JP2773459B2 - Manufacturing method of fin and tube heat exchanger - Google Patents

Manufacturing method of fin and tube heat exchanger

Info

Publication number
JP2773459B2
JP2773459B2 JP3108673A JP10867391A JP2773459B2 JP 2773459 B2 JP2773459 B2 JP 2773459B2 JP 3108673 A JP3108673 A JP 3108673A JP 10867391 A JP10867391 A JP 10867391A JP 2773459 B2 JP2773459 B2 JP 2773459B2
Authority
JP
Japan
Prior art keywords
tube
fin
metal
copper
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3108673A
Other languages
Japanese (ja)
Other versions
JPH04316991A (en
Inventor
有孝 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP3108673A priority Critical patent/JP2773459B2/en
Publication of JPH04316991A publication Critical patent/JPH04316991A/en
Application granted granted Critical
Publication of JP2773459B2 publication Critical patent/JP2773459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、フィンアンドチューブ
式熱交換器の製造方法に関し、特にフィンとチューブと
の固定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a fin-and-tube heat exchanger, and more particularly to a method of fixing a fin to a tube.

【0002】[0002]

【従来の技術】フィンと金属管、特に銅フィンと銅管と
から構成されるいわゆるフィンアンドチューブ式熱交換
器は、互いに平行に設けて成る複数の銅フィンと、これ
らの銅フィンに形成された孔を貫通する銅管とから成
る。銅フィンと銅管とを固定する方法は、一般に拡管法
が採用されている。拡管法は、銅フィンに設けた銅管外
径より若干大きな内径の孔に銅管を挿入した後に銅管を
拡管して銅フィンと密着させる方法であり、マンドレル
拡管法、液圧拡管法、ボール拡管法等がある。
2. Description of the Related Art A so-called fin-and-tube heat exchanger composed of fins and metal tubes, in particular, copper fins and copper tubes, has a plurality of copper fins provided in parallel with each other and formed on these copper fins. And a copper tube passing through the hole. As a method of fixing the copper fin and the copper tube, an expansion method is generally employed. The pipe expansion method is a method in which a copper pipe is inserted into a hole having an inner diameter slightly larger than the outer diameter of the copper pipe provided on the copper fin, and then the copper pipe is expanded and brought into close contact with the copper fin, and a mandrel expansion method, a hydraulic expansion method, There is a ball expansion method and the like.

【0003】図3に示すマンドレル拡管法は、銅フィン
1の銅管挿入孔2に挿入された銅管3に、拡管用マンド
レル10を挿入して銅管3を拡管し、銅フィン1と銅管
3とを密着固定するものである。図4に示す液圧拡管法
は、銅管3の一端を閉じ、他端から高圧液を注入して銅
管3を拡管するものである。図5に示すボール拡管法
は、鋼球等の拡管用ボール12を高圧液11の液圧で銅
管3に押し込んで銅管3を拡管するものである。
In the mandrel expansion method shown in FIG. 3, a copper mandrel 10 is inserted into a copper tube 3 inserted into a copper tube insertion hole 2 of a copper fin 1 to expand the copper tube 3, and the copper fin 1 and copper This is for tightly fixing the tube 3. 4 expands the copper pipe 3 by closing one end of the copper pipe 3 and injecting a high-pressure liquid from the other end. In the ball expanding method shown in FIG. 5, the expanding tube 12 such as a steel ball is pushed into the copper tube 3 by the liquid pressure of the high-pressure liquid 11 to expand the copper tube 3.

【0004】また、上記のような拡管法以外の方法とし
て、プレス等により強制的に銅管を挿入する圧入法も用
いられている。この方法は、図6に示すように、フィン
圧入用押圧治具13により、銅管3の外径と略同じ径の
銅管挿入孔2を有する銅フィン1を強制的に銅管3に押
し入れる方法である。
[0004] As a method other than the above-described tube expansion method, a press-fitting method in which a copper tube is forcibly inserted by a press or the like is also used. In this method, as shown in FIG. 6, a copper fin 1 having a copper tube insertion hole 2 having substantially the same diameter as the outer diameter of the copper tube 3 is forcibly pressed against the copper tube 3 by a fin press-fitting jig 13. How to put.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記のような
従来のフィンアンドチューブ式熱交換器の製造方法は、
以下に示すような問題点があった。まず、従来最も一般
的に採用されていたマンドレル拡管法は、拡管用マンド
レルと銅管内壁面との間の摩擦を軽減するために潤滑油
を使用する必要があり、また、若干の摩耗粉の発生が不
可避であった。従って、拡管作業終了後に有機溶剤によ
る洗浄を行う必要があった。
However, the conventional method for manufacturing a fin-and-tube heat exchanger as described above involves:
There were the following problems. First, the most commonly used mandrel expansion method in the past requires the use of lubricating oil to reduce friction between the expansion mandrel and the inner wall of the copper pipe. The occurrence was inevitable. Therefore, it was necessary to perform cleaning with an organic solvent after the completion of the pipe expansion operation.

【0006】また近年では、管内を循環する冷媒(フロ
ン)に対する内面蒸発熱伝達率を向上するために、内面
に溝が付された銅管が多用されるになった。図7は、内
面に溝が付されていない平滑管及び拡管の前後における
内面溝付銅管のそれぞれの内面蒸発熱伝達率を示してい
る。図7より、内面溝付銅管は平滑管よりも内面蒸発熱
伝達率が大きいことが分かるが、このような銅管は内壁
面に多数の細かい螺旋状フィン(突起)が形成されてい
るので、内面溝付銅管を使用すると平滑管の場合よりも
摩耗粉が発生し易い。また、拡管用マンドレルにより内
壁面上のフィンの先端が押しつぶされ、フィン高さ(溝
深さ)が減少する。この結果、図7に示すように、拡管
後では拡管前よりも内面蒸発熱伝達率が低下してしまう
という問題が生じていた。また、拡管に伴って生ずる銅
管の縮み代が拡管条件の微妙なバラつきによって変化す
るので、より均一な銅管特性が要求されることとなり、
銅管の製造コストの増加を招いていた。
In recent years, copper tubes having grooves on the inner surface have been frequently used in order to improve the heat transfer coefficient of the inner surface to the refrigerant (fluorocarbon) circulating in the tube. FIG. 7 shows the internal heat transfer coefficient of the inner surface of the smooth tube having no groove on the inner surface and the inner grooved copper tube before and after the expansion. From FIG. 7, it can be seen that the inner grooved copper tube has a higher inner surface heat transfer coefficient than the smooth tube, but such a copper tube has a large number of fine spiral fins (projections) formed on the inner wall surface. When the inner grooved copper tube is used, abrasion powder is more easily generated than in the case of a smooth tube. Further, the tip of the fin on the inner wall surface is crushed by the pipe expanding mandrel, and the fin height (groove depth) is reduced. As a result, as shown in FIG. 7, there has been a problem that the inner surface heat transfer coefficient is lower after expansion than before expansion. In addition, since the shrinkage allowance of the copper pipe caused by the expansion of the pipe changes due to subtle variations in the expansion conditions, more uniform copper pipe characteristics are required.
This has led to an increase in copper tube manufacturing costs.

【0007】一方、液圧拡管法、ボール拡管法、圧入法
等は、上記のようなマンドレル拡管法を採用することが
できない場合に使用されるが、いずれも製造コストが相
対的に大きいという問題点があった。
On the other hand, the hydraulic expansion method, the ball expansion method, the press-fitting method and the like are used when the above-mentioned mandrel expansion method cannot be adopted, but all of them have a problem that the production cost is relatively high. There was a point.

【0008】従って、本発明の目的は、製造コストが減
少し且つ冷媒に対する内面熱伝達率の低下を招かないフ
ィンアンドチューブ型熱交換器の製造方法を提供するこ
とにある。
Accordingly, it is an object of the present invention to provide a method of manufacturing a fin-and-tube heat exchanger which reduces the manufacturing cost and does not cause a decrease in the internal heat transfer coefficient to the refrigerant.

【0009】[0009]

【課題を解決するための手段】本発明は、複数の放熱フ
ィンに設けた孔に金属管を挿入し、金属管を相互に連結
して冷媒流路を形成し、冷媒流路内に水を注入した後に
冷媒流路の両端を密閉し、金属管及び放熱フィンとを含
む組み立て品を所定温度まで加熱し、その後組み立て品
を冷却し、冷媒流路内の水を排除することにより、放熱
フィンと金属管とを密着固定するものである。ここで、
金属管及び放熱フィンは、冷媒流路内に注入した水が所
定の蒸気圧を有する温度まで加熱される。また、注入す
る水の量は、前記所定の蒸気圧と金属管の内圧による破
裂圧とが等しくなる温度において丁度飽和水が存在しな
くなる量以下であるのが望ましい。さらに、金属管と放
熱フィンとの界面に低融点金属を介在させ、両部材を加
熱する際の熱により低融点金属を溶融させ、金属管と放
熱フィンとを金属的に接合するようにすると、金属管と
放熱フィンとの固定はより確実となる。
According to the present invention, a metal pipe is inserted into holes provided in a plurality of radiating fins, and the metal pipes are connected to each other to form a refrigerant flow path. After the injection, the both ends of the refrigerant flow path are sealed, the assembly including the metal tube and the heat radiation fin is heated to a predetermined temperature, and then the assembly is cooled, and the water in the refrigerant flow path is eliminated to thereby release the heat radiation fin. And the metal tube in close contact with each other. here,
The metal tube and the radiating fins are heated to a temperature at which water injected into the coolant channel has a predetermined vapor pressure. The amount of water to be injected is desirably equal to or less than the amount at which saturated water does not exist at a temperature at which the predetermined vapor pressure and the burst pressure due to the internal pressure of the metal tube become equal. Furthermore, if a low-melting-point metal is interposed at the interface between the metal tube and the radiating fins, the low-melting-point metal is melted by heat generated when both members are heated, and the metal tube and the radiating fins are joined metallically. The fixing between the metal tube and the radiation fins is more reliable.

【0010】[0010]

【作用】本発明においては、金属管によって構成される
冷媒流路内に所定量の水を注入した後に管の両端を密閉
し、全体を所定温度に昇温させることにより、管内に注
入した水が気化し、所定の蒸気圧を有することとなる。
この蒸気圧上昇ととともに、加熱により生じる金属管の
軟化及びクリープとの相乗効果により、金属管は比較的
低温で拡管する。
According to the present invention, a predetermined amount of water is injected into a refrigerant flow path constituted by a metal pipe, and then both ends of the pipe are sealed and the whole is heated to a predetermined temperature, whereby the water injected into the pipe is formed. Is vaporized and has a predetermined vapor pressure.
Along with this increase in vapor pressure, the metal pipe expands at a relatively low temperature due to a synergistic effect with softening and creep of the metal pipe caused by heating.

【0011】前記所定の蒸気圧は、銅管が内圧により破
裂する圧力よりも小さいものである必要がある。図2
は、水の各温度における飽和蒸気圧、空調機用伝熱管と
して多用されている外径9.52mm、肉厚0.34m
mの銅管の高温における内圧による破裂圧力等の実測値
を示す。図において、約304℃において飽和蒸気圧と
破裂圧力一致し、その圧力は約9MPaであることが
分かる。
The predetermined vapor pressure needs to be lower than the pressure at which the copper tube bursts due to the internal pressure. FIG.
Is the saturated vapor pressure at each temperature of water, the outer diameter is 9.52 mm and the wall thickness is 0.34 m, which is frequently used as a heat transfer tube for air conditioners.
4 shows actual measured values such as a burst pressure due to an internal pressure at a high temperature of a copper pipe of m. In the figure, the saturated vapor pressure and burst pressure match at about 304 ° C., it can be seen that the pressure is about 9 MPa.

【0012】水の封入量が多い場合、304℃付近にお
ける飽和蒸気圧変化の割合は約0.13MPa/℃と大
きな値となり、実用に当たって温度管理が難しくなる。
従って、水の封入量はできるだけ少なくし、好ましく
は、破裂圧力に相当する飽和圧力を示す温度より若干低
い温度において飽和液(水)が存在しなくなる量を選定
する。例えば、300℃における飽和蒸気の比重量は約
46.2g/1trであり、水の封入量をこの値に相当
する量以下にしておけば、蒸気圧の温度による変化の割
合は0.016MPa/℃と一桁小さくなり、工業的取
り扱いがより容易となる。
When the amount of water is large, the rate of change of the saturated vapor pressure around 304 ° C. becomes a large value of about 0.13 MPa / ° C., and it is difficult to control the temperature in practical use.
Therefore, the amount of filled water is made as small as possible, and preferably, an amount is selected in which the saturated liquid (water) does not exist at a temperature slightly lower than the temperature showing the saturation pressure corresponding to the burst pressure. For example, the specific weight of the saturated steam at 300 ° C. is about 46.2 g / tr, and if the amount of filled water is set to an amount corresponding to this value or less, the rate of change of the steam pressure with temperature is 0.016 MPa / ° C, which is an order of magnitude lower, making industrial handling easier.

【0013】なお、管内に水を注入した後、空気を排除
しないで密封する場合には、残存酸素によって内面が若
干酸化される。しかし、残存酸素量は、上述の外径9.
52mm、肉厚0.34mmの銅管の場合で1m当り約
0.6ccと僅かであり、酸化の影響は実用上無視し得
る程度である。もし、内面酸化を極端に嫌う場合は、水
封入時に、不活性ガスによるパージか又は真空引きによ
って予め空気を排除しておけば良い。
When water is injected into the tube and the tube is sealed without removing air, the inner surface is slightly oxidized by residual oxygen. However, the amount of residual oxygen depends on the above-mentioned outer diameter of 9.
In the case of a copper tube having a thickness of 52 mm and a wall thickness of 0.34 mm, it is as small as about 0.6 cc per m, and the effect of oxidation is practically negligible. If the inner surface oxidation is extremely disliked, air may be removed in advance by purging with an inert gas or vacuuming when filling in water.

【0014】加熱拡管終了後に全体を冷却し、銅管の大
気中における酸化が実用上問題とならない程度まで温度
が下がり且つ100℃を超えている状態で流路の端末を
大気に開放することにより、内部に封入した水は余熱に
より自力で噴出する。さらに、その後不活性ガスでパー
ジすることにより、水はほぼ完全に排除される。
After the completion of the heat expansion, the whole is cooled, and the end of the flow channel is opened to the atmosphere in a state where the temperature is lowered to a level where oxidation of the copper tube in the atmosphere does not pose a practical problem and exceeds 100 ° C. The water sealed inside gushes on its own by the residual heat. Further, the water is almost completely eliminated by purging with an inert gas thereafter.

【0015】なお、放熱フィンと金属管との界面に、半
田等の接合用の低融点金属を介在させて300℃強に加
熱すると、この低融点金属が溶融して界面が金属的に接
合される。この結果、界面における熱抵抗が大幅に低下
する。
When the interface between the radiating fin and the metal tube is heated to a little over 300 ° C. with a low melting point metal such as solder interposed therebetween, the low melting point metal is melted and the interface is metallically joined. You. As a result, the thermal resistance at the interface is significantly reduced.

【0016】[0016]

【実施例】以下、本発明の実施例について詳細に説明す
る。図1は、本発明の一実施例の方法により製造され
る、加熱拡管中のフィンアンドチューブ式熱交換器の一
部を破断した正面図を示す。同図において、銅フィン1
には、プレス等の手段によって銅管挿入孔2が形成され
ており、この銅管挿入孔2に銅管3が挿入されている。
また、銅管3の端末部にはUベンド4が硬ろう付けされ
ている。この銅管3とUベンド4との複数の組み合わせ
により冷媒流路5が形成されている。冷媒流路5の内部
には水6が注入されており、各流路端末部7は、閉止治
具、例えばバルブ8等の手段で密閉されている。
Embodiments of the present invention will be described below in detail. FIG. 1 is a partially cutaway front view of a fin-and-tube heat exchanger that is manufactured by a method according to an embodiment of the present invention and that is being heated and expanded. In FIG.
Is formed with a copper tube insertion hole 2 by means such as a press, and a copper tube 3 is inserted into the copper tube insertion hole 2.
A U-bend 4 is hard brazed to the end of the copper tube 3. A refrigerant flow path 5 is formed by a plurality of combinations of the copper tube 3 and the U-bend 4. Water 6 is injected into the refrigerant flow path 5, and each flow path terminal portion 7 is sealed by means of a closing jig, for example, a valve 8.

【0017】この組み立て品を、バッチ又はトンネル式
連続炉等の加熱炉9によって保護雰囲気中で所定温度に
加熱することにより、銅管3が膨張し、銅フィン1の銅
管挿入孔2内面に密着する。このとき、銅フィン1と銅
管3のいずれか又は両方の表面に、メッキ等の手段によ
り、予め半田等の接合用低融点金属を付加しておけば、
加熱により界面が金属的に接合され、銅フィン1と銅管
3との密着固定が強化される。
When this assembly is heated to a predetermined temperature in a protective atmosphere by a heating furnace 9 such as a batch or tunnel type continuous furnace, the copper tube 3 expands, and the copper fin 1 is inserted into the inner surface of the copper tube insertion hole 2. In close contact. At this time, if one or both surfaces of the copper fin 1 and the copper tube 3 are previously added with a low-melting metal for bonding such as solder by means of plating or the like,
The interface is metallically joined by the heating, and the tight fixing between the copper fin 1 and the copper tube 3 is strengthened.

【0018】加熱拡管終了後、組み立て品全体を冷却
し、温度が100℃を超えている状態でバルブ8を開放
すると、水は蒸気となって外部へ自力で噴出する。その
後、さらにバルブ8を通して不活性ガスでパージするこ
とにより、余熱も手伝って内面が酸化することなく乾燥
する。
After the completion of the heat expansion, the entire assembly is cooled, and when the valve 8 is opened in a state where the temperature exceeds 100 ° C., the water is spouted to the outside by itself as steam. Thereafter, by purging with an inert gas through the valve 8, the inner surface is dried without being oxidized due to the residual heat.

【0019】なお、拡管に用いる水の注入量は、以下の
ように算出される。例えば前述の外径9.52mm、肉
厚0.34mmの銅管を使用し、流路の総長が20mと
した場合には、内容積は約1.231trとなるので、
前述のように温度が300℃の場合には飽和蒸気の比重
量が約4.2g/1trであることから、300℃での
飽和蒸気量は約56gとなり、注入する水の量はこれ以
下の極少量で済むことが分かる。また、加熱温度は、3
05〜310℃に設定すれば良い。
The injection amount of water used for expanding the pipe is calculated as follows. For example, if the above-mentioned copper tube having an outer diameter of 9.52 mm and a wall thickness of 0.34 mm is used and the total length of the flow path is 20 m, the internal volume is about 1.231 tr,
As described above, when the temperature is 300 ° C., since the specific weight of the saturated steam is about 4.2 g / 1 tr, the saturated steam amount at 300 ° C. is about 56 g, and the amount of water to be injected is less than this. It can be seen that only a very small amount is required. The heating temperature is 3
What is necessary is just to set to 05-310 degreeC.

【0020】本実施例においては、マンドレル拡管法に
おけるような銅管の拡管に伴う潤滑を行う必要がなく、
且つ銅粉も発生しないので、組み立て後の洗浄工程が不
要となる。従って、公害防止に役立つとともに、コスト
低減にも寄与する。また、内面溝付銅管を使用する場合
には、マンドレル拡管法による拡管の場合のような内面
フィンの潰れが生じないので、内面熱伝達率が低下する
ことがなく、熱交換器の性能向上を図ることができる。
さらに、マンドレル拡管法のような拡管に伴う銅管縮み
代のバラツキの問題も解消される。
In the present embodiment, there is no need to perform lubrication accompanying the expansion of the copper tube as in the mandrel expansion method.
In addition, since no copper powder is generated, a cleaning step after assembly is not required. Therefore, it contributes to pollution prevention and cost reduction. In addition, when copper pipes with internal grooves are used, the internal fins do not collapse as in the case of pipe expansion by the mandrel expansion method, so the internal heat transfer coefficient does not decrease and the performance of the heat exchanger improves. Can be achieved.
Further, the problem of the variation in the shrinkage of the copper pipe due to the pipe expansion such as the mandrel expansion method is solved.

【0021】また、本実施例の方法は、加熱炉及び付帯
設備を追加するだけで、従来の工程を大幅に変更するこ
となく熱交換器の量産ラインに適用できることも利点と
なっている。
Further, the method of the present embodiment has an advantage that it can be applied to a mass production line of heat exchangers by simply adding a heating furnace and ancillary equipment without largely changing the conventional process.

【0022】なお、本実施例のように、直状銅管をUベ
ンドで接続するようにした場合には、ヘアピン曲げを行
う必要がないので銅管肉厚を薄くすることができる。こ
れも熱交換器全体のコストダウンを図る上で利点とな
る。この場合、裸銅管を用いたUベンドの端末をベルマ
ウス拡管し、銅管端末を挿入するので、内面溝付銅管の
端末をベルマウス拡管してUベンド端末を挿入する場合
に比べて、端末の割れ不良が少なくなり、さに内面溝に
沿ってろう材が流れることがなくなるので、ろう材使用
量を減らすことができる。
When the straight copper pipes are connected by U-bends as in this embodiment, the thickness of the copper pipes can be reduced because it is not necessary to perform the hairpin bending. This is also an advantage in reducing the cost of the entire heat exchanger. In this case, the terminal of the U-bend using the bare copper tube is bell-mouth expanded and the copper tube terminal is inserted. In addition, the number of cracks in the end is reduced, and the brazing material does not flow along the inner surface groove, so that the amount of the brazing material used can be reduced.

【0023】[0023]

【発明の効果】以上説明した通り本発明によれば、製造
コストが減少し且つ冷媒に対する内面熱伝達率の低下を
招かないフィンアンドチューブ型熱交換器の製造方法を
提供することができた。
As described above, according to the present invention, it is possible to provide a method of manufacturing a fin-and-tube heat exchanger which reduces the manufacturing cost and does not cause a decrease in the internal heat transfer coefficient to the refrigerant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の製造方法によって製造される熱交換器
の一部を破断した正面図である。
FIG. 1 is a partially cutaway front view of a heat exchanger manufactured by a manufacturing method according to an embodiment.

【図2】飽和水蒸気圧、銅管の破裂圧、飽和蒸気比容
積、銅管の外径増大量等を示す図である。
FIG. 2 is a diagram showing a saturated steam pressure, a rupture pressure of a copper tube, a saturated steam specific volume, an outer diameter increase amount of the copper tube, and the like.

【図3】マンドレル拡管法により金属管を拡管して放熱
フィンと金属管とを密着させる方法を示す説明図であ
る。
FIG. 3 is an explanatory view showing a method of expanding a metal pipe by a mandrel expansion method and bringing a radiation fin and a metal pipe into close contact with each other.

【図4】液圧拡管法により金属管を拡管して放熱フィン
と金属管とを密着させる方法を示す説明図である。
FIG. 4 is an explanatory view showing a method of expanding a metal pipe by a hydraulic expansion method and bringing a radiation fin and a metal pipe into close contact with each other.

【図5】ボール拡管法にり金属管を拡管して放熱フィン
と金属管とを密着させる方法を示す説明図である。
FIG. 5 is an explanatory view showing a method of expanding a metal pipe by using a ball expanding method and bringing a heat radiation fin and the metal pipe into close contact with each other.

【図6】圧入法により放熱フィンと金属管とを密着させ
る方法を示す説明図である。
FIG. 6 is an explanatory view showing a method of bringing a heat radiation fin and a metal tube into close contact by a press-fitting method.

【図7】銅管の内面蒸発熱伝達率を示す図である。FIG. 7 is a diagram showing the heat transfer coefficient of evaporation of the inner surface of a copper tube.

【符号の説明】[Explanation of symbols]

1 銅フィン 2 銅管挿入孔 3 銅管 4 Uベンド 5 冷媒流路 6 水 7 冷媒流路端末 8 バルブ 9 加熱炉 10 拡管用マンドレル 11 高圧液 12 拡管用ボール 13 フィン圧入用押圧治具 DESCRIPTION OF SYMBOLS 1 Copper fin 2 Copper pipe insertion hole 3 Copper pipe 4 U bend 5 Refrigerant flow path 6 Water 7 Refrigerant flow path terminal 8 Valve 9 Heating furnace 10 Expansion mandrel 11 High pressure liquid 12 Expansion ball 13 Pressing jig for fin press-fitting

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】互いに平行に設けて成る複数の放熱フィン
と、前記複数の放熱フィンに設けた孔を貫通する金属管
から成り、金属管が冷媒流路を構成するフィンアンドチ
ューブ式熱交換器の製造方法において、 前記複数の放熱フィンに設けた孔に前記金属管を挿入す
る工程、前記金属管相互を連結して冷媒流路を形成する
工程、前記冷媒流路に水を注入する工程、前記冷媒流路
の両端を密閉する工程、前記金属管及び前記放熱フィン
とを含む組み立て品を、前記注入された水により前記金
属管内が所定の蒸気圧を有する温度まで加熱する工程、
前記金属管及び前記放熱フィンとを含む組み立て品を冷
却する工程、及び前記注入した水を前記冷媒流路内から
排除する工程とを含み、前記水の注入工程における水の
量は、前記所定の蒸気圧と前記金属管の内圧による破裂
圧とが等しくなる温度において丁度飽和水が存在しなく
なる量以下であり、前記所定の蒸気圧により前記金属管
を拡管して前記金属管と前記放熱フィンとを密着固定す
ることを特徴とするフィンアンドチューブ式熱交換器の
製造方法。
1. A fin-and-tube heat exchanger comprising: a plurality of radiating fins provided in parallel with each other; and a metal tube penetrating holes provided in the plurality of fins. In the manufacturing method, a step of inserting the metal pipe into a hole provided in the plurality of radiating fins, a step of connecting the metal pipes to each other to form a coolant channel, a step of injecting water into the coolant channel, A step of sealing both ends of the refrigerant flow path, a step of heating an assembly including the metal pipe and the heat radiation fins to a temperature at which the inside of the metal pipe has a predetermined vapor pressure by the injected water,
A step of cooling an assembly including the metal tube and the radiation fins, and a step of removing the injected water from the inside of the coolant flow path ;
The amount is ruptured due to the predetermined vapor pressure and the internal pressure of the metal tube
Just at the temperature where the pressure equals, there is no saturated water
A method for producing a fin-and-tube heat exchanger, wherein the metal pipe is expanded by the predetermined vapor pressure to tightly fix the metal pipe and the radiation fin.
【請求項2】前記加熱工程における前記所定の蒸気圧
は、金属管が内圧により破裂する圧力よりも小さいもの
である、請求項1に記載のフィンアンドチューブ式熱交
換器の製造方法。
2. The method for manufacturing a fin-and-tube heat exchanger according to claim 1, wherein the predetermined vapor pressure in the heating step is lower than a pressure at which the metal tube bursts due to an internal pressure.
【請求項3】前記加熱工程において前記放熱フィンと前
記金属管との界面に低融点金属を介在させ、前記加熱工
程時における熱によって前記低融点金属を溶融させ、前
記放熱フィンと前記金属管とを金属的に接合する、請求
項1に記載のフィンアンドチューブ式熱交換器の製造方
法。
3. In the heating step, the radiating fins and the fins
A low melting point metal is interposed at the interface with the metal pipe,
Melting the low melting point metal by the heat at the time
The heat radiation fin and the metal tube are metallically joined.
Item 1. Manufacturing method of fin and tube heat exchanger according to item 1.
Law.
JP3108673A 1991-04-12 1991-04-12 Manufacturing method of fin and tube heat exchanger Expired - Lifetime JP2773459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3108673A JP2773459B2 (en) 1991-04-12 1991-04-12 Manufacturing method of fin and tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3108673A JP2773459B2 (en) 1991-04-12 1991-04-12 Manufacturing method of fin and tube heat exchanger

Publications (2)

Publication Number Publication Date
JPH04316991A JPH04316991A (en) 1992-11-09
JP2773459B2 true JP2773459B2 (en) 1998-07-09

Family

ID=14490778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3108673A Expired - Lifetime JP2773459B2 (en) 1991-04-12 1991-04-12 Manufacturing method of fin and tube heat exchanger

Country Status (1)

Country Link
JP (1) JP2773459B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056992A (en) * 2001-08-20 2003-02-26 Fujitsu General Ltd Heat exchanger
JP4705905B2 (en) * 2006-12-19 2011-06-22 日本発條株式会社 Cooling apparatus for heat treatment apparatus and manufacturing method thereof
JP6880206B2 (en) * 2017-09-22 2021-06-02 三菱電機株式会社 How to make a heat exchanger
CN117254332B (en) * 2023-11-17 2024-02-02 北京中石正旗技术有限公司 Heat radiation structure and gas laser

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507312B2 (en) * 1972-07-26 1975-03-24
JPS5237457B2 (en) * 1973-03-07 1977-09-22

Also Published As

Publication number Publication date
JPH04316991A (en) 1992-11-09

Similar Documents

Publication Publication Date Title
US3750248A (en) Method for making evaporator or condenser construction
US3048021A (en) Joule-thomson effect gas liquefier
US6061904A (en) Heat exchanger and method for manufacturing the same
US2735698A (en) Header plate-tube joint for heat-
US5380048A (en) Tube joint
US4877083A (en) Brazed heat exchanger and method of making the same
CN105518408B (en) Shell and tube heat exchanger and its manufacture method
EP2738506A2 (en) Heat exchanger and method of manufacturing the same
JP2569452B2 (en) Heat exchanger manufacturing method
CN205102463U (en) Heat exchanger and air conditioner device
JP2773459B2 (en) Manufacturing method of fin and tube heat exchanger
CN1322300C (en) Heat exchanger
US2211813A (en) Method of making heat exchange devices
JP2874346B2 (en) Heat exchanger manufacturing method
GB728131A (en) Improvements in and relating to composite tubes
CN116608715A (en) Coaxial loop heat pipe and preparation method thereof
CN115781204A (en) Forming process method of flat copper pipe
JP2541056B2 (en) Method of manufacturing heat pipe type heat exchanger
US4881679A (en) Subassembly for use in manufacturing a tubular product
JPS5938513B2 (en) Heat pipe with fins for waste heat recovery
CN113048817A (en) Manufacturing method of heat exchange device
JPH04124591A (en) Heat pipe heat exchanger and manufacturing method of the same
CN109470069B (en) Heat pipe heat exchange sleeve and manufacturing method thereof
KR100378798B1 (en) Heat exchanger manufacturing mathod for air conditioner
JPH04332390A (en) Heat pipe type heat exchanger and manufacture thereof