JPH04331417A - System for detecting fault section of distribution line - Google Patents

System for detecting fault section of distribution line

Info

Publication number
JPH04331417A
JPH04331417A JP9993691A JP9993691A JPH04331417A JP H04331417 A JPH04331417 A JP H04331417A JP 9993691 A JP9993691 A JP 9993691A JP 9993691 A JP9993691 A JP 9993691A JP H04331417 A JPH04331417 A JP H04331417A
Authority
JP
Japan
Prior art keywords
distribution line
phase
section
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9993691A
Other languages
Japanese (ja)
Inventor
Soji Nishimura
荘治 西村
Yoshio Kuroiwa
黒岩 良雄
Hiroshi Kumegawa
久米川 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP9993691A priority Critical patent/JPH04331417A/en
Publication of JPH04331417A publication Critical patent/JPH04331417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

PURPOSE:To know a faulty section of a distribution line with less number of voltage sensors than before by utilizing, in a terminal station, a line voltage between the specified two phases of the distribution line, an ac supply voltage for control of the terminal station. CONSTITUTION:A terminal station T1 detects an earth current of one direction and a terminal station T2 detects an earth current of the opposite direction. Here, an element which has a phase common to the terminal stations T1 and T2, for example, a line voltage between the specified two phases or a phase voltage of the specified one phase is taken and a relative phase difference between the said element and a zero-phase current is calculated and then the result is sent to a master station. Based on a distribution of a phase difference from the zero-phase current, one of the data received from each terminal station, the master station distinguishes a group of the terminal stations which detect a grounded point in the direction there is an sending end, from the other terminal stations. The sections between the adjacent terminal stations out of the distinguished terminal stations are judged as grounded sections of distribution line.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、配電線上の一定区間ご
とに設けた端末局において配電線の電圧及び電流を測定
することにより方向地絡情報、短絡情報及び断線情報を
検出して配電線の故障区間を検出することができる配電
線の故障区間検出システムに関するものである。
[Industrial Application Field] The present invention detects directional ground fault information, short circuit information, and disconnection information by measuring the voltage and current of the distribution line at terminal stations installed in certain sections on the distribution line. The present invention relates to a fault section detection system for power distribution lines that can detect fault sections.

【0002】0002

【従来の技術】配電線は、変電所から需要家までの間に
設置される電線路であり、1つの変電所から多数本の配
電線が供給される。各配電線には、遮断器の他、一定間
隔ごとに区分開閉器が設けられている。配電線の途中に
おいて地絡等の事故が起こると、遮断器が開路され、そ
れに応じて区分開閉器も開路され、配電線が保護される
が、この場合、故障の原因究明をし故障区間以外に電力
供給を行うために故障区間がいずれにあるかを検出する
ことが重要である。
2. Description of the Related Art A power distribution line is an electric line installed between a substation and a consumer, and a large number of power distribution lines are supplied from one substation. In addition to circuit breakers, each distribution line is provided with section switches at regular intervals. When an accident such as a ground fault occurs in the middle of a distribution line, the circuit breaker is opened, and the sectional switch is also opened accordingly to protect the distribution line. It is important to detect where the faulty section is in order to supply power to the system.

【0003】そこで、従来においては、配電線の一定間
隔ごとに端末局(区分開閉器と同じ場所に設けてもよく
、別の場所に設けてもよい。また、区分開閉器の数と一
致していなくてもよい)を設けていた。この端末局は、
各相電流を測定する3つの電流センサと、各相電圧を測
定する3つの電圧センサとを有し、端末局において短絡
、断線情報を判定し、3つの電流センサから零相電流I
0 を算出し、3つの電圧センサから零相電圧V0 を
算出し、「零相電流I0及び零相電圧V0 が発生して
いることと、零相電流I0 と零相電圧V0 との位相
差を算出すること」により端末局内において地絡情報と
方向地絡情報とを判定して親局に送信し、親局は、変電
所の存在する方向に故障を検出した端末局と負荷の存在
する方向に故障を検出した端末局との間に位置する区間
を故障区間であるとしていた。
[0003] Therefore, in the past, terminal stations (which may be installed at the same location as the section switches or at a different location) are installed at regular intervals along the distribution line. ). This terminal station is
It has three current sensors that measure each phase current and three voltage sensors that measure each phase voltage. Short circuit and disconnection information is determined at the terminal station, and zero-sequence current I is detected from the three current sensors.
0, and calculate the zero-sequence voltage V0 from the three voltage sensors. The ground fault information and directional ground fault information are determined in the terminal station and sent to the master station, and the master station calculates the terminal station that detected the fault in the direction where the substation is located and the direction where the load is located. The section located between the terminal station and the terminal station where the failure was detected was considered to be the failed section.

【0004】0004

【発明が解決しようとする課題】前記の端末局には3つ
の電圧センサが必要であるが、これらの電圧センサには
、通常布設されている配電線に直接取り付けて大地との
電圧を光学的に測定するタイプのものが用いられる。 しかし、高電圧(例えば6.6kV)を測定するので、
大地との絶縁抵抗に大きく左右されるという欠点がある
。例えば、天候や電圧センサ表面の汚損等により大地と
の絶縁抵抗が変動すると測定電圧の位相角が実際の電圧
の位相角とずれたり、測定電圧の大きさそのものに誤差
が生じたりする。
[Problem to be Solved by the Invention] The terminal station described above requires three voltage sensors, but these voltage sensors are required to be attached directly to the normally installed power distribution line and optically measure the voltage between them and the ground. A type of measurement is used. However, since we are measuring high voltage (e.g. 6.6kV),
The drawback is that it is greatly affected by the insulation resistance with the ground. For example, if the insulation resistance with the ground changes due to weather or dirt on the surface of the voltage sensor, the phase angle of the measured voltage may deviate from the phase angle of the actual voltage, or an error may occur in the magnitude of the measured voltage itself.

【0005】そこで、電圧センサを変圧器PTにより構
成し端末局に内蔵すれば前記の欠点は生じないが、零相
電圧V0 を検出するために高価な変圧器PTを3つも
設けなければならないという問題がある。端末局は、各
配電線に多数配置されるものであり、配電線の数が多い
ことを考えると端末局の構成はできるだけ簡単にするこ
とが好ましいので、1つの端末局に使用する変圧器PT
の数はできるだけ少ない方がよい。
[0005] Therefore, if the voltage sensor is constituted by a transformer PT and built into the terminal station, the above-mentioned drawbacks will not occur, but in order to detect the zero-sequence voltage V0, three expensive transformers PT must be installed. There's a problem. A large number of terminal stations are placed on each distribution line, and considering the large number of distribution lines, it is preferable to make the configuration of the terminal station as simple as possible.
It is better to keep the number as small as possible.

【0006】本発明の目的は、上述の技術的課題を解決
し、従来と比べて少ない個数の電圧センサを使用した端
末局を配置することにより、配電線の故障区間を知るこ
とができる配電線の故障区間検出システムを提供するこ
とである。
[0006] An object of the present invention is to solve the above-mentioned technical problems, and to provide a distribution line in which faulty sections of the distribution line can be known by arranging terminal stations that use a smaller number of voltage sensors than in the past. The object of the present invention is to provide a fault section detection system.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの請求項1記載の配電線の故障区間検出システムは、
複数区間に区分された配電線の各区間に端末局を配置し
、前記端末局からデータを受信するための親局を配置し
、各端末局には、配電線の各相電流を検出する電流セン
サと、電流センサの検出電流及び当該端末局の制御用交
流電源電圧である配電線の所定の2相間の線間電圧をそ
れぞれ基準値と比較することにより、配電線の短絡又は
断線を判定する短絡断線判定手段と、電流センサの検出
電流に基づいて零相電流を求め、その零相電流と当該端
末局の制御用交流電源電圧である配電線の所定の2相間
の線間電圧との位相差を算出する算出手段と、算出手段
により検出された前記位相差のデータ及び判定手段によ
り判定された短絡又は断線のデータを送信する送信手段
とが設けられ、親局には、各端末局から受信されたデー
タに含まれる前記位相差の分布に基づいて、位相差がほ
ぼ180°異なる端末局群を区別し、これら区別された
端末局群のうち互いに隣接する端末局の間に存在する区
間を配電線の地絡故障区間として決定する地絡故障区間
決定手段と、各端末局から受信されたデータに含まれる
短絡又は断線の判定結果に基づいて短絡故障区間又は断
線故障区間を決定する短絡断線故障区間決定手段とが設
けられている。
[Means for Solving the Problems] A distribution line failure section detection system according to claim 1 for achieving the above object,
A terminal station is placed in each section of a distribution line divided into multiple sections, a master station is placed to receive data from the terminal station, and each terminal station has a current that detects each phase current of the distribution line. A short circuit or a disconnection in the distribution line is determined by comparing the line voltage between two predetermined phases of the distribution line, which is the current detected by the sensor and the current sensor, and the control AC power supply voltage of the terminal station, with respective reference values. The short circuit/disconnection determination means determines the zero-sequence current based on the detected current of the current sensor, and determines the position of the zero-sequence current and the line voltage between two predetermined phases of the distribution line, which is the control AC power supply voltage of the terminal station. A calculation means for calculating a phase difference, and a transmission means for transmitting data on the phase difference detected by the calculation means and short circuit or disconnection data determined by the determination means are provided, and the master station receives data from each terminal station. Based on the distribution of the phase difference included in the received data, groups of terminal stations having a phase difference of approximately 180° are distinguished, and sections existing between terminal stations adjacent to each other among these distinguished groups of terminal stations are distinguished. a ground fault fault section determination means for determining a ground fault fault section of a distribution line; and a short circuit fault section for determining a short circuit fault section or a break fault section based on a short circuit or disconnection determination result included in data received from each terminal station. Disconnection failure section determining means is provided.

【0008】上記の目的を達成するための請求項2記載
の配電線の故障区間検出システムは、複数区間に区分さ
れた配電線の各区間に配置された端末局と、前記端末局
からデータを受信するための親局とを有し、各端末局に
は、配電線の所定の1相の相電圧を検出する電圧センサ
と、配電線の各相電流を検出する電流センサと、配電線
の各相電流及び前記所定の1相の相電圧をそれぞれ基準
値と比較することにより、配電線の短絡又は断線を判定
する短絡断線判定手段と、電流センサの検出電流に基づ
いて零相電流を求め、その零相電流と電圧センサにより
検出された所定の1相の相電圧との位相差を算出する算
出手段と、算出手段により検出された前記位相差のデー
タ及び判定手段により判定された短絡又は断線のデータ
を送信する送信手段とが設けられ、親局には、各端末局
から受信されたデータに含まれる前記位相差の分布に基
づいて、位相差がほぼ180°異なる端末局群を区別し
、これら区別された端末局群のうち互いに隣接する端末
局の間に存在する区間を配電線の地絡故障区間として決
定する地絡故障区間決定手段と、各端末局から受信され
たデータに含まれる短絡又は断線の判定結果に基づいて
短絡故障区間又は断線故障区間を決定する短絡断線故障
区間決定手段とが設けられているものである。
[0008] A faulty section detection system for a distribution line according to claim 2 for achieving the above object includes a terminal station arranged in each section of a distribution line divided into a plurality of sections, and a system for detecting data from the terminal station. Each terminal station has a voltage sensor that detects the phase voltage of one predetermined phase of the distribution line, a current sensor that detects the current of each phase of the distribution line, and A short-circuit-and-disconnection determination means for determining whether a distribution line is short-circuited or disconnected by comparing each phase current and the phase voltage of the predetermined one phase with a reference value, and a zero-sequence current is determined based on the current detected by the current sensor. , a calculation means for calculating a phase difference between the zero-phase current and a predetermined one-phase phase voltage detected by a voltage sensor, and data on the phase difference detected by the calculation means and a short circuit or a short circuit determined by the determination means. A transmitting means for transmitting disconnection data is provided, and the master station distinguishes between a group of terminal stations having a phase difference of approximately 180° based on the distribution of the phase difference included in the data received from each terminal station. and ground fault fault section determination means for determining a section existing between adjacent terminal stations among these differentiated terminal stations as a ground fault fault section of the distribution line; A short-circuit/disconnection fault section determining means is provided for determining a short-circuit/disconnection fault section or a breakage section based on the determination result of the included short circuit or disconnection.

【0009】請求項3記載の配電線の故障区間検出シス
テムは、請求項1の短絡断線判定手段を親局の側に設け
たものであり、請求項4記載の配電線の故障区間検出シ
ステムは、請求項2の短絡断線判定手段を親局の側に設
けたものである。
A faulty section detection system for a distribution line according to claim 3 is one in which the short circuit/disconnection determination means according to claim 1 is provided on the side of a master station, and a faulty section detection system for a distribution line according to claim 4 is provided with , the short circuit/disconnection determining means of claim 2 is provided on the master station side.

【0010】0010

【作用】上記の各発明によれば、配電線が短絡又は断線
したときは、配電線の各相電流及び前記所定の2相間の
線間電圧又は所定の1相の相電圧を基準値と比較するこ
とにより、各端末局における配電線の短絡又は断線を判
定し、その判定結果に基づいて短絡故障区間又は断線故
障区間を決定することができる。
[Operation] According to each of the above-mentioned inventions, when a distribution line is short-circuited or disconnected, each phase current of the distribution line and the line voltage between the predetermined two phases or the phase voltage of the predetermined one phase are compared with a reference value. By doing so, it is possible to determine whether the distribution line is short-circuited or disconnected at each terminal station, and determine the short-circuit failure section or the disconnection failure section based on the determination result.

【0011】また、配電線が地絡したときは、零相電流
と所定の2相間の線間電圧又は所定の1相の相電圧との
位相差をθとすると、地絡故障点と端末局との位置関係
によって位相差θが約180°逆転することを利用して
、送電端の存在する方向に地絡点を検出する端末局群と
、送電端の存在する方向と反対の方向に地絡点を検出す
る端末局群とを区別し、これら区別された端末局のうち
互いに隣接するものの間に位置する区間を配電線の地絡
故障区間として決定することができる。
Furthermore, when a distribution line has a ground fault, if the phase difference between the zero-sequence current and the line voltage between two predetermined phases or the phase voltage of one predetermined phase is θ, then the ground fault fault point and the terminal station By utilizing the fact that the phase difference θ is reversed by about 180 degrees depending on the positional relationship between the It is possible to distinguish between a group of terminal stations in which a connection point is detected, and to determine a section located between mutually adjacent terminal stations among these distinguished terminal stations as a ground fault section of the power distribution line.

【0012】このことを詳細に説明する。図1は配電線
の概念図であり、送電端にEa,Eb,Ecの電源が存
在するものとする。互いに隣接して設置された端末局を
T1,T2と表示する。端末局T1,T2の間で地絡が
起こったとし、地絡抵抗をRgとする。C1,C2は、
それぞれ地絡点の電源側と負荷側における配電線の対地
容量である。
[0012] This will be explained in detail. FIG. 1 is a conceptual diagram of a power distribution line, and assumes that power sources Ea, Eb, and Ec exist at the power transmission end. Terminal stations installed adjacent to each other are indicated as T1 and T2. Assume that a ground fault occurs between terminal stations T1 and T2, and that the ground fault resistance is Rg. C1 and C2 are
These are the ground capacity of the distribution line on the power supply side and load side of the ground fault point, respectively.

【0013】地絡発生時においては、地絡点の零相電圧
V0 は、 V0 =−Ea/(1+3jωCRg)で表される。こ
こに、 C=C1 +C2 である。また、零相電流I0 は、端末局T1で検出さ
れたものは、     I0 =C1 Ig/3C         
                       (1
) 端末局T2で検出されたものは、     I0 =−C2 Ig/3C        
                      (2)
 である。ここに、 Ig=3jωCEa/(1+3jωCRg)である。
[0013] When a ground fault occurs, the zero-sequence voltage V0 at the ground fault point is expressed as V0 = -Ea/(1+3jωCRg). Here, C=C1 +C2. Furthermore, the zero-sequence current I0 detected at the terminal station T1 is I0 = C1 Ig/3C
(1
) What is detected at terminal station T2 is I0 = -C2 Ig/3C
(2)
It is. Here, Ig=3jωCEa/(1+3jωCRg).

【0014】前記(1) 式と(2) 式から、端末局
T1と端末局T2とは互いに逆方向の地絡電流を検出し
ていることが分かる。そこで端末局T1と端末局T2と
で共通の位相を有する要素、例えば所定の2相間の線間
電圧又は所定の1相の相電圧をとって、それと零相電流
との相対位相差を算出し、親局に送信するようにすれば
、親局には、各端末局から受信されたデータに含まれる
前記零相電流との位相差の分布に基づいて、送電端の存
在する方向に地絡点を検出する端末局群と、送電端の存
在する方向と反対の方向に地絡点を検出する端末局群と
を区別できるので、これら区別された端末局のうち互い
に隣接するものの間に位置する区間を配電線の地絡故障
区間として決定することができる。
From equations (1) and (2) above, it can be seen that terminal station T1 and terminal station T2 detect ground fault currents in opposite directions. Therefore, an element having a common phase between the terminal station T1 and the terminal station T2, for example, the line voltage between two predetermined phases or the phase voltage of one predetermined phase, is taken and the relative phase difference between it and the zero-sequence current is calculated. , to the master station, the master station detects a ground fault in the direction of the power transmission end based on the distribution of the phase difference with the zero-sequence current included in the data received from each terminal station. It is possible to distinguish between a terminal station group that detects a ground fault point and a terminal station group that detects a ground fault point in the direction opposite to the direction in which the power transmission end exists. The section where the ground fault occurs can be determined as the section where the distribution line has a ground fault.

【0015】[0015]

【実施例】以下実施例を示す添付図面によって詳細に説
明する。図2は、配電系統図であり、配電用変電所1に
はΔ−Δ結線の変圧器11が備えられており、変圧器1
1により6.6kVに降圧された電力が遮断器3a,3
b,・・・・を通して配電線4a,4b,・・・・に供
給される。配電線4a,4b,・・・・には、需要家に
対して電力を分配するためのY−Y結線の変圧器5a1
,5a2,・・・・,5b1,5b2,・・・・が接続
され、各変圧器5a1,5a2,・・・・の近傍に端末
局7a1,7a2,・・・・,7b1,7b2,・・・
・が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples will be explained in detail below with reference to the accompanying drawings showing examples. FIG. 2 is a power distribution system diagram, and the distribution substation 1 is equipped with a transformer 11 with a Δ-Δ connection.
1, the power stepped down to 6.6kV is transferred to circuit breakers 3a and 3.
It is supplied to the distribution lines 4a, 4b, . . . through b, . The distribution lines 4a, 4b, . . . are equipped with Y-Y connected transformers 5a1 for distributing power to consumers.
, 5a2, ..., 5b1, 5b2, ... are connected, and terminal stations 7a1, 7a2, ..., 7b1, 7b2, ... are connected near each transformer 5a1, 5a2, ...・・・
・ is provided.

【0016】各端末局7a1,7a2,・・・・はすべ
て同じ構成を有し、各相の電流を検出するCT1,CT
2,CT3 から取り出される各相電流情報と、変圧器
5a1,5a2,・・・・から取り出されるab相間の
線間電圧情報(このab相間の線間電圧は端末局の駆動
電源用に利用されるものを流用するものであり、電圧セ
ンサは特に新しく設ける必要はない)とに基づいて零相
電流I0 、正相電流I1 、逆相電流I2 、零相電
流I0 と線間電圧Vabとの位相差θ等を算出し、地
絡、短絡又は断線の判定を行う演算処理部71と、演算
処理部71によって得られた判定結果を4ビットのデー
タにして親局9(図8参照)に送信する送信部72とを
備えている。
Each terminal station 7a1, 7a2, . . . has the same configuration, and CT1, CT for detecting the current of each phase
2, each phase current information taken out from CT3 and the line voltage information between the ab phases taken out from the transformers 5a1, 5a2, etc. (this line voltage between the ab phases is used for the driving power source of the terminal station) It is not necessary to install a new voltage sensor). An arithmetic processing unit 71 that calculates the phase difference θ, etc. and determines whether there is a ground fault, short circuit, or disconnection, and the judgment result obtained by the arithmetic processing unit 71 is converted into 4-bit data and transmitted to the master station 9 (see FIG. 8). The transmitter 72 is provided with a transmitter 72 for transmitting data.

【0017】演算処理部71は、図3に示すように、零
相電流の値を算出する加算回路716と、a相電流Ia
 の値をサンプリングするサンプルホールド回路711
 と、b相電流Ib の値をサンプリングするサンプル
ホールド回路712 と、c相電流Ic の値をサンプ
リングするサンプルホールド回路713 と、零相電流
I0 の値をサンプリングするサンプルホールド回路7
14 と、線間電圧Vabの値をサンプリングするサン
プルホールド回路715 とを有し、それぞれサンプル
ホールドされた値を時間順に並べて送り出すマルチプレ
クサ720 と、マルチプレクサ720 から出力され
るデータをA/D変換する変換回路730 と、A/D
変換されたデータをディジタル演算して線間電圧Vab
、各相電流Ia,Ib,Ic 、零相電流I0 、正相
電流I1 、逆相電流I2 の大きさと位相角とを算出
するとともに、線間電圧Vabと零相電流I0 との位
相差θ、正相電流I1 の大きさに対する逆相電流I2
 の大きさの比率I2/I1 を算出する算出回路74
0 と、算出回路740 の算出データに基づいて地絡
、短絡又は断線の判定を行う判定回路750 とを有す
る。
As shown in FIG. 3, the arithmetic processing section 71 includes an addition circuit 716 that calculates the value of the zero-phase current, and an addition circuit 716 that calculates the value of the a-phase current Ia.
A sample hold circuit 711 that samples the value of
, a sample-and-hold circuit 712 that samples the value of the b-phase current Ib, a sample-and-hold circuit 713 that samples the value of the c-phase current Ic, and a sample-and-hold circuit 7 that samples the value of the zero-sequence current I0.
14 and a sample hold circuit 715 that samples the value of the line voltage Vab, a multiplexer 720 that sends out the sampled and held values in chronological order, and a conversion circuit that A/D converts the data output from the multiplexer 720. Circuit 730 and A/D
The converted data is digitally calculated to calculate the line voltage Vab.
, the magnitude and phase angle of each phase current Ia, Ib, Ic, zero-sequence current I0, positive-sequence current I1, negative-sequence current I2, and the phase difference θ between line voltage Vab and zero-sequence current I0, Negative sequence current I2 relative to the magnitude of positive sequence current I1
Calculation circuit 74 that calculates the ratio I2/I1 of the size of
0 and a determination circuit 750 that determines whether there is a ground fault, short circuit, or disconnection based on the calculation data of the calculation circuit 740.

【0018】さらに、演算処理部71は、線間電圧Va
bの1周期ごとに基本波パルスを発生させる基本波パル
ス発生回路760 と、このように発生したパルスを所
定の分周比率(例えば1/12倍)で分周する分周器7
61 と、分周器761 の分周比をサンプルホールド
回路の数で割ったさらに細かな分周比率(例えば1/6
0倍)で分周する分周器762 と、分周器762 の
出力パルスに基づいてサンプルホールド回路711 〜
715 に切換え制御信号を供給する切換え制御器76
3 とを有し、算出回路740は分周器761 の出力
パルスを同期信号として算出処理を行っている。
Furthermore, the arithmetic processing unit 71 calculates the line voltage Va
A fundamental wave pulse generation circuit 760 that generates a fundamental wave pulse every cycle of b, and a frequency divider 7 that divides the frequency of the pulse thus generated by a predetermined frequency division ratio (for example, 1/12 times).
61, and a finer frequency division ratio (for example, 1/6
A frequency divider 762 that divides the frequency by
switching controller 76 providing switching control signals to 715;
3, and the calculation circuit 740 performs calculation processing using the output pulse of the frequency divider 761 as a synchronization signal.

【0019】算出回路740 が電流や電圧の大きさと
位相角を算出する方法は、従来公知の方法を使用できる
。例えば、1周期にわたるフーリエ正弦成分とフーリエ
余弦成分とを求め、両方の成分の二乗平均をとることに
よって大きさを求めることができる。また、フーリエ正
弦成分とフーリエ余弦成分との比のtan−1をとるこ
とにより位相角を求めることができる。
The calculation circuit 740 can use any conventionally known method to calculate the magnitude and phase angle of the current or voltage. For example, the magnitude can be determined by determining a Fourier sine component and a Fourier cosine component over one period and taking the root mean of both components. Further, the phase angle can be determined by taking the ratio tan-1 of the Fourier sine component and the Fourier cosine component.

【0020】判定回路750 の行う地絡、短絡、断線
判定の手順を表わすフローチャートを図4に示す。図4
によれば、判定回路750 は、算出回路740 から
供給される各種データに基づいて、短絡判定(ステップ
(1) )を行い、短絡と判定されれば短絡を表わす符
号“0001”を送信部72に送出する。短絡でないと
判定されれば、断線判定(ステップ(2) )を行い、
断線と判定されれば、断線を表わす符号“0010”を
送出する。
FIG. 4 is a flowchart showing the procedure for determining ground faults, short circuits, and disconnections performed by the determination circuit 750. Figure 4
According to , the determination circuit 750 performs a short circuit determination (step (1)) based on various data supplied from the calculation circuit 740 , and if it is determined that there is a short circuit, it sends a code "0001" representing a short circuit to the transmitter 72 . Send to. If it is determined that there is no short circuit, a disconnection determination (step (2)) is performed.
If it is determined that the wire is broken, a code "0010" representing the wire breakage is sent.

【0021】断線でもないと判定されれば、地絡判定(
ステップ(3) (4) )を行う。ステップ(3) 
では、零相電流I0 を閾値Ixと比較し、零相電流 
I0 が閾値 Ixを越えていれば、ステップ(4) 
において線間電圧Vabと零相電流 I0 との位相差
θが、360°を8等分した領域I,II,・・・・,
VIII(図5参照)のいずれに入るのか判定し、ステ
ップ(7) において対応する符号を送出する。例えば
0<θ≦π/4であれば領域I に入るので符号“10
00”を送出する。π/4<θ≦π/2  であれば領
域IIに入るので符号“1001”を送出する。なお、
このステップ(3) (4) での地絡判定は1線地絡
を判定を意味し、2線地絡、3線地絡の場合は、ステッ
プ(1) の短絡判定により判定できるので、ステップ
(3) (4) で2線地絡、3線地絡を判定すること
はない。
If it is determined that there is no disconnection, it is determined that there is a ground fault (
Perform steps (3) (4)). Step (3)
Now, the zero-sequence current I0 is compared with the threshold value Ix, and the zero-sequence current
If I0 exceeds the threshold Ix, step (4)
, the phase difference θ between the line voltage Vab and the zero-sequence current I0 is in the regions I, II, . . ., which equally divides 360° into 8 regions.
VIII (see FIG. 5), and sends out the corresponding code in step (7). For example, if 0<θ≦π/4, it falls into region I, so the code “10
00" is transmitted. If π/4<θ≦π/2, it falls into region II, so the code "1001" is transmitted.
The ground fault determination in steps (3) and (4) means determining a 1-wire ground fault, and in the case of a 2-wire or 3-wire ground fault, it can be determined by the short circuit determination in step (1). (3) (4) There is no way to determine a 2-wire ground fault or a 3-wire ground fault.

【0022】地絡がないと判定されればステップ(8)
 において故障なしの符号“0000”を送出する。送
信部72は判定回路750 から受け取った符号を、親
局9に、無線、光、赤外線等の媒体を通して送信する(
ステップ(9) )。親局9は、図8に示すように受信
部91と、故障区間決定部92とからなるものである。
[0022] If it is determined that there is no ground fault, step (8)
The code "0000" indicating no failure is sent out. The transmitter 72 transmits the code received from the determination circuit 750 to the master station 9 through a medium such as wireless, optical, or infrared rays.
Step (9)). The master station 9 consists of a receiving section 91 and a failure section determining section 92, as shown in FIG.

【0023】前記ステップ(1) の短絡判定は、図6
に示すように、各相電流 Ia, Ib, Ic のい
ずれかが基準電流(例えば定格電流の1.2倍)を越え
たかどうかで判定する。図6では、基準電流は480A
(定格電流は400A)と表示している。ステップ(2
) の断線判定は、図7に示すように、1線断線、2線
断線、3線断線について別々に判定され、いずれかの種
類の断線があったときに「断線」と判定するものである
The short circuit determination in step (1) is shown in FIG.
As shown in FIG. 2, the determination is made based on whether any of the phase currents Ia, Ib, and Ic exceeds a reference current (for example, 1.2 times the rated current). In Figure 6, the reference current is 480A
(The rated current is 400A). Step (2
) As shown in Figure 7, the disconnection determination is made separately for 1-wire disconnection, 2-wire disconnection, and 3-wire disconnection, and when any type of disconnection occurs, it is determined as ``disconnection.'' .

【0024】1線断線は各相電流Ia,Ib,Ic 何
れかが定格電流の1%を越え、線間電圧Vabが相電圧
の約80%を越え、かつ正相電流I1 と逆相電流I2
 の大きさの比率I2/I1 が0.6倍を越えたこと
をもって判定する。図7では「定格電流の1%」は4A
、「相電圧」の約80%は3000Vで表示されている
。0.6倍という数字は経験的に決定されるものである
One wire breakage occurs when any of the phase currents Ia, Ib, and Ic exceeds 1% of the rated current, the line voltage Vab exceeds approximately 80% of the phase voltage, and the positive-sequence current I1 and the negative-sequence current I2
The determination is made when the ratio I2/I1 of the magnitude exceeds 0.6 times. In Figure 7, "1% of rated current" is 4A
, about 80% of the "phase voltage" is displayed at 3000V. The number 0.6 times is determined empirically.

【0025】2線断線は各相電流Ia,Ib,Ic が
すべて定格電流の1%未満であり、かつ、線間電圧Va
bは相電圧の約1%から約2.5%の範囲に入ったこと
をもって判定される。3線断線は各相電流Ia,Ib,
Ic がすべて定格電流の0.1%未満であり、線間電
圧Vabは相電圧の約1%未満であることをもって判定
される。
Two-wire disconnection occurs when the phase currents Ia, Ib, and Ic are all less than 1% of the rated current, and the line voltage Va
b is determined when it falls within a range of about 1% to about 2.5% of the phase voltage. 3-wire disconnection is caused by each phase current Ia, Ib,
It is determined that Ic is all less than 0.1% of the rated current and the line voltage Vab is less than about 1% of the phase voltage.

【0026】親局9の故障区間決定部92は各端末の送
信部72から無線、光、赤外線等の媒体を通して受け取
った符号に基づき、どの区間において地絡、短絡又は断
線があったのかを判定する。その判定の手法は、次のと
おりである。図9に示すように配電線に沿って端末局7
a1,・・・・,7a6が配列されている場合を想定す
る。
The failure section determining section 92 of the master station 9 determines in which section there is a ground fault, short circuit, or disconnection based on the code received from the transmitting section 72 of each terminal through a medium such as radio, light, or infrared rays. do. The method for this determination is as follows. Terminal station 7 along the distribution line as shown in Figure 9.
Assume that a1, . . . , 7a6 are arranged.

【0027】端末局7a3と端末局7a4との間で1線
地絡故障が発生した場合(図9(a) 参照)、地絡点
より送電側の端末局7a1,7a2,7a3から送られ
てくる線間電圧Vabと零相電流I0 との位相差θを
示す領域は同じ領域であるか又は互いに隣接する2つの
領域である(例えば図5の領域IやVIIIとする)。 ところが、地絡点より負荷側の端末局7a4,7a5,
7a6から送られてくる線間電圧Vabと零相電流I0
との位相差θを示す領域は、領域Iと比較して約180
°ずれた領域(図5の領域VとIV)である。したがっ
て親局9は、位相差の領域が大きくずれた場合の前後の
端末局7a3と端末局7a4との間で地絡故障が発生し
ていることが分かる。このように、全方位を8つの領域
に分割したので、端末局と親局との送信回線は、位相角
がこれら8つの領域のいずれの領域に入るのかを示すデ
ータを送ればよい。したがって、位相角のデータをその
まま送る必要がなく、送信回線の容量の増大を防ぐこと
ができる。また送信回線の容量が決まっているならば、
他のデータの割り当てる容量を増やすことができる。
When a one-line ground fault occurs between the terminal station 7a3 and the terminal station 7a4 (see FIG. 9(a)), the power is sent from the terminal stations 7a1, 7a2, and 7a3 on the power transmission side from the ground fault point. The regions showing the phase difference θ between the line voltage Vab and the zero-sequence current I0 are the same region or two regions adjacent to each other (for example, regions I and VIII in FIG. 5). However, terminal stations 7a4, 7a5, on the load side from the ground fault point
Line voltage Vab and zero-sequence current I0 sent from 7a6
The region showing a phase difference θ with
These are the regions (regions V and IV in FIG. 5) that are shifted by degrees. Therefore, the master station 9 knows that a ground fault has occurred between the terminal station 7a3 and the terminal station 7a4 before and after the region of phase difference deviates greatly. Since the omnidirectional region is divided into eight regions in this way, the transmission line between the terminal station and the master station only needs to send data indicating which of these eight regions the phase angle falls within. Therefore, there is no need to send phase angle data as is, and an increase in the capacity of the transmission line can be prevented. Also, if the capacity of the transmission line is fixed,
You can increase the capacity to allocate other data.

【0028】次に、端末局7a3と端末局7a4との間
で短絡故障が発生した場合(図9(b) 参照)、故障
点より送電側にある端末局7a1,7a2,7a3から
送られてくる情報は、「短絡」情報であるのに対し、故
障点より負荷側にある端末局7a4,7a5,7a6か
ら送られてくる情報は、「断線」情報(2線短絡の場合
)あるいは「故障なし」(3線短絡の場合)の情報であ
る。したがって、親局9は、端末局7a3と端末局7a
4との間で短絡故障が発生していることが明らかとなる
Next, when a short-circuit failure occurs between the terminal stations 7a3 and 7a4 (see FIG. 9(b)), the power is sent from the terminal stations 7a1, 7a2, and 7a3 on the power transmission side from the failure point. The information sent from terminal stations 7a4, 7a5, and 7a6 located on the load side of the failure point is "short circuit" information, whereas the information sent from the terminal stations 7a4, 7a5, and 7a6 located on the load side from the failure point is "broken wire" information (in the case of a two-wire short circuit) or "failure" information. "None" (in case of 3-wire short circuit). Therefore, the master station 9 is connected to the terminal station 7a3 and the terminal station 7a.
It becomes clear that a short-circuit failure has occurred between the two.

【0029】次に、端末局7a3と端末局7a4との間
で断線故障が発生した場合(図9(c) 参照)、故障
点より送電側にある端末局7a1,7a2,7a3から
送られてくる情報は、「故障なし」の情報であるのに対
し、故障点より負荷側にある端末局7a4,7a5,7
a6から送られてくる情報は、「断線」情報である。し
たがって、親局9は、端末局7a3と端末局7a4との
間で断線故障が発生していることが分かる。
Next, when a disconnection fault occurs between the terminal station 7a3 and the terminal station 7a4 (see FIG. 9(c)), the power is sent from the terminal stations 7a1, 7a2, and 7a3 on the power transmission side from the fault point. The information coming from the terminal station 7a4, 7a5, 7 located on the load side from the failure point is "no failure" information.
The information sent from a6 is "disconnection" information. Therefore, the master station 9 knows that a disconnection fault has occurred between the terminal station 7a3 and the terminal station 7a4.

【0030】以上、実施例に基づき本発明を説明してき
たが、本発明は前記の実施例に限定されるものではない
。前記の実施例では、ab相間の線間電圧Vabを使用
していたが、1相電圧(例えばa相電圧Va )を利用
してもよい。この場合、電圧センサは既設のものを流用
できないので、専用のものを1つ設ける必要があるが従
来3つ設けていたのに比較して構成は簡素になるという
利点はある。
Although the present invention has been described above based on examples, the present invention is not limited to the above-mentioned examples. In the embodiment described above, the line voltage Vab between the ab and phase was used, but a single phase voltage (for example, the a phase voltage Va) may be used. In this case, since the existing voltage sensor cannot be used, it is necessary to provide one dedicated voltage sensor, but there is an advantage that the configuration is simpler than the conventional one, which required three.

【0031】また、1線断線を判定する回路は、図7に
示したものの他、図10に示すような回路を使用するこ
とも可能である。図10の回路では、各相電流Ia,I
b,Ic何れかが定格電流の1%未満で、かつ、線間電
圧Vabが相電圧の約80%を越えたことをもって判定
する。 また、図11の回路を使用することも可能である。図1
1の回路では、各相電流Ia,Ib,Ic 何れか1つ
が定格電流の1%未満で残りの2つが1%以上、かつ、
線間電圧Vabが相電圧の約80%を越え、正相電流I
1 と逆相電流I2 の大きさの比率I2/I1 が0
.6倍を越えたことをもって判定する。この図11の回
路を使用すれば短絡故障が発生した場合、故障点より負
荷側にある端末局から送られてくる情報はすべて「故障
なし」の情報となる。
In addition to the circuit shown in FIG. 7, it is also possible to use a circuit as shown in FIG. 10 as the circuit for determining whether one wire is disconnected. In the circuit of FIG. 10, each phase current Ia, I
The determination is made when either b or Ic is less than 1% of the rated current and the line voltage Vab exceeds about 80% of the phase voltage. It is also possible to use the circuit of FIG. Figure 1
In circuit 1, one of the phase currents Ia, Ib, and Ic is less than 1% of the rated current, and the remaining two are 1% or more of the rated current, and
The line voltage Vab exceeds approximately 80% of the phase voltage, and the positive sequence current I
1 and the magnitude of the negative sequence current I2, I2/I1, is 0.
.. Judgment will be made when it exceeds 6 times. If the circuit shown in FIG. 11 is used, if a short-circuit failure occurs, all information sent from terminal stations located on the load side of the failure point will be "no failure" information.

【0032】また、図5によれば、全方位を8つの領域
に分割しているが、少なくとも5つの領域に分割されて
いれば実用可能である(もし4つの領域に分割した場合
、図12に示すように位相角データが全ての領域を占め
てしまい、地絡故障区間を特定できなくなるということ
が発生する)。その他本発明の要旨を変更しない範囲で
種々の変更を施すことが可能である。
Also, according to FIG. 5, all directions are divided into eight regions, but it is practical if the omnidirectional is divided into at least five regions (if divided into four regions, As shown in Figure 2, the phase angle data occupies the entire area, making it impossible to identify the ground fault section). Various other changes can be made without departing from the gist of the invention.

【0033】[0033]

【発明の効果】以上のように請求項1記載の配電線の故
障区間検出システムの発明によれば、配電線の各区間の
端末局において、各相電流及び所定の2相間の線間電圧
を用いて配電線の短絡及び地絡情報を検出することがで
きるとともに、所定の2相間の線間電圧の位相を基準と
して、零相電流との位相差を検出することができる。親
局は、その位相差の各測定点に沿った分布から地絡故障
区間を検出することができる。これらの場合、端末局に
おいては当該端末局の制御用交流電源電圧である配電線
の所定の2相間の線間電圧を利用するので、従来のよう
に3線電圧を測定していたのと比較して、端末局の構成
が簡単になり、またコストを下げることができ、端末局
を多数配置する場合に特に有利になる。
As described above, according to the invention of the failure section detection system for a distribution line as set forth in claim 1, each phase current and the line voltage between two predetermined phases can be detected at the terminal station of each section of the distribution line. It is possible to detect information on short circuits and ground faults in distribution lines using this method, and also to detect a phase difference with a zero-sequence current based on the phase of line voltage between two predetermined phases. The master station can detect the ground fault section from the distribution of the phase difference along each measurement point. In these cases, the terminal station uses the line voltage between two predetermined phases of the distribution line, which is the control AC power supply voltage of the terminal station, so compared to the conventional method of measuring three-wire voltage. This simplifies the configuration of the terminal station and reduces costs, which is particularly advantageous when a large number of terminal stations are arranged.

【0034】請求項2記載の配電線の故障区間検出シス
テムの発明によれば、配電線の各区間の端末局において
、各相電流及び所定の1相の相電圧を用いて配電線の短
絡及び地絡情報を検出することができるとともに、所定
の1相の相電圧の位相を基準として、零相電流との位相
差を検出することができる。親局は、その位相差の各測
定点にわたる分布から地絡故障区間を検出することがで
きる。これらの場合、端末局においては相電圧を1つ電
圧測定するだけでよいので、従来のように3線電圧を測
定していたのと比較して、端末局の構成が簡単になり、
またコストを下げることができ、端末局を多数配置する
場合に特に有利になる。
[0034] According to the invention of the fault section detection system for a distribution line as set forth in claim 2, at the terminal station of each section of the distribution line, each phase current and a predetermined phase voltage of one phase are used to detect short circuits and Not only can ground fault information be detected, but also a phase difference with a zero-sequence current can be detected using the phase of a predetermined one-phase phase voltage as a reference. The master station can detect the ground fault section from the distribution of the phase difference over each measurement point. In these cases, the terminal station only needs to measure one phase voltage, which simplifies the configuration of the terminal station compared to the conventional method of measuring 3-wire voltage.
Furthermore, the cost can be reduced, which is particularly advantageous when a large number of terminal stations are arranged.

【0035】請求項3記載の配電線の故障区間検出シス
テムの発明によれば、各端末局において各相電流、所定
の2相間の線間電圧、零相電流と前記線間電圧との位相
差を検出して親局に送信するようにすれば、親局は、各
端末局から送られてきたデータの分布に基づいて、配電
線の地絡、短絡及び断線故障区間を決定することができ
る。この場合、当該端末局の制御用交流電源電圧である
配電線の所定の2相間の線間電圧を利用するので、従来
のように3線電圧を測定していたのと比較して、端末局
の構成が簡単になり、またコストを下げることができ、
端末局を多数配置する場合に特に有利になる。
According to the invention of the fault section detection system for a distribution line as set forth in claim 3, each terminal station detects each phase current, the line voltage between two predetermined phases, and the phase difference between the zero-sequence current and the line voltage. By detecting and transmitting the data to the master station, the master station can determine ground faults, short circuits, and disconnection fault sections of the distribution line based on the distribution of data sent from each terminal station. . In this case, since the line-to-line voltage between two predetermined phases of the distribution line, which is the control AC power supply voltage of the terminal station, is used, the terminal station The configuration becomes easier and costs can be lowered.
This is particularly advantageous when a large number of terminal stations are arranged.

【0036】請求項4記載の配電線の故障区間検出シス
テムの発明によれば、各端末局において各相電流、所定
の1相の相電圧、及び零相電流と相電圧との位相差を検
出して親局に送信するようにすれば、親局は、各端末局
から送られてきたデータの分布に基づいて、配電線の地
絡、短絡及び断線故障区間を決定することができる。こ
の場合、端末局においては相電圧を1つ電圧測定するだ
けでよいので、従来のように3線電圧を測定していたの
と比較して、端末局の構成が簡単になり、またコストを
下げることができ、端末局を多数配置する場合に特に有
利になる。
[0036] According to the invention of the fault section detection system for a distribution line as set forth in claim 4, each terminal station detects each phase current, the phase voltage of a predetermined one phase, and the phase difference between the zero-sequence current and the phase voltage. By transmitting the data to the master station, the master station can determine ground faults, short circuits, and disconnection failure sections of the power distribution line based on the distribution of data sent from each terminal station. In this case, the terminal station only needs to measure one phase voltage, which simplifies the configuration of the terminal station and reduces costs compared to the conventional method of measuring three-wire voltage. This is especially advantageous when a large number of terminal stations are installed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の原理を説明するための、地絡故障が発
生した配電線の回路図である。
FIG. 1 is a circuit diagram of a power distribution line in which a ground fault has occurred, for explaining the principle of the present invention.

【図2】端末局が配置された配電系統図である。FIG. 2 is a power distribution system diagram in which terminal stations are arranged.

【図3】端末局に設けられた演算処理部の内部構成を示
すブロック図である。
FIG. 3 is a block diagram showing the internal configuration of an arithmetic processing unit provided in the terminal station.

【図4】判定回路750 の行う地絡、短絡、断線判定
の手順を表わすフローチャートである。
FIG. 4 is a flowchart showing the procedure for determining ground faults, short circuits, and disconnections performed by the determination circuit 750.

【図5】位相角を分類するため、全方位を8つの領域に
分割した図である。
FIG. 5 is a diagram in which all directions are divided into eight regions for classifying phase angles.

【図6】短絡判定を行う論理回路図である。FIG. 6 is a logic circuit diagram for determining a short circuit.

【図7】断線判定を行う論理回路図である。FIG. 7 is a logic circuit diagram for determining disconnection.

【図8】親局の要部構成を示すブロック図である。FIG. 8 is a block diagram showing the main part configuration of a master station.

【図9】配電線の故障区間の決定手法を説明するための
配電線図である。
FIG. 9 is a distribution line diagram for explaining a method for determining a fault section of a distribution line.

【図10】1線断線判定を行う他の実施例を示す論理回
路図である。
FIG. 10 is a logic circuit diagram showing another embodiment that performs one-line disconnection determination.

【図11】1線断線判定を行うさらに他の実施例を示す
論理回路図である。
FIG. 11 is a logic circuit diagram showing still another embodiment for determining one-line disconnection.

【図12】全方位を4つの領域に分割した図である。FIG. 12 is a diagram in which all directions are divided into four regions.

【符号の説明】[Explanation of symbols]

4a,4b  配電線 7a1,7a2,7b1,7b1  端末局72  送
信部 740  算出回路 9  親局 92  故障区間決定部 I〜VIII  領域 CT1,CT2,CT3  電流センサT1,T2  
端末局
4a, 4b Distribution lines 7a1, 7a2, 7b1, 7b1 Terminal station 72 Transmitter 740 Calculation circuit 9 Master station 92 Failure area determination unit I to VIII Regions CT1, CT2, CT3 Current sensors T1, T2
terminal station

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】配電線に故障が発生した場合に故障区間を
検出する配電線の故障区間検出システムであって、複数
区間に区分された配電線の各区間に端末局を配置し、各
端末局には、配電線の各相電流を検出する電流センサと
、電流センサの検出電流及び当該端末局の制御用交流電
源電圧である配電線の所定の2相間の線間電圧をそれぞ
れ基準値と比較することにより、配電線の短絡又は断線
を判定する短絡断線判定手段と、電流センサの検出電流
に基づいて零相電流を求め、その零相電流と当該端末局
の制御用交流電源電圧である配電線の所定の2相間の線
間電圧との位相差を算出する算出手段と、算出手段によ
り検出された前記位相差のデータ及び判定手段により判
定された短絡又は断線のデータを送信する送信手段とが
設けられ、さらに、前記端末局からデータを受信するた
めの親局を配置し、この親局には、各端末局から受信さ
れたデータに含まれる前記位相差の分布に基づいて、位
相差がほぼ180°異なる端末局群を区別し、これら区
別された端末局群のうち互いに隣接する端末局の間に存
在する区間を配電線の地絡故障区間として決定する地絡
故障区間決定手段と、各端末局から受信されたデータに
含まれる短絡又は断線の判定結果に基づいて短絡故障区
間又は断線故障区間を決定する短絡断線故障区間決定手
段とが設けられていることを特徴とする配電線の故障区
間検出システム。
Claim 1: A fault section detection system for a distribution line that detects a fault section when a fault occurs in a distribution line, wherein a terminal station is placed in each section of a distribution line divided into multiple sections, and each terminal The station is equipped with a current sensor that detects each phase current of the distribution line, and a line voltage between two predetermined phases of the distribution line, which is the detection current of the current sensor and the control AC power supply voltage of the terminal station, respectively, as a reference value. A short-circuit-disconnection determining means determines whether a distribution line is short-circuited or disconnected by comparing the zero-sequence current based on the current detected by the current sensor, and the zero-sequence current and the control AC power supply voltage of the terminal station. Calculating means for calculating the phase difference between two predetermined phases of the distribution line and the line voltage; and transmitting means for transmitting data on the phase difference detected by the calculating means and data on short circuit or disconnection determined by the determining means. Further, a master station for receiving data from the terminal station is arranged, and the master station has a position control function based on the distribution of the phase difference included in the data received from each terminal station. Ground fault fault section determination means for distinguishing between terminal station groups having a phase difference of approximately 180°, and determining a section existing between mutually adjacent terminal stations among these differentiated terminal station groups as a ground fault fault section of a power distribution line. and short circuit/disconnection fault section determining means for determining a short circuit/disconnection fault section based on a determination result of a short circuit or a discontinuity included in the data received from each terminal station. Fault section detection system for electric wires.
【請求項2】配電線に故障が発生した場合に故障区間を
検出する配電線の故障区間検出システムであって、複数
区間に区分された配電線の各区間に端末局を配置し、各
端末局には、配電線の所定の1相の相電圧を検出する電
圧センサと、配電線の各相電流を検出する電流センサと
、配電線の各相電流及び前記所定の1相の相電圧をそれ
ぞれ基準値と比較することにより、配電線の短絡又は断
線を判定する短絡断線判定手段と、電流センサの検出電
流に基づいて零相電流を求め、その零相電流と電圧セン
サにより検出された所定の1相の相電圧との位相差を算
出する算出手段と、算出手段により検出された前記位相
差のデータ及び判定手段により判定された短絡又は断線
のデータを送信する送信手段とが設けられ、さらに、前
記端末局からデータを受信するための親局を配置し、こ
の親局には、各端末局から受信されたデータに含まれる
前記位相差の分布に基づいて、位相差がほぼ180°異
なる端末局群を区別し、これら区別された端末局群のう
ち互いに隣接する端末局の間に存在する区間を配電線の
地絡故障区間として決定する地絡故障区間決定手段と、
各端末局から受信されたデータに含まれる短絡又は断線
の判定結果に基づいて短絡故障区間又は断線故障区間を
決定する短絡断線故障区間決定手段とが設けられている
ことを特徴とする配電線の故障区間検出システム。
Claim 2: A fault section detection system for a distribution line that detects a fault section when a fault occurs in a distribution line, wherein a terminal station is placed in each section of a distribution line divided into multiple sections, and each terminal The station includes a voltage sensor that detects the phase voltage of a predetermined one phase of the distribution line, a current sensor that detects each phase current of the distribution line, and a current sensor that detects each phase current of the distribution line and the phase voltage of the predetermined one phase. A short-circuit/disconnection determination means for determining whether a distribution line is short-circuited or disconnected by comparing each with a reference value, and a zero-sequence current determined based on a current detected by a current sensor, and a predetermined value detected by the zero-sequence current and voltage sensor. A calculation means for calculating a phase difference with the phase voltage of one phase, and a transmission means for transmitting data of the phase difference detected by the calculation means and data of a short circuit or disconnection determined by the determination means, Furthermore, a master station for receiving data from the terminal stations is arranged, and the master station has a phase difference of approximately 180° based on the distribution of the phase differences included in the data received from each terminal station. Ground fault fault section determining means for distinguishing between different terminal station groups and determining a section existing between mutually adjacent terminal stations among the differentiated terminal station groups as a ground fault fault section of the distribution line;
A distribution line characterized in that it is provided with short-circuit-disconnection-failure section determination means for determining a short-circuit failure section or a disconnection-failure section based on a determination result of a short-circuit or disconnection included in data received from each terminal station. Fault section detection system.
【請求項3】配電線に故障が発生した場合に故障区間を
検出する配電線の故障区間検出システムであって、複数
区間に区分された配電線の各区間に端末局を配置し、各
端末局には、配電線の各相電流を検出する電流センサと
、電流センサの検出電流に基づいて零相電流を求め、そ
の零相電流と当該端末局の制御用交流電源電圧である配
電線の所定の2相間の線間電圧との位相差を算出する算
出手段と、算出手段により検出された前記位相差のデー
タ並びに配電線の各相電流及び前記所定の2相間の線間
電圧のデータを送信する送信手段とが設けられ、さらに
、前記端末局からデータを受信するための親局を配置し
、この親局には、各端末局から受信されたデータに含ま
れる前記位相差の分布に基づいて、位相差がほぼ180
°異なる端末局群を区別し、これら区別された端末局群
のうち互いに隣接する端末局の間に存在する区間を配電
線の地絡故障区間として決定する地絡故障区間決定手段
と、各端末局から受信されたデータに含まれる配電線の
各相電流及び前記所定の2相間の線間電圧をそれぞれ基
準値と比較することにより、配電線の短絡又は断線を判
定する短絡断線判定手段と、短絡断線判定手段の判定結
果に基づいて短絡故障区間又は断線故障区間を決定する
短絡断線区間決定手段とが設けられていることを特徴と
する配電線の故障区間検出システム。
Claim 3: A fault section detection system for a distribution line that detects a fault section when a fault occurs in a distribution line, wherein a terminal station is placed in each section of a distribution line divided into multiple sections, and each terminal The station has a current sensor that detects each phase current of the distribution line, and calculates the zero-sequence current based on the current detected by the current sensor, and calculates the zero-sequence current and the control AC power voltage of the distribution line for the terminal station. Calculating means for calculating a phase difference between a line voltage between two predetermined phases, data on the phase difference detected by the calculating means, data on each phase current of a distribution line, and data on a line voltage between the predetermined two phases. A transmitting means for transmitting data is provided, and a master station for receiving data from the terminal station is further arranged, and the master station has a transmission means for transmitting data from the terminal station. Based on this, the phase difference is approximately 180
° A ground fault fault section determining means for distinguishing between different terminal station groups and determining a section existing between mutually adjacent terminal stations among the differentiated terminal station groups as a ground fault fault section of the distribution line, and each terminal A short-circuit or disconnection determining means for determining whether a distribution line is short-circuited or disconnected by comparing each phase current of the distribution line and the line-to-line voltage between the predetermined two phases included in the data received from the station with a reference value, respectively; 1. A fault section detection system for a power distribution line, comprising short circuit/disconnection section determining means for determining a short circuit fault section or a disconnection fault section based on the determination result of the short circuit/disconnection determination section.
【請求項4】配電線に故障が発生した場合に故障区間を
検出する配電線の故障区間検出システムであって、複数
区間に区分された配電線の各区間に端末局を配置し、各
端末局には、配電線の所定の1相の相電圧を検出する電
圧センサと、配電線の各相電流を検出する電流センサと
、電流センサの検出電流に基づいて零相電流を求め、そ
の零相電流と電圧センサにより検出された所定の1相の
相電圧との位相差を算出する算出手段と、算出手段によ
り検出された前記位相差のデータ並びに配電線の各相電
流及び前記所定の1相の相電圧のデータを送信する送信
手段とが設けられ、さらに、前記端末局からデータを受
信するための親局を配置し、この親局には、各端末局か
ら受信されたデータに含まれる前記位相差の分布に基づ
いて、位相差がほぼ180°異なる端末局群を区別し、
これら区別された端末局群のうち互いに隣接する端末局
の間に存在する区間を配電線の地絡故障区間として決定
する地絡故障区間決定手段と、各端末局から受信された
データに含まれる配電線の各相電流及び前記所定の1相
の相電圧を基準値と比較することにより、配電線の短絡
又は断線を判定する短絡断線判定手段と、短絡断線判定
手段の判定結果に基づいて短絡故障区間又は断線故障区
間を決定する短絡断線区間決定手段とが設けられている
ことを特徴とする配電線の故障区間検出システム。
Claim 4: A distribution line fault section detection system for detecting a fault section when a fault occurs in a distribution line, wherein a terminal station is placed in each section of a distribution line divided into multiple sections, and each terminal The station includes a voltage sensor that detects the phase voltage of one predetermined phase of the distribution line, a current sensor that detects the current of each phase of the distribution line, and a zero-sequence current that is calculated based on the current detected by the current sensor. a calculation means for calculating a phase difference between a phase current and a predetermined phase voltage of one phase detected by a voltage sensor; data on the phase difference detected by the calculation means; each phase current of the distribution line; A transmitting means for transmitting data on the phase voltage of each phase is provided, and a master station is further provided for receiving data from the terminal station, and the master station includes a transmitting means for transmitting data on the phase voltage of each phase, and a master station for receiving data from the terminal station. based on the distribution of the phase differences, distinguishing a group of terminal stations having a phase difference of approximately 180°,
Ground fault fault section determination means for determining a section existing between adjacent terminal stations among these differentiated terminal stations as a ground fault fault section of the distribution line; A short-circuit or disconnection determination means determines whether the distribution line is short-circuited or disconnected by comparing each phase current of the distribution line and the phase voltage of the predetermined one phase with a reference value; A system for detecting a faulty section of a power distribution line, comprising: a short-circuit/disconnection section determining means for determining a faulty section or a breakage section.
JP9993691A 1991-05-01 1991-05-01 System for detecting fault section of distribution line Pending JPH04331417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9993691A JPH04331417A (en) 1991-05-01 1991-05-01 System for detecting fault section of distribution line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9993691A JPH04331417A (en) 1991-05-01 1991-05-01 System for detecting fault section of distribution line

Publications (1)

Publication Number Publication Date
JPH04331417A true JPH04331417A (en) 1992-11-19

Family

ID=14260609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9993691A Pending JPH04331417A (en) 1991-05-01 1991-05-01 System for detecting fault section of distribution line

Country Status (1)

Country Link
JP (1) JPH04331417A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180469A (en) * 1988-01-12 1989-07-18 Ngk Insulators Ltd Accident section detecting device for power transmission line
JPH02266822A (en) * 1989-04-04 1990-10-31 Nissin Electric Co Ltd Detection of disconnection in distribution line
JPH0365016A (en) * 1989-07-31 1991-03-20 Mitsubishi Electric Corp Ground fault detector for distribution line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180469A (en) * 1988-01-12 1989-07-18 Ngk Insulators Ltd Accident section detecting device for power transmission line
JPH02266822A (en) * 1989-04-04 1990-10-31 Nissin Electric Co Ltd Detection of disconnection in distribution line
JPH0365016A (en) * 1989-07-31 1991-03-20 Mitsubishi Electric Corp Ground fault detector for distribution line

Similar Documents

Publication Publication Date Title
US9250282B2 (en) Fault parameter indicator device and related methods
US8861155B2 (en) High-impedance fault detection and isolation system
EP2331978B1 (en) Method and device for supervising secondary circuit of instrument transformer in power system
US20160072270A1 (en) Fault detection and isolation using a common reference clock
US8102634B2 (en) Differential protection method, system and device
JPS59209018A (en) Protecting relaying device and method
CN106505533A (en) A kind of distance protection system and its control method suitable for half-wave power transmission circuit
Kasajima et al. The development of the advanced distribution automation system with optical fiber network of Tokyo Electric Power Co., Inc
JPH04331417A (en) System for detecting fault section of distribution line
US20030184936A1 (en) Plausibility checking of current transformers in substations
JPH04331418A (en) Method and device for detecting grounded section of distribution line
CN114720811A (en) Power cable fault monitoring and addressing method
JPH04347532A (en) Method and device for detecting disconnected section of distribution line
JP5283369B2 (en) Disconnection protection relay
JP3189294B2 (en) Distribution line fault section determination system
JPH04344122A (en) Method and apparatus for deciding ground-fault zone in power distribution line
JP3221000B2 (en) Method and apparatus for determining ground fault section of distribution line
JPH0530646A (en) Method and apparatus for detecting ground fault section of distribution line
JPH04359625A (en) Method and device for locating broken-wire section of distribution line
JPH0522852A (en) Method and apparatus for determining grounding section of distribution line
Bjerkan et al. Reliable detection of downed and broken conductors
JPH04158274A (en) Method for detecting breakage of high voltage power distribution system
JPH09251051A (en) Method for detecting grounding direction of transmission and distribution line
JPH04161023A (en) Detector of ground fault section of distribution line
JPH0580109A (en) Troubled division sensing device for power distribution line