JPH04316991A - Manufacture of fin-and-tube type heat exchanger - Google Patents

Manufacture of fin-and-tube type heat exchanger

Info

Publication number
JPH04316991A
JPH04316991A JP10867391A JP10867391A JPH04316991A JP H04316991 A JPH04316991 A JP H04316991A JP 10867391 A JP10867391 A JP 10867391A JP 10867391 A JP10867391 A JP 10867391A JP H04316991 A JPH04316991 A JP H04316991A
Authority
JP
Japan
Prior art keywords
tube
copper
fin
metal tube
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10867391A
Other languages
Japanese (ja)
Other versions
JP2773459B2 (en
Inventor
Aritaka Tatsumi
辰巳 有孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP3108673A priority Critical patent/JP2773459B2/en
Publication of JPH04316991A publication Critical patent/JPH04316991A/en
Application granted granted Critical
Publication of JP2773459B2 publication Critical patent/JP2773459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To expand a metallic tube by utilizing steam pressure and the like to contact the tube with heat radiating fins closely and obtain a product of high quality inexpensively by a method wherein the metallic tubes, which are inserted into the heat radiating fins, are connected to form a refrigerant flow passage to seal water thereinto and, therafter, the assembled product is heated. CONSTITUTION:Inserting holes 2 are bored on a copper fin 1 and a copper tube 3 is inserted into the copper fin 1. U-bents 4 are brazed to the terminals of the copper tubes 3 while a plurality of these copper tubes are combined to form a refrigerant flow passage 5. Water 6 is poured into the refrigerant flow passage 5 while the terminals 7 of respective flow passages are sealed by valves 8 or the like. Such assemblies are heated in a heating furnace 9 whereby water 6 is evaporated to obtain a predetermined steam pressure while the copper tubes 3 are expanded thermally and are contacted closely with the inner surfaces of the inserting holes 2. Thereafter, the assemblies are cooled and the valves 8 are opened to eject water, which has become steam, to the outside of the assemblies. According to this method, the manufacturing cost of the heat exchanger is reduced and the deterioration of an inner surface heat conductivity with respect to refrigerant is eliminated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、フィンアンドチューブ
式熱交換器の製造方法に関し、特にフィンとチューブと
の固定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a fin-and-tube heat exchanger, and more particularly to a method for fixing fins and tubes.

【0002】0002

【従来の技術】フィンと金属管、特に銅フィンと銅管と
から構成されるいわゆるフィンアンドチューブ式熱交換
器は、互いに平行に設けて成る複数の銅フィンと、これ
らの銅フィンに形成された孔を貫通する銅管とから成る
。銅フィンと銅管とを固定する方法は、一般に拡管法が
採用されている。拡管法は、銅フィンに設けた銅管外径
より若干大きな内径の孔に銅管を挿入した後に銅管を拡
管して銅フィンと密着させる方法であり、マンドレル拡
管法、液圧拡管法、ボール拡管法等がある。
[Prior Art] A so-called fin-and-tube heat exchanger composed of fins and metal tubes, especially copper fins and copper tubes, has a plurality of copper fins arranged in parallel to each other and a heat exchanger formed on these copper fins. It consists of a copper tube that passes through a hole. A tube expansion method is generally used to fix the copper fins and the copper tube. The tube expansion method is a method in which a copper tube is inserted into a hole with an inner diameter slightly larger than the outer diameter of the copper tube provided in a copper fin, and then the copper tube is expanded so that it comes into close contact with the copper fin.Mandrel tube expansion method, hydraulic tube expansion method, There are methods such as ball expansion method.

【0003】図3に示すマンドレル拡管法は、銅フィン
1の銅管挿入孔2に挿入された銅管3に、拡管用マンド
レル10を挿入して銅管3を拡管し、銅フィン1と銅管
3とを密着固定するものである。図4に示す液圧拡管法
は、銅管3の一端を閉じ、他端から高圧液を注入して銅
管3を拡管するものである。図5に示すボール拡管法は
、鋼球等の拡管用ボール12を高圧液11の液圧で銅管
3に押し込んで銅管3を拡管するものである。
In the mandrel tube expansion method shown in FIG. 3, a tube expansion mandrel 10 is inserted into a copper tube 3 inserted into a copper tube insertion hole 2 of a copper fin 1 to expand the copper tube 3. This is to tightly fix the tube 3. The hydraulic pipe expansion method shown in FIG. 4 is a method in which one end of the copper pipe 3 is closed and high-pressure liquid is injected from the other end to expand the copper pipe 3. The ball expansion method shown in FIG. 5 expands the copper tube 3 by pushing a tube expansion ball 12 such as a steel ball into the copper tube 3 using the hydraulic pressure of the high-pressure liquid 11.

【0004】また、上記のような拡管法以外の方法とし
て、プレス等により強制的に銅管を挿入する圧入法も用
いられている。この方法は、図6に示すように、フィン
圧入用押圧治具13により、銅管3の外径と略同じ径の
銅管挿入孔2を有する銅フィン1を強制的に銅管3に押
し入れる方法である。
[0004] In addition to the above-mentioned pipe expansion method, a press-fitting method is also used in which the copper pipe is forcibly inserted using a press or the like. In this method, as shown in FIG. 6, a fin press-fitting pressing jig 13 is used to forcibly push a copper fin 1 having a copper tube insertion hole 2 with approximately the same diameter as the outer diameter of the copper tube 3 into the copper tube 3. This is the way to put it.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記のような
従来のフィンアンドチューブ式熱交換器の製造方法は、
以下に示すような問題点があった。まず、従来最も一般
的に採用されていたマンドレル拡管法は、拡管用マンド
レルと銅管内壁面との間の摩擦を軽減するために潤滑油
を使用する必要があり、また、若干の摩耗粉の発生が不
可避であった。従って、拡管作業終了後に有機溶剤によ
る洗浄を行う必要があった。
[Problems to be Solved by the Invention] However, the conventional manufacturing method of the fin-and-tube heat exchanger as described above is
There were problems as shown below. First, the mandrel tube expansion method, which has been most commonly used in the past, requires the use of lubricating oil to reduce the friction between the tube expansion mandrel and the inner wall surface of the copper tube. Its occurrence was inevitable. Therefore, it was necessary to perform cleaning with an organic solvent after the pipe expansion work was completed.

【0006】また近年では、管内を循環する冷媒(フロ
ン)に対する内面蒸発熱伝達率を向上するために、内面
に溝が付された銅管が多用されるになった。図7は、内
面に溝が付されていない平滑管及び拡管の前後における
内面溝付銅管のそれぞれの内面蒸発熱伝達率を示してい
る。図7より、内面溝付銅管は平滑管よりも内面蒸発熱
伝達率が大きいことが分かるが、このような銅管は内壁
面に多数の細かい螺旋状フィン(突起)が形成されてい
るので、内面溝付銅管を使用すると平滑管の場合よりも
摩耗粉が発生し易い。また、拡管用マンドレルにより内
壁面上のフィンの先端が押しつぶされ、フィン高さ(溝
深さ)が減少する。この結果、図7に示すように、拡管
後では拡管前よりも内面蒸発熱伝達率が低下してしまう
という問題が生じていた。また、拡管に伴って生ずる銅
管の縮み代が拡管条件の微妙なバラつきによって変化す
るので、より均一な銅管特性が要求されることとなり、
銅管の製造コストの増加を招いていた。
[0006] In recent years, copper tubes with grooves formed on their inner surfaces have come into widespread use in order to improve the internal evaporative heat transfer coefficient to the refrigerant (fluorocarbon) circulating within the tubes. FIG. 7 shows the inner evaporative heat transfer coefficients of a smooth tube without grooves on the inner surface and a copper tube with inner grooves before and after expansion. From Figure 7, it can be seen that the inner surface evaporative heat transfer coefficient of the inner grooved copper tube is higher than that of the smooth tube, but this type of copper tube has many fine spiral fins (protrusions) formed on the inner wall surface. When using internally grooved copper tubes, wear particles are more likely to be generated than when using smooth tubes. Furthermore, the tips of the fins on the inner wall surface are crushed by the tube expansion mandrel, reducing the fin height (groove depth). As a result, as shown in FIG. 7, a problem has arisen in that the internal evaporative heat transfer coefficient is lower after pipe expansion than before pipe expansion. In addition, the shrinkage margin of copper pipes that occurs during pipe expansion changes due to subtle variations in the pipe expansion conditions, so more uniform copper pipe characteristics are required.
This led to an increase in the manufacturing cost of copper pipes.

【0007】一方、液圧拡管法、ボール拡管法、圧入法
等は、上記のようなマンドレル拡管法を採用することが
できない場合に使用されるが、いずれも製造コストが相
対的に大きいという問題点があった。
On the other hand, the hydraulic pipe expansion method, ball pipe expansion method, press-fitting method, etc. are used when the above-mentioned mandrel pipe expansion method cannot be adopted, but all of them have the problem of relatively high manufacturing costs. There was a point.

【0008】従って、本発明の目的は、製造コストが減
少し且つ冷媒に対する内面熱伝達率の低下を招かないフ
ィンアンドチューブ型熱交換器の製造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for manufacturing a fin-and-tube heat exchanger that reduces manufacturing costs and does not cause a decrease in the internal heat transfer coefficient to the refrigerant.

【0009】[0009]

【課題を解決するための手段】本発明は、複数の放熱フ
ィンに設けた孔に金属管を挿入し、金属管を相互に連結
して冷媒流路を形成し、冷媒流路内に水を注入した後に
冷媒流路の両端を密閉し、金属管及び放熱フィンとを含
む組み立て品を所定温度まで加熱し、その後組み立て品
を冷却し、冷媒流路内の水を排除することにより、放熱
フィンと金属管とを密着固定するものである。ここで、
金属管及び放熱フィンは、冷媒流路内に注入した水が所
定の蒸気圧を有する温度まで加熱される。また、注入す
る水の量は、前記所定の蒸気圧と金属管の内圧による破
裂圧とが等しくなる温度において丁度飽和水が存在しな
くなる量以下であるのが望ましい。さらに、金属管と放
熱フィンとの界面に低融点金属を介在させ、両部材を加
熱する際の熱により低融点金属を溶融させ、金属管と放
熱フィンとを金属的に接合するようにすると、金属管と
放熱フィンとの固定はより確実となる。
[Means for Solving the Problems] The present invention involves inserting metal tubes into holes provided in a plurality of radiation fins, connecting the metal tubes to each other to form a refrigerant flow path, and injecting water into the refrigerant flow path. After injecting the refrigerant, both ends of the refrigerant flow path are sealed, the assembly including the metal tube and the radiator fin is heated to a predetermined temperature, and then the assembly is cooled and the water in the refrigerant flow path is removed. and a metal tube are closely fixed. here,
The metal tube and the radiation fins are heated to a temperature at which the water injected into the refrigerant flow path has a predetermined vapor pressure. Further, the amount of water to be injected is desirably equal to or less than the amount at which saturated water just ceases to exist at a temperature where the predetermined vapor pressure is equal to the bursting pressure due to the internal pressure of the metal tube. Furthermore, if a low melting point metal is interposed at the interface between the metal tube and the heat dissipation fin, and the low melting point metal is melted by the heat generated when both members are heated, the metal tube and the heat dissipation fin are metallically joined. The fixation between the metal tube and the radiation fin becomes more reliable.

【0010】0010

【作用】本発明においては、金属管によって構成される
冷媒流路内に所定量の水を注入した後に管の両端を密閉
し、全体を所定温度に昇温させることにより、管内に注
入した水が気化し、所定の蒸気圧を有することとなる。 この蒸気圧上昇ととともに、加熱により生じる金属管の
軟化及びクリープとの相乗効果により、金属管は比較的
低温で拡管する。
[Operation] In the present invention, after a predetermined amount of water is injected into the refrigerant flow path constituted by a metal tube, both ends of the tube are sealed and the whole is heated to a predetermined temperature. is vaporized and has a predetermined vapor pressure. Due to the synergistic effect of this increase in vapor pressure and the softening and creep of the metal tube caused by heating, the metal tube expands at a relatively low temperature.

【0011】前記所定の蒸気圧は、銅管が内圧により破
裂する圧力よりも小さいものである必要がある。図2は
、水の各温度における飽和蒸気圧、空調機用伝熱管とし
て多用されている外径9.52mm、肉厚0.34mm
の銅管の高温における内圧による破裂圧力等の実測値を
示す。図において、約304℃において飽和蒸気圧と破
裂圧力がが一致し、その圧力は約9MPaであることが
分かる。
The predetermined vapor pressure must be lower than the pressure at which the copper tube bursts due to internal pressure. Figure 2 shows the saturated vapor pressure of water at various temperatures, and the outer diameter of 9.52 mm and wall thickness of 0.34 mm, which is often used as a heat transfer tube for air conditioners.
The figures show actual measured values such as bursting pressure due to internal pressure of copper pipes at high temperatures. In the figure, it can be seen that the saturated vapor pressure and the bursting pressure match at about 304° C., and the pressure is about 9 MPa.

【0012】水の封入量が多い場合、304℃付近にお
ける飽和蒸気圧変化の割合は約0.13MPa/℃と大
きな値となり、実用に当たって温度管理が難しくなる。 従って、水の封入量はできるだけ少なくし、好ましくは
、破裂圧力に相当する飽和圧力を示す温度より若干低い
温度において飽和液(水)が存在しなくなる量を選定す
る。例えば、300℃における飽和蒸気の比重量は約4
6.2g/1trであり、水の封入量をこの値に相当す
る量以下にしておけば、蒸気圧の温度による変化の割合
は0.016MPa/℃と一桁小さくなり、工業的取り
扱いがより容易となる。
[0012] When a large amount of water is sealed, the rate of change in saturated vapor pressure near 304°C is as large as about 0.13 MPa/°C, making temperature control difficult in practical use. Therefore, the amount of water enclosed should be as small as possible, and preferably, the amount should be selected so that no saturated liquid (water) exists at a temperature slightly lower than the temperature at which the saturation pressure corresponding to the bursting pressure is exhibited. For example, the specific weight of saturated steam at 300°C is approximately 4
6.2 g/1 tr, and if the amount of water sealed is kept below the amount equivalent to this value, the rate of change in vapor pressure due to temperature will be reduced by an order of magnitude to 0.016 MPa/℃, making industrial handling easier. It becomes easier.

【0013】なお、管内に水を注入した後、空気を排除
しないで密封する場合には、残存酸素によって内面が若
干酸化される。しかし、残存酸素量は、上述の外径9.
52mm、肉厚0.34mmの銅管の場合で1m当り約
0.6ccと僅かであり、酸化の影響は実用上無視し得
る程度である。もし、内面酸化を極端に嫌う場合は、水
封入時に、不活性ガスによるパージか又は真空引きによ
って予め空気を排除しておけば良い。
[0013] If water is injected into the pipe and then the pipe is sealed without removing air, the inner surface will be slightly oxidized by residual oxygen. However, the amount of residual oxygen is determined by the above-mentioned outer diameter 9.
In the case of a copper tube with a diameter of 52 mm and a wall thickness of 0.34 mm, it is as small as about 0.6 cc per 1 m, and the effect of oxidation is practically negligible. If internal oxidation is extremely objectionable, air may be removed in advance by purging with an inert gas or vacuuming when filling water.

【0014】加熱拡管終了後に全体を冷却し、銅管の大
気中における酸化が実用上問題とならない程度まで温度
が下がり且つ100℃を超えている状態で流路の端末を
大気に開放することにより、内部に封入した水は余熱に
より自力で噴出する。さらに、その後不活性ガスでパー
ジすることにより、水はほぼ完全に排除される。
[0014] After heating and expanding the tube, the entire tube is cooled, and the end of the flow path is opened to the atmosphere while the temperature is lowered to a point where oxidation of the copper tube in the atmosphere does not pose a practical problem and the temperature exceeds 100°C. The water sealed inside will gush out on its own due to residual heat. Furthermore, by subsequently purging with inert gas, water is almost completely eliminated.

【0015】なお、放熱フィンと金属管との界面に、半
田等の接合用の低融点金属を介在させて300℃強に加
熱すると、この低融点金属が溶融して界面が金属的に接
合される。この結果、界面における熱抵抗が大幅に低下
する。
[0015] Furthermore, when a low melting point metal such as solder for bonding is interposed at the interface between the radiation fin and the metal tube and heated to over 300°C, this low melting point metal melts and the interface is joined metallically. Ru. As a result, the thermal resistance at the interface is significantly reduced.

【0016】[0016]

【実施例】以下、本発明の実施例について詳細に説明す
る。図1は、本発明の一実施例の方法により製造される
、加熱拡管中のフィンアンドチューブ式熱交換器の一部
を破断した正面図を示す。同図において、銅フィン1に
は、プレス等の手段によって銅管挿入孔2が形成されて
おり、この銅管挿入孔2に銅管3が挿入されている。 また、銅管3の端末部にはUベンド4が硬ろう付けされ
ている。この銅管3とUベンド4との複数の組み合わせ
により冷媒流路5が形成されている。冷媒流路5の内部
には水6が注入されており、各流路端末部7は、閉止治
具、例えばバルブ8等の手段で密閉されている。
[Examples] Examples of the present invention will be described in detail below. FIG. 1 shows a partially cutaway front view of a fin-and-tube heat exchanger during heating and tube expansion, manufactured by a method according to an embodiment of the present invention. In the figure, a copper tube insertion hole 2 is formed in a copper fin 1 by means such as pressing, and a copper tube 3 is inserted into this copper tube insertion hole 2. Further, a U-bend 4 is hard-soldered to the end portion of the copper tube 3. A refrigerant flow path 5 is formed by a plurality of combinations of the copper tube 3 and the U-bend 4. Water 6 is injected into the refrigerant flow path 5, and each flow path end portion 7 is hermetically sealed with a closing jig, for example, a valve 8 or the like.

【0017】この組み立て品を、バッチ又はトンネル式
連続炉等の加熱炉9によって保護雰囲気中で所定温度に
加熱することにより、銅管3が膨張し、銅フィン1の銅
管挿入孔2内面に密着する。このとき、銅フィン1と銅
管3のいずれか又は両方の表面に、メッキ等の手段によ
り、予め半田等の接合用低融点金属を付加しておけば、
加熱により界面が金属的に接合され、銅フィン1と銅管
3との密着固定が強化される。
By heating this assembly to a predetermined temperature in a protective atmosphere in a heating furnace 9 such as a batch or continuous tunnel furnace, the copper tube 3 expands and the inner surface of the copper tube insertion hole 2 of the copper fin 1 is heated. In close contact. At this time, if a low melting point metal such as solder is added to the surface of either or both of the copper fins 1 and the copper tube 3 by plating or other means in advance,
By heating, the interface is joined metallically, and the close fixation between the copper fin 1 and the copper tube 3 is strengthened.

【0018】加熱拡管終了後、組み立て品全体を冷却し
、温度が100℃を超えている状態でバルブ8を開放す
ると、水は蒸気となって外部へ自力で噴出する。その後
、さらにバルブ8を通して不活性ガスでパージすること
により、余熱も手伝って内面が酸化することなく乾燥す
る。
After heating and expanding the tube, the entire assembly is cooled and when the valve 8 is opened while the temperature exceeds 100° C., the water becomes steam and is blown out by itself. Thereafter, by further purging with an inert gas through the valve 8, the inner surface is dried without being oxidized with the help of residual heat.

【0019】なお、拡管に用いる水の注入量は、以下の
ように算出される。例えば前述の外径9.52mm、肉
厚0.34mmの銅管を使用し、流路の総長が20mと
した場合には、内容積は約1.231trとなるので、
前述のように温度が300℃の場合には飽和蒸気の比重
量が約4.2g/1trであることから、300℃での
飽和蒸気量は約56gとなり、注入する水の量はこれ以
下の極少量で済むことが分かる。また、加熱温度は、3
05〜310℃に設定すれば良い。
The amount of water to be injected for pipe expansion is calculated as follows. For example, if the aforementioned copper tube with an outer diameter of 9.52 mm and a wall thickness of 0.34 mm is used and the total length of the flow path is 20 m, the internal volume will be approximately 1.231 tr, so
As mentioned above, when the temperature is 300°C, the specific weight of saturated steam is about 4.2g/1tr, so the amount of saturated steam at 300°C is about 56g, and the amount of water to be injected is less than this. It turns out that only a very small amount is required. In addition, the heating temperature is 3
The temperature may be set at 05 to 310°C.

【0020】本実施例においては、マンドレル拡管法に
おけるような銅管の拡管に伴う潤滑を行う必要がなく、
且つ銅粉も発生しないので、組み立て後の洗浄工程が不
要となる。従って、公害防止に役立つとともに、コスト
低減にも寄与する。また、内面溝付銅管を使用する場合
には、マンドレル拡管法による拡管の場合のような内面
フィンの潰れが生じないので、内面熱伝達率が低下する
ことがなく、熱交換器の性能向上を図ることができる。 さらに、マンドレル拡管法のような拡管に伴う銅管縮み
代のバラツキの問題も解消される。
[0020] In this embodiment, there is no need to lubricate the copper pipe during expansion as in the mandrel expansion method.
Moreover, since no copper powder is generated, a cleaning process after assembly is unnecessary. Therefore, it helps prevent pollution and also contributes to cost reduction. In addition, when using internally grooved copper tubes, the internal fins do not collapse as in the case of pipe expansion using the mandrel expansion method, so the internal heat transfer coefficient does not decrease, improving the performance of the heat exchanger. can be achieved. Furthermore, the problem of variations in the shrinkage margin of the copper pipe due to pipe expansion such as the mandrel pipe expansion method is also solved.

【0021】また、本実施例の方法は、加熱炉及び付帯
設備を追加するだけで、従来の工程を大幅に変更するこ
となく熱交換器の量産ラインに適用できることも利点と
なっている。
Another advantage of the method of this embodiment is that it can be applied to a heat exchanger mass production line by simply adding a heating furnace and auxiliary equipment without significantly changing the conventional process.

【0022】なお、本実施例のように、直状銅管をUベ
ンドで接続するようにした場合には、ヘアピン曲げを行
う必要がないので銅管肉厚を薄くすることができる。こ
れも熱交換器全体のコストダウンを図る上で利点となる
。この場合、裸銅管を用いたUベンドの端末をベルマウ
ス拡管し、銅管端末を挿入するので、内面溝付銅管の端
末をベルマウス拡管してUベンド端末を挿入する場合に
比べて、端末の割れ不良が少なくなり、さに内面溝に沿
ってろう材が流れることがなくなるので、ろう材使用量
を減らすことができる。
Note that when straight copper tubes are connected by U-bends as in this embodiment, there is no need to perform hairpin bending, so the thickness of the copper tubes can be made thinner. This is also an advantage in reducing the cost of the entire heat exchanger. In this case, the end of a U-bend using a bare copper tube is expanded with a bell mouth and a copper tube end is inserted, so it is much better than the case where the end of an internally grooved copper tube is expanded with a bell mouth and a U-bend end is inserted. The amount of soldering material used can be reduced because the occurrence of cracks at the terminals is reduced and the soldering material does not flow along the inner grooves.

【0023】[0023]

【発明の効果】以上説明した通り本発明によれば、製造
コストが減少し且つ冷媒に対する内面熱伝達率の低下を
招かないフィンアンドチューブ型熱交換器の製造方法を
提供することができた。
As explained above, according to the present invention, it is possible to provide a method for manufacturing a fin-and-tube heat exchanger that reduces manufacturing costs and does not cause a decrease in the internal heat transfer coefficient to the refrigerant.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例の製造方法によって製造される熱交換器
の一部を破断した正面図である。
FIG. 1 is a partially cutaway front view of a heat exchanger manufactured by a manufacturing method of an example.

【図2】飽和水蒸気圧、銅管の破裂圧、飽和蒸気比容積
、銅管の外径増大量等を示す図である。
FIG. 2 is a diagram showing saturated water vapor pressure, bursting pressure of a copper tube, saturated steam specific volume, amount of increase in outer diameter of a copper tube, etc.

【図3】マンドレル拡管法により金属管を拡管して放熱
フィンと金属管とを密着させる方法を示す説明図である
FIG. 3 is an explanatory diagram showing a method of expanding a metal tube by the mandrel expansion method to bring the heat radiation fin and the metal tube into close contact.

【図4】液圧拡管法により金属管を拡管して放熱フィン
と金属管とを密着させる方法を示す説明図である。
FIG. 4 is an explanatory diagram illustrating a method of expanding a metal tube using a hydraulic expansion method to bring the radiation fins and the metal tube into close contact with each other.

【図5】ボール拡管法にり金属管を拡管して放熱フィン
と金属管とを密着させる方法を示す説明図である。
FIG. 5 is an explanatory diagram illustrating a method of expanding a metal tube using a ball expansion method to bring the radiation fins and the metal tube into close contact with each other.

【図6】圧入法により放熱フィンと金属管とを密着させ
る方法を示す説明図である。
FIG. 6 is an explanatory diagram showing a method of closely contacting a heat dissipation fin and a metal tube by a press-fitting method.

【図7】銅管の内面蒸発熱伝達率を示す図である。FIG. 7 is a diagram showing the internal evaporative heat transfer coefficient of a copper tube.

【符号の説明】[Explanation of symbols]

1    銅フィン 2    銅管挿入孔 3    銅管 4    Uベンド 5    冷媒流路 6    水 7    冷媒流路端末 8    バルブ 9    加熱炉 10  拡管用マンドレル 11  高圧液 12  拡管用ボール 13  フィン圧入用押圧治具 1 Copper fin 2 Copper pipe insertion hole 3 Copper pipe 4 U bend 5 Refrigerant flow path 6 Water 7 Refrigerant flow path terminal 8 Valve 9 Heating furnace 10 Mandrel for tube expansion 11 High pressure liquid 12 Tube expansion ball 13 Press jig for fin press-fitting

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  互いに平行に設けて成る複数の放熱フ
ィンと、前記複数の放熱フィンに設けた孔を貫通する金
属管から成り、金属管が冷媒流路を構成するフィンアン
ドチューブ式熱交換器の製造方法において、前記複数の
放熱フィンに設けた孔に前記金属管を挿入する工程、前
記金属管相互を連結して冷媒流路を形成する工程、前記
冷媒流路に水を注入する工程、前記冷媒流路の両端を密
閉する工程、前記金属管及び前記放熱フィンとを含む組
み立て品を、前記注入された水により前記金属管内が所
定の蒸気圧を有する温度まで加熱する工程、前記金属管
及び前記放熱フィンとを含む組み立て品を冷却する工程
、及び前記注入した水を前記冷媒流路内から排除する工
程とを含み、前記所定の蒸気圧により前記金属管を拡管
して前記金属管と前記放熱フィンとを密着固定すること
を特徴とするフィンアンドチューブ式熱交換器の製造方
法。
1. A fin-and-tube heat exchanger comprising a plurality of radiation fins arranged parallel to each other and a metal tube passing through holes provided in the plurality of radiation fins, the metal tube forming a refrigerant flow path. In the manufacturing method, a step of inserting the metal tube into a hole provided in the plurality of radiation fins, a step of connecting the metal tubes to each other to form a refrigerant flow path, a step of injecting water into the refrigerant flow path, a step of sealing both ends of the refrigerant flow path; a step of heating an assembly including the metal tube and the radiation fins to a temperature at which the inside of the metal tube has a predetermined vapor pressure by the injected water; and a step of cooling an assembly including the radiation fins, and a step of removing the injected water from the refrigerant flow path, expanding the metal tube with the predetermined vapor pressure and forming the metal tube. A method for manufacturing a fin-and-tube heat exchanger, characterized in that the heat radiation fins are closely fixed.
【請求項2】  前記加熱工程における前記所定の蒸気
圧は、金属管が内圧により破裂する圧力よりも小さいも
のである、請求項1に記載のフィンアンドチューブ式熱
交換器の製造方法。
2. The method for manufacturing a fin-and-tube heat exchanger according to claim 1, wherein the predetermined vapor pressure in the heating step is lower than a pressure at which the metal tube bursts due to internal pressure.
【請求項3】  前記水の注入工程における水の量は、
前記所定の蒸気圧と前記金属管の内圧による破裂圧とが
等しくなる温度において丁度飽和水が存在しなくなる量
以下である、請求項1に記載のフィンアンドチューブ式
熱交換器の製造方法。
3. The amount of water in the water injection step is:
2. The method for manufacturing a fin-and-tube heat exchanger according to claim 1, wherein the amount is just below the amount at which saturated water ceases to exist at a temperature where the predetermined vapor pressure and the bursting pressure due to the internal pressure of the metal tube are equal.
【請求項4】  前記加熱工程において前記放熱フィン
と前記金属管との界面に低融点金属を介在させ、前記加
熱工程時における熱によって前記低融点金属を溶融させ
、前記放熱フィンと前記金属管とを金属的に接合する、
請求項1に記載のフィンアンドチューブ式熱交換器の製
造方法。
4. In the heating step, a low melting point metal is interposed at the interface between the heat dissipation fin and the metal tube, and the low melting point metal is melted by the heat during the heating step, so that the heat dissipation fin and the metal tube are bonded together. to join them metallically,
A method for manufacturing a fin-and-tube heat exchanger according to claim 1.
JP3108673A 1991-04-12 1991-04-12 Manufacturing method of fin and tube heat exchanger Expired - Lifetime JP2773459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3108673A JP2773459B2 (en) 1991-04-12 1991-04-12 Manufacturing method of fin and tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3108673A JP2773459B2 (en) 1991-04-12 1991-04-12 Manufacturing method of fin and tube heat exchanger

Publications (2)

Publication Number Publication Date
JPH04316991A true JPH04316991A (en) 1992-11-09
JP2773459B2 JP2773459B2 (en) 1998-07-09

Family

ID=14490778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3108673A Expired - Lifetime JP2773459B2 (en) 1991-04-12 1991-04-12 Manufacturing method of fin and tube heat exchanger

Country Status (1)

Country Link
JP (1) JP2773459B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056992A (en) * 2001-08-20 2003-02-26 Fujitsu General Ltd Heat exchanger
JP2008153505A (en) * 2006-12-19 2008-07-03 Nhk Spring Co Ltd Cooling device for heat treatment equipment and manufacturing method therefor
JPWO2019058514A1 (en) * 2017-09-22 2020-10-15 三菱電機株式会社 How to make a heat exchanger
CN117254332A (en) * 2023-11-17 2023-12-19 北京中石正旗技术有限公司 Heat radiation structure and gas laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933262A (en) * 1972-07-26 1974-03-27
JPS49114554A (en) * 1973-03-07 1974-11-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933262A (en) * 1972-07-26 1974-03-27
JPS49114554A (en) * 1973-03-07 1974-11-01

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056992A (en) * 2001-08-20 2003-02-26 Fujitsu General Ltd Heat exchanger
JP2008153505A (en) * 2006-12-19 2008-07-03 Nhk Spring Co Ltd Cooling device for heat treatment equipment and manufacturing method therefor
JPWO2019058514A1 (en) * 2017-09-22 2020-10-15 三菱電機株式会社 How to make a heat exchanger
CN117254332A (en) * 2023-11-17 2023-12-19 北京中石正旗技术有限公司 Heat radiation structure and gas laser
CN117254332B (en) * 2023-11-17 2024-02-02 北京中石正旗技术有限公司 Heat radiation structure and gas laser

Also Published As

Publication number Publication date
JP2773459B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
US3750248A (en) Method for making evaporator or condenser construction
US3833986A (en) Method of making heat exchanger
US3048021A (en) Joule-thomson effect gas liquefier
US3769674A (en) Method for producing heat pipes
US4877083A (en) Brazed heat exchanger and method of making the same
US2735698A (en) Header plate-tube joint for heat-
US5380048A (en) Tube joint
CN103846638A (en) Heat exchanger and method of manufacturing the same
CN1322300C (en) Heat exchanger
US2211813A (en) Method of making heat exchange devices
JP2569452B2 (en) Heat exchanger manufacturing method
JP2773459B2 (en) Manufacturing method of fin and tube heat exchanger
CN205102463U (en) Heat exchanger and air conditioner device
US4466567A (en) Method for braze-joining spirally wound tapes to inner walls of heat exchanger tubes
JP2874346B2 (en) Heat exchanger manufacturing method
US4258460A (en) Method of making a heat exchanger
CN115781204A (en) Forming process method of flat copper pipe
JP2541056B2 (en) Method of manufacturing heat pipe type heat exchanger
KR200270457Y1 (en) A accumulator of cooling equipment
JP2000039276A (en) Machining method for flat heat pipe
CN111805188A (en) Flat heat exchanger and method for manufacturing same
KR100380111B1 (en) mounting method of refrigerant pipe for auger-type ice machine
JPH04332390A (en) Heat pipe type heat exchanger and manufacture thereof
JPS58215219A (en) Manufacture of heat transmitting tube provided with inner fin
JPS6015231B2 (en) Manufacturing method for solar heat collector tubes