. A heat transfer method in which a heat pipe having a predetermined outer diameter and containing a predetermined amount of working fluid is processed and has an insertion hole having a predetermined inner diameter that is larger than the predetermined outer diameter by a predetermined dimension. The member is processed, the surface of the heat transfer member or the heat pipe is coated with a low melting point bonding metal such as solder, the heat pipe is inserted into the insertion hole of the heat transfer member, and both are heated to a predetermined temperature. The low melting point joining metal is melted by heating for a predetermined period of time, and the working fluid is heated to give the heat pipe plastic deformation based on the vapor pressure and thermal expansion of the working fluid. The outer surface of the heat pipe is brought into close contact with the inner wall of the insertion hole of the heat transfer member, the heat pipe and the heat transfer member that are in close contact are cooled, and the interface between the heat pipe and the heat transfer member is joined. A manufacturing method for a heat pipe type heat exchanger.
【請求項3】  前記所定の温度は、前記作動液が前記
ヒートパイプの破裂強度値以上の蒸気圧にならない温度
であり、前記作動液の封入量は、前記所定の温度におい
て液相が残留しない量である請求項2のヒートパイプ式
熱交換器の製造方法。
3. The predetermined temperature is a temperature at which the working fluid does not have a vapor pressure higher than the bursting strength value of the heat pipe, and the amount of the working fluid sealed is such that no liquid phase remains at the predetermined temperature. 3. The method for manufacturing a heat pipe type heat exchanger according to claim 2, wherein
JP13060091A 1991-05-02 1991-05-02 Heat pipe type heat exchanger and manufacture thereof Pending JPH04332390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13060091A JPH04332390A (en) 1991-05-02 1991-05-02 Heat pipe type heat exchanger and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13060091A JPH04332390A (en) 1991-05-02 1991-05-02 Heat pipe type heat exchanger and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04332390A true JPH04332390A (en) 1992-11-19

Family

ID=15038092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13060091A Pending JPH04332390A (en) 1991-05-02 1991-05-02 Heat pipe type heat exchanger and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04332390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7231715B2 (en) * 2004-05-25 2007-06-19 Hul-Chun Hsu Method for forming end surface of heat pipe and structure thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7231715B2 (en) * 2004-05-25 2007-06-19 Hul-Chun Hsu Method for forming end surface of heat pipe and structure thereof

Similar Documents

Publication Publication Date Title
EP2929269B1 (en) Heat exchanger and method of manufacturing the same
EP2738506A2 (en) Heat exchanger and method of manufacturing the same
JP2569452B2 (en) Heat exchanger manufacturing method
KR100436070B1 (en) Sacrifice corrosion layer forming method
JPH04332390A (en) Heat pipe type heat exchanger and manufacture thereof
JP2674291B2 (en) Method of manufacturing heat pipe heat exchanger
JP2541056B2 (en) Method of manufacturing heat pipe type heat exchanger
JP2009287821A (en) Heat exchanging device
JP2874346B2 (en) Heat exchanger manufacturing method
WO2010116730A1 (en) Heat exchanger and method for producing the same
JP2773459B2 (en) Manufacturing method of fin and tube heat exchanger
US6434824B1 (en) Process for making a fluid-tight connection between a tube and a plate-shaped part
JPH0648148B2 (en) Heat exchanger
JPH10185467A (en) Manufacture of aluminum heat pipe
JP7105111B2 (en) Double tube joining method in heat exchanger
JPH0218195B2 (en)
JP2004333028A (en) Heat exchanger
JP2005233603A (en) Manufacturing method of double pipe type heat pipe
WO2024053318A1 (en) Finless heat exchanger, and cooling system employing same
KR100256405B1 (en) Manufacturing method of heat exchangers for air-con.
JP2002280504A (en) Method for manufacturing heat sink by thermal pipe enlarging process
JP2002323292A (en) Sealed flat plate heat transfer material and method for manufacturing radiator using the same
JP3890974B2 (en) Tank structure and heat exchanger for refrigerator
JPS59110432A (en) Manufacture of heat pipe shaft or the like
US3088193A (en) Metal fabrication