JPH04331768A - Production of titanium oxide formed article - Google Patents

Production of titanium oxide formed article

Info

Publication number
JPH04331768A
JPH04331768A JP3131810A JP13181091A JPH04331768A JP H04331768 A JPH04331768 A JP H04331768A JP 3131810 A JP3131810 A JP 3131810A JP 13181091 A JP13181091 A JP 13181091A JP H04331768 A JPH04331768 A JP H04331768A
Authority
JP
Japan
Prior art keywords
titanium oxide
catalyst
molded product
kneaded
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3131810A
Other languages
Japanese (ja)
Inventor
Masayuki Hanada
花田 正幸
Jiyunki Hirata
順基 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP3131810A priority Critical patent/JPH04331768A/en
Publication of JPH04331768A publication Critical patent/JPH04331768A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a producing method of formed article having excellent mechanical strength and containing titanium oxide as a main component without changing pore volume, specific surface area and catalyst activity. CONSTITUTION:A titanium oxide raw material is mixed with additives capable of generating nascent oxygen and the mixture is formed and then fired.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、酸化チタンを主成分と
する成型物の製造方法に関し、さらに詳しくは、酸化チ
タン担体あるいは酸化チタンと他の成分からなる触媒の
圧縮強度、摩耗強度などの機械的強度の大きな成型物の
製造方法に関する。
[Industrial Application Field] The present invention relates to a method for manufacturing a molded product containing titanium oxide as a main component, and more specifically, the present invention relates to a method for manufacturing a molded product containing titanium oxide as a main component, and more specifically, to improve the compressive strength, abrasion strength, etc. of a titanium oxide carrier or a catalyst composed of titanium oxide and other components. This invention relates to a method for manufacturing a molded product with high mechanical strength.

【0002】0002

【従来技術】現在工業的に使用されている担体あるいは
触媒は、円柱状、棒状、パイプ状、リング状、球状、ハ
ニカム状等の形状の成型物で、固定、移動床等の方式の
反応器に充てんされ、使用されているが、実用的には一
定以上の強度が要求される。強度が弱い場合は、反応器
への充てん時に崩壊し、又反応中にも自重や処理ガス中
に含まれるダストなどにより崩壊もしくは粉化するため
、反応器中で閉塞を起こし、圧力損失の上昇、触媒機能
の低下、その他後流機器への影響等種々悪影響を与える
。酸化チタンは、触媒担体あるいは触媒自体としてすぐ
れた性質を有しており、無水マレイン酸、アセトニトリ
ル、無水フタル酸などの合成、クラウス反応用の触媒、
あるいは担体として使用されている。また、排ガス中の
窒素酸化物(NOx)のアンモニア還元分解用触媒は酸
化チタンを主成分とする触媒がほとんどである。酸化チ
タンを主成分とする成型物の機械的強度を向上させる方
法としては成型物を高温で焼成することにより成型物を
構成している粒子相互の結合力を増すことにより強度を
向上させる方法があるが、この方法は担体や触媒として
必要な比表面積および細孔容積等が小さくなる欠点があ
る。さらに、酸化チタン成型物の機械的強度を高める方
法としては、酸化チタンに、酸と、アルミナゾルまたは
アルミニウム塩を混合して成型、乾燥、焼成する方法(
特公昭56−33350)、酸化チタンに蓚酸チタン又
はその塩を混合して成型し、焼成する方法(特公昭60
−42185)、チタン化合物にホウ素化合物を混合し
て成型したのち熱処理する方法(特開昭53−2430
6)、酸化チタン原料に加熱によりCaOを生成するC
a化合物を混合して成型し、乾燥、焼成する方法(特公
昭57−26819)などが開示されている。しかし、
これら従来の方法で得られる成型物は、必ずしも機械的
強度が充分とは云えなかった。特に、酸化チタンを主成
分とするNOxのアンモニア還元分解用触媒のハニカム
状成型物にあっては、活性を損なうことなく、機械的強
度を高める方法が望まれていた。
[Prior Art] Supports or catalysts currently used industrially are molded products in shapes such as cylinders, rods, pipes, rings, spheres, and honeycombs, and are used in fixed and moving bed reactors. However, for practical purposes, a certain level of strength is required. If the strength is weak, it will collapse when it is filled into the reactor, and during the reaction it will collapse or powder due to its own weight and dust contained in the process gas, causing blockage in the reactor and increasing pressure loss. , a decline in catalyst function, and other adverse effects on downstream equipment. Titanium oxide has excellent properties as a catalyst carrier or as a catalyst itself, and can be used as a catalyst for the synthesis of maleic anhydride, acetonitrile, phthalic anhydride, etc., as a catalyst for the Claus reaction, and as a catalyst for the Claus reaction.
Alternatively, it is used as a carrier. Further, most catalysts for ammonia reduction and decomposition of nitrogen oxides (NOx) in exhaust gas are catalysts containing titanium oxide as a main component. One way to improve the mechanical strength of a molded product whose main component is titanium oxide is to increase the strength by increasing the bonding strength between the particles that make up the molded product by firing the molded product at a high temperature. However, this method has the disadvantage that the specific surface area, pore volume, etc. required for the carrier and catalyst are small. Furthermore, as a method to increase the mechanical strength of titanium oxide molded products, there is a method of mixing titanium oxide with acid, alumina sol or aluminum salt, molding, drying, and firing (
(Japanese Patent Publication No. 56-33350), a method of mixing titanium oxide with titanium oxalate or its salt, molding and firing (Japanese Patent Publication No. 60-33350)
-42185), a method in which a titanium compound is mixed with a boron compound, molded, and then heat treated (JP-A-53-2430
6), C that generates CaO by heating the titanium oxide raw material
A method of mixing a compound, molding, drying and firing (Japanese Patent Publication No. 57-26819) is disclosed. but,
Molded products obtained by these conventional methods did not necessarily have sufficient mechanical strength. In particular, in the case of a honeycomb-shaped molded product of a catalyst for ammonia reduction and decomposition of NOx whose main component is titanium oxide, a method of increasing the mechanical strength without impairing the activity has been desired.

【0003】0003

【発明の目的】本発明の目的は、工業触媒として具備す
べき重要な要件である機械的強度にすぐれた酸化チタン
を主成分とする成型物の製造方法を提供するものであり
、具体的には細孔容積、比表面積および触媒活性を変化
させずに、機械的強度のすぐれた成型物の製造方法を提
供することにある。
[Object of the invention] The object of the present invention is to provide a method for manufacturing a molded product mainly composed of titanium oxide, which has excellent mechanical strength, which is an important requirement for an industrial catalyst. The object of the present invention is to provide a method for producing a molded product having excellent mechanical strength without changing the pore volume, specific surface area, or catalytic activity.

【0004】0004

【発明の要旨】本発明は、酸化チタン原料に発生期の酸
素を生じうる添加剤を混合して成型し、ついで焼成する
ことを特徴とする酸化チタンを主成分とする成型物の製
造方法に関する。
SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing a molded product containing titanium oxide as a main component, which comprises mixing a titanium oxide raw material with an additive that can generate nascent oxygen, molding the mixture, and then firing the mixture. .

【0005】[0005]

【発明の具体的な説明】本発明において、酸化チタンを
主成分とする成型物とは、担体若しくは触媒中に占める
酸化チタンの割合が50wt%以上のものをいい、酸化
チタン原料には、酸化チタン、メタチタン酸、オルトチ
タン酸などの酸化チタン水和物はもとより、酸化チタン
又は酸化チタン水和物と他の酸化物又はその前駆体との
混合物あるいは複合酸化物、例えばTiO2−WO3、
TiO2−M0O3、TiO2−SiO2、TiO2−
Al2O3なども含まれる。本発明では、前記酸化チタ
ン原料に発生期の酸素を生じうる添加剤を混合して成型
されるが、ここで、発生期の酸素を生じうる添加剤とし
ては、過酸化水素、塩素酸、過塩素酸およびそれらの塩
など分解により酸化力の強い発生期の酸素を放出する化
合物が挙げられる。特に過酸化水素は、成型物中に残存
しないので好ましい。そして、酸化チタン原料に混合す
る添加剤の量は、TiO21モルに対し、0.005モ
ル以上、好ましくは0.01〜0.5モル、さらに好ま
しくは0.02〜0.1モルの範囲が望ましい。添加剤
の量が0.005モルより少ない場合は、得られる成型
物の機械的強度の向上が小さく、また、0.5モルより
多くしても機械的強度の向上する割合が変わらないので
経済的でない。本発明の実施態様のひとつは、酸化チタ
ン原料、例えば酸化チタン粉末に水と発生期の酸素を生
じうる添加剤をニーダーで混合し、必要に応じて加熱、
混練して可塑性を有する捏和物とした後、所望の形状に
押出し成型などの手段で成型し、乾燥、焼成して成型物
を調製する。通常、押出し成型に際し、成型性を良くす
るためにカルボキシメチルセルロース、ポリビニルアル
コール、メチルセルロースなどの有機成型助剤が使用さ
れるが、有機成型助剤を多く使用すると、得られる成型
物の機械的強度が弱くなる傾向にある。本発明では、発
生期の酸素を生じうる添加剤を使用するので、成型性が
良くなり有機成型助剤の使用が不要であるか、または有
機成型助剤の使用量が少なくてよい。このため得られる
成型物は焼成の際、有機物の燃焼による成型物表面の部
分的な温度上昇、あるいは有機物の燃焼に必要な酸素を
有機物の近辺に存在する活性金属種からうばうことが少
なく、活性金属種の酸化状態の変化等が小さくなり、安
定した活性を有する触媒成型物の製造が容易となり、ま
た機械的強度が強くなる。本発明での成型物の形状は、
円柱状、パイプ状、球状、ハニカム状など任意に選定す
ることができ、乾燥、焼成は、通常の担体あるいは触媒
の乾燥、焼成条件が採用される。焼成は、通常不活性ガ
ス雰囲気あるいは空気雰囲気下、300℃〜1000℃
の範囲で0.5〜10時間で行うことが望ましい。また
、本発明の他の実施態様では、酸化チタン粉末に水と発
生期の酸素を生じうる添加剤を混合して、水分調整した
粉末を造粒機で球状に成型した後、乾燥、焼成して酸化
チタンを主成分とする成型物を調製することができる。 本発明で得られた成型物は、工業的使用に耐えうるに充
分な機械的強度を有し、大きい細孔容積、比表面積など
の物理的諸性質を保持しているので、担体または触媒と
して好適である。特に、本発明で得られる酸化チタンを
主成分とし、バナジウム、タングステンなどを含むハニ
カム状脱硝触媒成型物は、機械的強度が強く、しかも従
来の脱硝触媒に比較して活性低下がないので、工業触媒
として好適である。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a molded product containing titanium oxide as a main component refers to one in which the proportion of titanium oxide in the carrier or catalyst is 50 wt% or more, and the titanium oxide raw material contains titanium oxide. Not only titanium oxide hydrates such as titanium, metatitanic acid, orthotitanic acid, but also mixtures or composite oxides of titanium oxide or titanium oxide hydrates with other oxides or their precursors, such as TiO2-WO3,
TiO2-M0O3, TiO2-SiO2, TiO2-
Also included are Al2O3 and the like. In the present invention, the titanium oxide raw material is mixed with an additive that can generate nascent oxygen, and the additives that can generate nascent oxygen include hydrogen peroxide, chloric acid, peroxide, etc. Compounds that release nascent oxygen with strong oxidizing power upon decomposition, such as chloric acid and their salts, are included. Hydrogen peroxide is particularly preferred because it does not remain in the molded product. The amount of the additive to be mixed into the titanium oxide raw material is 0.005 mol or more, preferably 0.01 to 0.5 mol, more preferably 0.02 to 0.1 mol, per 21 mol of TiO. desirable. If the amount of the additive is less than 0.005 mol, the improvement in the mechanical strength of the resulting molded product will be small, and even if the amount is more than 0.5 mol, the rate of improvement in mechanical strength will not change, making it economical. Not on point. In one embodiment of the present invention, a titanium oxide raw material, for example, titanium oxide powder, is mixed with water and an additive that can generate nascent oxygen in a kneader, and if necessary, the mixture is heated,
After kneading to obtain a kneaded product having plasticity, the product is molded into a desired shape by means such as extrusion molding, dried, and fired to prepare a molded product. Usually, during extrusion molding, organic molding aids such as carboxymethyl cellulose, polyvinyl alcohol, and methylcellulose are used to improve moldability, but if a large amount of organic molding aids is used, the mechanical strength of the resulting molded product will decrease. It tends to become weaker. In the present invention, since an additive capable of generating nascent oxygen is used, moldability is improved and the use of an organic molding aid is unnecessary, or the amount of organic molding aid used may be small. For this reason, during firing, the resulting molded product is less likely to experience a local temperature rise on the surface of the molded product due to the combustion of organic matter, or to remove the oxygen necessary for the combustion of organic matter from the active metal species present near the organic matter. Changes in the oxidation state of metal species, etc. are reduced, making it easier to manufacture catalyst molded products with stable activity, and increasing mechanical strength. The shape of the molded product in the present invention is
It can be arbitrarily selected to have a cylindrical, pipe-like, spherical, or honeycomb shape, and the drying and calcination conditions for drying and calcination of a normal carrier or catalyst are adopted. Firing is usually performed at 300°C to 1000°C under an inert gas atmosphere or air atmosphere.
It is desirable to carry out the treatment for 0.5 to 10 hours within the range of 0.5 to 10 hours. In another embodiment of the present invention, titanium oxide powder is mixed with water and an additive that can generate nascent oxygen, and the moisture-adjusted powder is molded into a spherical shape using a granulator, and then dried and fired. A molded product containing titanium oxide as a main component can be prepared by using this method. The molded product obtained by the present invention has sufficient mechanical strength to withstand industrial use and maintains various physical properties such as large pore volume and specific surface area, so it can be used as a support or catalyst. suitable. In particular, the honeycomb-shaped denitrification catalyst molded product, which is mainly composed of titanium oxide and contains vanadium, tungsten, etc., obtained by the present invention has strong mechanical strength and does not have a decrease in activity compared to conventional denitrification catalysts, so it is suitable for industrial use. Suitable as a catalyst.

【0006】[0006]

【実施例】以下、本発明を実施例により説明する。 実施例1 酸化チタン粉末20kgに35wt%の過酸化水素2k
gを加えニーダーで混練した。次いでこれに水12リッ
トル及び五酸化バナジウム1kgを加え混練した。混練
後加熱しながら水分調節をして得た捏和物をハニカム形
状に押し出し成型した。成型物を70℃で3日間乾燥後
、500℃で3時間焼成し触媒Aを得た。 実施例2 酸化チタン粉末20kgに6.0wt%の過塩素酸アン
モニウム(NH4ClO4)5kgを加えニーダーで混
練した。次いでこれに水9リットル及び五酸化バナジウ
ム1kgを加え混練した。さらにカルボキシメチルセル
ロース100gを加え混練した後、加熱しながら水分調
節をし、得た捏和物をハニカム形状に成型した。成型物
を70℃で3日間乾燥した後、500℃で3時間焼成し
触媒Bを得た。 実施例3〜5 実施例1において、過酸化水素の濃度をそれぞれ25、
15、10wt%と変えて、それぞれ2kgを加え混練
した以外は実施例1と全く同様の方法でそれぞれ触媒C
、D、Eを調製した。 実施例6 酸化チタン粉末20kgに5.0wt%の次亜塩素酸水
溶液(HClO)6kgを加えニーダーで混練した。次
いでこれに水7リットル及びメタバナジンサンアンモニ
ウム1.2kgを加え混練した。さらにカルボキシメチ
ルセルロース100gを加え混練した後、加熱しながら
水分調節をして得た捏和物をハニカム形状に押し出し成
型した。成型物を70℃で3日間乾燥した後、500℃
で3時間焼成し触媒Fを得た。 比較例1 酸化チタン粉末20kgに5.0wt%塩酸6kgを加
えニーダーで混練した。次いでこれに水7リットル及び
五酸化バナジウム1kgを加え混練した。さらにカルボ
キシメチルセルロース100gを加え混練した後、加熱
しながら水分調節して得た捏和物をハニカム形状に押し
出し成型した。 成型物を70℃で3日間乾燥した後、500℃で3時間
焼成し触媒Gを得た。 比較例2 酸化チタン粉末10kgに水13リットルとカルボキシ
メチルセルロース100gを加えニーダーで混練した。 次いでこれに、五酸化バジウム500gを加えさらに混
練した。この混練物を加熱しながら水分調節をした後、
ハニカム状に押し出し成型した。成型物を70℃で3日
間乾燥した後、500℃で3時間焼成し触媒Hを得た。 比較例3 酸化チタン粉末10kgに水13リットルとカルボキシ
メチルセルロース100gを加えニーダーで混練した。 次いでこれに水7リットル及びメタバナジン酸アンモニ
ウム1.2kgを加え混練した。さらにカルボキシメチ
ルセルロース100gを加え混練した後、水分調節して
得た捏和物をハニカム形状に押し出し成型した。成型物
を70℃で3日間乾燥した後、620℃で3時間焼成し
触媒Iを得た。 実施例7 〈評価試験〉実施例1〜6で得た触媒A〜Fおよび比較
例1〜3で得た触媒G〜Iについて、圧縮強度および細
孔容積、比表面積の測定を行った。圧縮強度及び摩耗強
度は次のようにして測定した。 〈圧縮強度〉1辺50mmの立方体のハニカム触媒を切
り出し、圧縮試験機(東京試験機製作所製)により、試
験片に一定速度で荷重をかけ、試験片が完全に破壊され
た時点での最大荷重を読みとる。その最大荷重を25c
m2で除した値をもって圧縮強度とする。 〈摩耗強度〉70□×100Lmmのサンプルを切り出
し、下記の条件で砂を含むガスをサンプルに衝突させ、
重量減少率で評価する。 ガス流速        20m/s 砂の濃度        40g/m3      砂
の平均サイズ  250μm通砂時間        
6時間 その結果を表1に示す。また、これらの触媒を用いて脱
硝活性を測定した。その結果を表1に示す。なお、活性
測定条件は以下の通りである。 使用触媒量          150mlSV   
         15,000h−1      N
Ox           200ppmNH3   
        240ppmO2         
    4vol%H2O           10
vol%N2             balanc
eガス温度        350℃ 脱硝率は反応器入口および出口NOx濃度を柳本製化学
発光式NOx分析計により測定し、下記の式により算出
した。
[Examples] The present invention will be explained below with reference to Examples. Example 1 2k of 35wt% hydrogen peroxide in 20kg of titanium oxide powder
g was added and kneaded using a kneader. Next, 12 liters of water and 1 kg of vanadium pentoxide were added and kneaded. After kneading, the moisture content was adjusted while heating, and the resulting kneaded product was extruded into a honeycomb shape. The molded product was dried at 70°C for 3 days and then calcined at 500°C for 3 hours to obtain catalyst A. Example 2 5 kg of 6.0 wt% ammonium perchlorate (NH4ClO4) was added to 20 kg of titanium oxide powder and kneaded in a kneader. Next, 9 liters of water and 1 kg of vanadium pentoxide were added and kneaded. Further, 100 g of carboxymethylcellulose was added and kneaded, and the moisture content was adjusted while heating, and the obtained kneaded product was molded into a honeycomb shape. After drying the molded product at 70°C for 3 days, it was calcined at 500°C for 3 hours to obtain catalyst B. Examples 3 to 5 In Example 1, the concentration of hydrogen peroxide was 25 and 25, respectively.
Catalyst C
, D, and E were prepared. Example 6 6 kg of a 5.0 wt % hypochlorous acid aqueous solution (HClO) was added to 20 kg of titanium oxide powder and kneaded in a kneader. Next, 7 liters of water and 1.2 kg of metavanazine ammonium were added and kneaded. Further, 100 g of carboxymethyl cellulose was added and kneaded, and the resulting kneaded product was adjusted in moisture while being heated and extruded into a honeycomb shape. After drying the molded product at 70°C for 3 days, it was dried at 500°C.
The catalyst was calcined for 3 hours to obtain catalyst F. Comparative Example 1 6 kg of 5.0 wt% hydrochloric acid was added to 20 kg of titanium oxide powder and kneaded in a kneader. Next, 7 liters of water and 1 kg of vanadium pentoxide were added and kneaded. Further, 100 g of carboxymethylcellulose was added and kneaded, and the resulting kneaded product was adjusted in moisture while heating and extruded into a honeycomb shape. After drying the molded product at 70°C for 3 days, it was calcined at 500°C for 3 hours to obtain catalyst G. Comparative Example 2 13 liters of water and 100 g of carboxymethyl cellulose were added to 10 kg of titanium oxide powder and kneaded in a kneader. Next, 500 g of badium pentoxide was added to this and further kneaded. After adjusting the moisture content while heating this kneaded material,
Extruded into a honeycomb shape. After drying the molded product at 70°C for 3 days, it was calcined at 500°C for 3 hours to obtain catalyst H. Comparative Example 3 13 liters of water and 100 g of carboxymethyl cellulose were added to 10 kg of titanium oxide powder and kneaded in a kneader. Next, 7 liters of water and 1.2 kg of ammonium metavanadate were added and kneaded. Further, 100 g of carboxymethylcellulose was added and kneaded, and the resulting kneaded product was extruded into a honeycomb shape by adjusting the moisture content. After drying the molded product at 70°C for 3 days, it was calcined at 620°C for 3 hours to obtain Catalyst I. Example 7 <Evaluation Test> Compressive strength, pore volume, and specific surface area were measured for catalysts A to F obtained in Examples 1 to 6 and catalysts G to I obtained in Comparative Examples 1 to 3. Compressive strength and abrasion strength were measured as follows. <Compressive strength> A cubic honeycomb catalyst with a side of 50 mm is cut out, and a load is applied to the test piece at a constant speed using a compression testing machine (manufactured by Tokyo Test Instruments Manufacturing Co., Ltd.), and the maximum load is determined when the test piece is completely destroyed. Read. Its maximum load is 25c
The value divided by m2 is taken as the compressive strength. <Abrasion strength> A sample of 70□ x 100Lmm was cut out, and a gas containing sand was bombarded with the sample under the following conditions.
Evaluate based on weight loss rate. Gas flow rate 20m/s Sand concentration 40g/m3 Average sand size 250μm Sand passing time
The results are shown in Table 1 for 6 hours. Furthermore, denitrification activity was measured using these catalysts. The results are shown in Table 1. In addition, the activity measurement conditions are as follows. Amount of catalyst used: 150mlSV
15,000h-1N
Ox 200ppmNH3
240ppmO2
4vol%H2O 10
vol%N2 balance
e Gas temperature: 350° C. The NOx concentration at the inlet and outlet of the reactor was measured using a chemiluminescent NOx analyzer manufactured by Yanagimoto, and was calculated using the following formula.

【表1】[Table 1]

【0007】[0007]

【効果】本発明の方法で得られる酸化チタン成型物は、
従来の方法に比較して圧縮強度、摩耗強度に優れており
、細孔容積、比表面積の低下がないので、担体又は触媒
として好適である。特に、本発明の方法で調製した脱硝
触媒は、強度が強く、しかも脱硝活性の低下がないので
好ましい。
[Effect] The titanium oxide molded product obtained by the method of the present invention is
Compared to conventional methods, this method has superior compressive strength and abrasion strength, and there is no decrease in pore volume or specific surface area, so it is suitable as a carrier or a catalyst. In particular, the denitrification catalyst prepared by the method of the present invention is preferred because it has high strength and does not reduce denitrification activity.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  酸化チタン原料に発生期の酸素を生じ
うる添加剤を混合して成型し、ついで焼成することを特
徴とする酸化チタンを主成分とする成型物の製造方法。
1. A method for producing a molded article containing titanium oxide as a main component, which comprises mixing a titanium oxide raw material with an additive capable of generating nascent oxygen, molding the mixture, and then firing the mixture.
JP3131810A 1991-05-07 1991-05-07 Production of titanium oxide formed article Pending JPH04331768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3131810A JPH04331768A (en) 1991-05-07 1991-05-07 Production of titanium oxide formed article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3131810A JPH04331768A (en) 1991-05-07 1991-05-07 Production of titanium oxide formed article

Publications (1)

Publication Number Publication Date
JPH04331768A true JPH04331768A (en) 1992-11-19

Family

ID=15066644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3131810A Pending JPH04331768A (en) 1991-05-07 1991-05-07 Production of titanium oxide formed article

Country Status (1)

Country Link
JP (1) JPH04331768A (en)

Similar Documents

Publication Publication Date Title
US5011674A (en) Method of producing titanium oxides
US4388288A (en) Preparation of shaped titanium dioxide catalyst/carrier and catalysis of gaseous sulfur compounds therewith
US4061596A (en) Process for preparing titanium oxide shaped carrier
JP5936680B2 (en) Raw material for DeNOx catalyst containing no vanadium or reduced in vanadium and method for producing the same
JP4050041B2 (en) Catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide using the catalyst
JPH0256246A (en) Production for catalyst including silver for ethylene oxide
JP5752418B2 (en) Method for producing honeycomb-type catalyst for reducing nitrogen oxides, and method for treating nitrogen oxide exhaust gas
JPS5982930A (en) Reduction of nitrogen oxide
JP4731689B2 (en) High temperature stable catalyst for N2O decomposition
US4725572A (en) Process for preparing a catalyst for removing nitrogen oxides
JPH02303539A (en) Production method of carrier catalyser to oxidize co, carrier catalyser and co-oxidation by contacting method
JPH0242536B2 (en)
JPS63185448A (en) Catalyst and method for removing nitrogen oxide in exhaust gas
EP0309048B2 (en) Silica extrudates
JPS5935026A (en) Preparation of calcined titanium oxide and catalyst
CN113908837B (en) MOFs derivative denitration catalyst, preparation method and application thereof
JPS5935027A (en) Preparation of calcined titanium oxide and catalyst
JPH04331768A (en) Production of titanium oxide formed article
JPS5935028A (en) Preparation of calcined titanium oxide and catalyst
JP2000308832A (en) Exhaust gas cleaning catalyst compound, catalyst containing the same and manufacture of the same
JP4588183B2 (en) Ceramic body, catalyst carrier, production method thereof, ethylene oxide production catalyst using the carrier, production method thereof, and ethylene oxide production method
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JPS5935025A (en) Preparation of calcined titanium oxide and catalyst
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JP7183081B2 (en) Denitrification catalyst and method for producing the same