JPH02266822A - Detection of disconnection in distribution line - Google Patents

Detection of disconnection in distribution line

Info

Publication number
JPH02266822A
JPH02266822A JP8661589A JP8661589A JPH02266822A JP H02266822 A JPH02266822 A JP H02266822A JP 8661589 A JP8661589 A JP 8661589A JP 8661589 A JP8661589 A JP 8661589A JP H02266822 A JPH02266822 A JP H02266822A
Authority
JP
Japan
Prior art keywords
phase
open
disconnection
zero
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8661589A
Other languages
Japanese (ja)
Inventor
Hiroshi Kumegawa
久米川 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP8661589A priority Critical patent/JPH02266822A/en
Publication of JPH02266822A publication Critical patent/JPH02266822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

PURPOSE:To make it possible to detect the disconnection of a distributing line and a disconnected block by deciding an open-phase detection block closest to a distributing substation as a disconnected block from among the open-phase detection signals to detect the open-phase for each block and to be supplied from each transmission means. CONSTITUTION:An open-phase detector 14 has a sample hold circuit 14a, an MPX 14b, an A/D conversion section 14c, a data memory 14d, a CPU 14e, etc., and detects that a certain block is in the open-phase state depending on a given condition. The MPX 14b scans the signal from the circuit 14a and supplies it to the A/D conversion section 14c, while the A/D conversion section 14c stores it into the data memory 14d after A/D-converted. The CPU 14e loads the data of the memory 14d and detects that a certain block is open-phase in a single phase and in two-phase. A disconnected block detector 10 decides the closest open-phase block to a distributing substation as a disconnected block where the open-phase is caused depending on the open-phase detection signal for each block supplied through a receiver 9 of a distributing substation 1 and on a block number.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、配電線の断線を検出する方式に関するもの
である。さらに詳しくは、配電線を複数区間に区分し、
各区間毎に電流及/又は電圧を検出し、この検出した電
流及び/又は電圧に基いて配電線の断線、及び断線区間
の検出を行なう新規な配電線の断線検出方式に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for detecting disconnection in a power distribution line. In more detail, the distribution line is divided into multiple sections,
The present invention relates to a novel distribution line disconnection detection method that detects current and/or voltage in each section and detects distribution line disconnections and disconnection sections based on the detected current and/or voltage.

〈従来の技術〉 配電用変電所は、送電系統から供給される電力を所定電
位(例えば、6.6KV)に降圧して母線−遮断器−配
電線→分岐線−需要家の順番で供給する設備であり、こ
の配電用変電所には、零相電圧を検出するGPT、零相
電流を検出するZCT1上記零相電圧及び零相電流に基
いて地絡を検出する地絡方向リレー等が装備されている
<Prior art> A distribution substation steps down the power supplied from the power transmission system to a predetermined potential (for example, 6.6 KV) and supplies it in the order of bus bar - circuit breaker - distribution line -> branch line - consumer. This distribution substation is equipped with GPT that detects zero-sequence voltage, ZCT1 that detects zero-sequence current, ground fault direction relay that detects ground faults based on the above-mentioned zero-sequence voltage and zero-sequence current, etc. has been done.

ところで、上記配電線の一相が断線した場合には、断線
した箇所から以後の単相負荷(断線相に接続されている
負荷)は停電し、三相負荷は単相運転となり、三相負荷
が回転機器である場合には焼損する。また、配電線の二
相が断線した場合には、断線箇所から以後の配電線には
電流が流れないから、停電する。従って、配電用変電所
は、迅速に断線、及び断線区間を発見し、断線区間の遮
断、断線区間以外への電力供給等を行なう必要がある。
By the way, if one phase of the above distribution line is disconnected, the single-phase loads (loads connected to the disconnected phase) from the point of disconnection will have a power outage, the three-phase loads will be in single-phase operation, and the three-phase loads If it is a rotating device, it will burn out. Furthermore, when two phases of a distribution line are disconnected, no current flows from the disconnection point to the subsequent distribution lines, resulting in a power outage. Therefore, the power distribution substation needs to quickly discover disconnections and disconnected sections, shut off the disconnected sections, and supply power to areas other than the disconnected sections.

この断線故障検出は配電線終端(負荷側)の各相の電流
、及び電圧情報等が必要とされる。この配電線終端(負
荷側)の各相の電流、及び電圧情報は、ループ構成、ネ
ットワーク構成された配電系統における他の系統から入
手できる。但し、連系線を持たない配電線モは検出でき
ない。即ち、断線が第1番目の分岐線の以後で発生した
場合には、配電用変電所側の電力が、第1番目の需要家
には正常に供給され、配電用変電所のGPT、ZCTに
は零相電圧、零相電流共に現れず、配電用変電所では断
線検出が出来ないからである。
This disconnection failure detection requires information such as the current and voltage of each phase at the end of the distribution line (load side). The current and voltage information of each phase at the end of the distribution line (load side) can be obtained from other systems in the power distribution system configured in a loop or network configuration. However, distribution lines without interconnection lines cannot be detected. In other words, if a disconnection occurs after the first branch line, power from the distribution substation will be normally supplied to the first customer, and power will be supplied to the GPT and ZCT of the distribution substation. This is because neither zero-sequence voltage nor zero-sequence current appears, and disconnection cannot be detected at the distribution substation.

また、上記断線区間の検出は、−旦、全区間の区分開閉
器を開放した後、区分開閉器を順番に投入したり、開放
したりして電圧、電流に変化が現れる区間を検出する。
In addition, the above-mentioned disconnection section is detected by opening the section switches of all sections, and then turning on and opening the section switches in order to detect a section where a change in voltage or current appears.

そして、検出した断線区間以外へ電力を供給するための
閉路を構成した後に、他の連系系統から電力を逆送する
等する。
Then, after configuring a closed circuit for supplying power to areas other than the detected disconnection section, power is sent back from other interconnected systems.

〈発明が解決しようとする課題〉 しかしながら、上記の断線区間の検出方式では、順番に
区分開閉器を制御することから、断線区間の検出を完了
するまでに時間が掛かり、断線区間以外への電力供給が
迅速に行なえないという問題がある。
<Problems to be Solved by the Invention> However, in the above-mentioned disconnection section detection method, since the sectional switches are controlled in order, it takes time to complete the detection of the disconnection section, and power is not supplied to areas other than the disconnection section. There is a problem that supplies cannot be provided quickly.

また、連系線を持たない配電系統においても断線の検出
、及び断線区間の検出を行なって、迅速に電力供給を再
開したいという要請がある。
Furthermore, there is a demand for detecting disconnections and disconnection sections even in power distribution systems that do not have interconnection lines, and quickly restarting power supply.

この発明は、上記問題、及び要請に鑑みてなされたもの
であり、配電線の断線、及び断線区間の迅速な検出する
ことを可能にする配電線の断線検出方式を提供すること
を目的とする。
The present invention has been made in view of the above-mentioned problems and demands, and aims to provide a distribution line disconnection detection method that enables quick detection of distribution line disconnections and disconnection sections. .

く課題を解決するための手段、及び作用〉上記目的を達
成するための、この発明の配電線の断線検出方式は、区
分開閉器により配電線を複数区間に区分し、この複数区
間毎に配電線の電流及び/又は電圧を検出する複数のセ
ンサと、このセンサにより検出される電流及び/又は電
圧に基いて配電線の欠相を検出する欠相検出手段と、欠
相検出手段からの欠相検出信号を配電用変電所に伝送す
る伝送手段とを配置し、配電用変電所に各区間に配置さ
れた伝送手段からの欠相検出信号を受信し、欠相検出信
号が伝送された配電用変電所に最も近い欠相区間を断線
区間とする断線区間検出手段を備えた方式である。
Means for Solving the Problems and Effects> In order to achieve the above object, the disconnection detection method of the distribution line of the present invention divides the distribution line into multiple sections using a sectional switch, and divides the distribution line into each of the multiple sections. A plurality of sensors that detect current and/or voltage in electric wires, an open phase detection means that detects open phase in the distribution line based on the current and/or voltage detected by the sensors, and A power distribution system in which a transmission means for transmitting a phase detection signal to a distribution substation is arranged, the distribution substation receives an open phase detection signal from the transmission means arranged in each section, and the open phase detection signal is transmitted. This method is equipped with an open-circuit section detection means that determines the open-phase section closest to the service substation as the open-circuit section.

上記構成の発明は、配電線が断線した場合には、断線区
間以後の断線相の電流が零になり、各相の電圧が不平衡
となることに着目してなされたものである。即ち、区分
開閉器により分割された各区間において、センサにより
電流及び/又は電圧を検出し、欠相検出手段により、セ
ンサからの電流及び/又は電圧に基いて欠相を検出する
。この欠相検出信号を伝送手段により、配電用変電所の
断線区間検出手段に伝送する。断線区間検出手段は、各
伝送手段から供給される欠相検出信号の内から、欠相検
出信号が伝送された配電用変電所に最も近い欠相区間を
断線区間とすることにより、断線区間を検出することが
できる。
The invention with the above configuration was made by focusing on the fact that when a distribution line is disconnected, the current in the disconnection phase after the disconnection section becomes zero, and the voltages of each phase become unbalanced. That is, in each section divided by the section switch, a sensor detects current and/or voltage, and an open phase detection means detects an open phase based on the current and/or voltage from the sensor. This open phase detection signal is transmitted by the transmission means to the disconnection section detection means of the distribution substation. The disconnection section detection means detects the disconnection section by determining, from among the open phase detection signals supplied from each transmission means, the open phase section closest to the distribution substation to which the open phase detection signal has been transmitted. can be detected.

また、上記伝送手段が、配電用変電所と送信すると共に
、他の区間に配置された伝送手段と送受信するものであ
り、欠相検出装置が他の区間に配置された伝送手段から
の配電線の電流及び/又は電圧情報に基いて当該区間の
断線を検出する方式であれば、配電用変電所の断線区間
検出手段は、断線区間を受信するだけで、断線区間を認
識することができるので、構成を簡略化することができ
る。
In addition, the above-mentioned transmission means transmits data to and from the distribution substation as well as transmits and receives data to the transmission means arranged in other sections, and the open phase detection device transmits data to the distribution line from the transmission means arranged in other sections. If the method detects a disconnection in the section based on current and/or voltage information, the disconnection section detection means of the distribution substation can recognize the disconnection section just by receiving the disconnection section. , the configuration can be simplified.

〈実施例〉 以下、この発明の配電線の断線検出方式を添付図面に基
いて詳細に説明する。
<Example> Hereinafter, the method for detecting disconnection of a power distribution line according to the present invention will be described in detail with reference to the accompanying drawings.

第1図は、この発明の断線検出方式を実施するための配
電系統図であり、第2図は欠相検出装置のブロック図で
ある。
FIG. 1 is a power distribution system diagram for implementing the disconnection detection method of the present invention, and FIG. 2 is a block diagram of an open phase detection device.

配電用変電所(1)は、△−△結線の変圧器(2)によ
り6,6KVに降圧された電力を母線(3)、遮断器(
4a) (4b) (4c)を介して配電&!(5a)
 (5b) (5c)に電力を供給する設備であり、こ
の配電用変電所(1)には、自己に従属する全系統の零
相電圧を検出するGPT(6)、各配電線(5a) (
5b) (5c)の零相電流を検出するz CT (7
a) (7b) (7c)、上記G P T (6)か
らの零相電圧、及びZ CT (7a) (7b) C
7c>からの零相電流とに基いて配電線(5a) (5
b) (5c)の地絡を検出する地絡方向リレー(8a
) (8b) (8c)、受信装置(9a) (9b)
(9c)、及び断線区間検出装置(10a) (LOb
) (10c)等が装備されている。尚、上記各系統の
構成は同様であり、(4a) (4b) (4c)、(
5a) (5b) (5c)、(7a) (7b)(7
c)、(7a) (7b) (7c)、(8a) (8
b) (8c)、(9a) (9b)(9C)、(10
a) (10b) (10e)をそれぞれ代表番号(4
)、(5)、(7)、(8)、(9)、00)で示し、
配電線側の構成は(5a)のみを示す。
The distribution substation (1) supplies power stepped down to 6.6KV by the △-△ connection transformer (2) to the busbar (3) and the circuit breaker (
4a) (4b) (4c) Power distribution via &! (5a)
(5b) This is equipment that supplies power to (5c), and this distribution substation (1) includes a GPT (6) that detects the zero-sequence voltage of all systems subordinate to it, and each distribution line (5a). (
5b) z CT (7
a) (7b) (7c), zero-sequence voltage from G P T (6) above, and Z CT (7a) (7b) C
7c> based on the zero-sequence current from the distribution line (5a) (5
b) Ground fault direction relay (8a) to detect ground fault (5c)
) (8b) (8c), receiving device (9a) (9b)
(9c), and disconnection section detection device (10a) (LOb
) (10c) etc. are equipped. The configurations of the above systems are the same, (4a) (4b) (4c), (
5a) (5b) (5c), (7a) (7b) (7
c), (7a) (7b) (7c), (8a) (8
b) (8c), (9a) (9b) (9C), (10
a) (10b) (10e) respectively with the representative number (4)
), (5), (7), (8), (9), 00),
Only (5a) is shown for the configuration on the distribution line side.

配電線6)には、複数の区分開閉器(111) (11
2)・・・(lln) 、分岐線(121)(121)
−112n) 、及びセンサ(131) (132) 
−(13n)が介在され、センサ(131)(132)
−(13n)に欠相検出装置(141) (142)−
・・(14n)が接続され、欠相検出装置(141) 
(142) −・・(14n)に伝送装置(151)(
152)= (15n)が接続される。上記区分開閉器
(111) (112)・・・(lln) 、センサ(
131)(132)・(18n) 、欠相検出装置(1
41) (141)・・・(14n) 、伝送装置(1
51)(152)−(15n)は、それぞれ同じ構成で
あり、以後の説明においては、区分開閉器(11)、セ
ンサ(13)、欠相検出装置(14)、伝送装置(15
)と略称する。
The distribution line 6) is equipped with multiple sectional switches (111) (11
2)...(lln), branch line (121) (121)
-112n), and sensor (131) (132)
- (13n) is interposed, sensors (131) (132)
- (13n) open phase detection device (141) (142) -
...(14n) is connected, and the open phase detection device (141)
(142) -... (14n) is the transmission device (151) (
152)=(15n) is connected. The above-mentioned section switches (111) (112)... (lln), sensors (
131) (132)/(18n), open phase detection device (1
41) (141)...(14n), transmission device (1
51) (152) to (15n) have the same configuration, and in the following explanation, the section switch (11), sensor (13), open phase detection device (14), and transmission device (15
).

上記区分開閉器(11)は、一系統の負荷容量が同一程
度になるような間隔で配置され、無電圧時に変電所から
の指令に応じて開放するものである。
The sectional switches (11) are arranged at intervals such that the load capacity of one system is approximately the same, and are opened in response to a command from the substation when there is no voltage.

センサ(13)は、各区分開閉器(11)の手前に配置
されa、  b、  c各相の電流ia、ib、ieや
電圧?a、?b、?cを検出する。このセンサ(13)
としては、CT、PT等の電磁誘導を利用した計器や、
配電線(5)の電界や、配電線に流れる電流により発生
する磁界を検出する電気光学効果素子を利用したものが
ある。この実施例においては、何れのものも使用しても
良い。上記センサ(13)により検出された各相のデー
タta、tb、ic。
The sensor (13) is placed in front of each sectional switch (11) and detects the current ia, ib, ie and voltage of each phase of a, b, and c. a,? b.? Detect c. This sensor (13)
Instruments that use electromagnetic induction such as CT and PT,
Some devices utilize an electro-optical effect element that detects the electric field of the power distribution line (5) or the magnetic field generated by the current flowing through the power distribution line. In this embodiment, either may be used. Data ta, tb, ic of each phase detected by the sensor (13).

Qa、?b、?cが欠相検出装置(14)に供給される
Qa,? b.? c is supplied to the open phase detection device (14).

上記欠相検出装置(14)は、サンプルホールド回路(
14a) 、MPX(14b) 、A/D変換部(14
c)、データメモリ(14d) 、CP U (14e
)等を有し、上記センサ(13)からの供給されるデー
タia、ib。
The open phase detection device (14) includes a sample hold circuit (
14a), MPX (14b), A/D converter (14
c), data memory (14d), CPU (14e
), etc., and the data ia, ib supplied from the sensor (13).

fc、?a、?b、Qcを入力とし、所定の条件(後述
する)に基いて当該区間が欠相状態であることを検出す
るものである。上記サンプルホールド回路(14a)は
センサ(13)からのデータla。
fc,? a,? b and Qc as inputs, and detects that the relevant section is in an open phase state based on predetermined conditions (described later). The sample hold circuit (14a) receives data la from the sensor (13).

Ib、lcS?a、9b、9eを所定角度毎ニサンプリ
ングして、M P X (14b)に供給する。上記M
 P X (14b)はサンプルホールド回路(14a
)からの信号をスキャンしてA/D変換部(14c)に
供給する。上記A/D変換部(14c)はM P X 
(14b)からの信号をディジタル信号に変換してデー
タメモリ(14d)に記憶させる。上記CP U (1
4e)はデータメモリ(14d)に記憶されたデータを
取り込み、当該区間が一相欠相、及び二相欠相であるこ
とを検出する。この欠相検出信号を伝送装置(15)に
供給する。
Ib, lcS? a, 9b, and 9e are sampled at every predetermined angle and supplied to M P X (14b). Above M
PX (14b) is a sample hold circuit (14a
) is scanned and supplied to the A/D converter (14c). The A/D converter (14c) is M P
The signal from (14b) is converted into a digital signal and stored in the data memory (14d). The above CPU (1
4e) takes in the data stored in the data memory (14d) and detects that the section is one-phase open phase and two-phase open phase. This open phase detection signal is supplied to the transmission device (15).

上記伝送装置(15)は、欠相検出装置(14)からの
欠相検出信号に当該区間の番号を付して伝送ライン(1
6)に送出する。この信号は、伝送ライン(16)を介
して他の区間に配置される伝送装置、及び配電用変電所
(1)の受信装置(9)に伝送される。
The transmission device (15) attaches the number of the section to the phase-opening detection signal from the phase-opening detection device (14) and transmits it to the transmission line (1
6). This signal is transmitted via the transmission line (16) to a transmission device located in another section and to a receiving device (9) of the distribution substation (1).

配電用変電所(1)の受信装置(9)は、各区間に配置
された伝送装置(15)からの欠相検出信号、及び区間
番号を受信し、これを断線区間検出装置00)に供給す
る。
The receiving device (9) of the distribution substation (1) receives the open phase detection signal and the section number from the transmission device (15) arranged in each section, and supplies this to the disconnection section detection device 00). do.

断線区間検出装置00)は、上記受信装置(9)を介し
て供給される各区間の欠相検出信号、及び区間番号に基
いて、欠相が発生している配電用変電所に最も近い欠相
区間を断線区間と判定する。
The disconnection section detection device 00) detects the disconnection closest to the distribution substation where the phase disconnection is occurring, based on the phase open detection signal and the section number of each section supplied via the receiving device (9). The phase section is determined to be a disconnected section.

上記欠相検出装置(14)手欠相を検出するための欠相
検出条件を一線断線時の回路解析、二線断線の回路解析
、及び負荷側に回転機器が接続されている場合の電圧、
電流特性に基いて詳細に説明する。
The open phase detection device (14) detects the open phase detection conditions by circuit analysis when one wire is disconnected, circuit analysis when two wires are disconnected, and the voltage when rotating equipment is connected to the load side.
This will be explained in detail based on the current characteristics.

第3図は、A相が断線した状態を示す回路図であり、第
4図はその時の電圧をベクトルで示した図である。尚、
図面の左側を電源側、右側を負荷側とする。
FIG. 3 is a circuit diagram showing a state in which the A phase is disconnected, and FIG. 4 is a diagram showing the voltage at that time as a vector. still,
The left side of the drawing is the power supply side, and the right side is the load side.

1)先ず、零相電圧守0、零相電流lOに基いて解析す
る。
1) First, analysis is performed based on the zero-sequence voltage value 0 and the zero-sequence current lO.

A相断線前における、零相電圧!0、及び零相電流は下
式1で示される。
Zero-sequence voltage before A phase disconnection! 0 and zero-sequence currents are shown by equation 1 below.

また、各相の電圧?a、♀b、?cs及び電流ia、i
b、icは平衡しているから、90、lO共に零の状態
にある。
Also, the voltage of each phase? a,♀b,? cs and current ia, i
Since b and ic are in equilibrium, both 90 and lO are in a zero state.

いま、C相が断線したとすると、電源側から供給される
Vaが零となり、b相の電圧vbとC相の電圧がベクト
ル加算され、中性点の電位は、(fb +/c ) /
2となる。これは、負荷側のC相端子電圧と等しいから
、負荷側のC相端子には、下式2で示されるように?a
に対して大きさが1/2、位相が180度づれた電圧9
a’が現れる。
Now, if the C phase is disconnected, Va supplied from the power supply side becomes zero, the voltage vb of the b phase and the voltage of the C phase are vector-added, and the potential of the neutral point is (fb +/c) /
It becomes 2. Since this is equal to the C-phase terminal voltage on the load side, the voltage at the C-phase terminal on the load side is expressed as shown in equation 2 below. a
Voltage 9 whose magnitude is 1/2 and whose phase is 180 degrees apart from
a' appears.

Qb+9c    1 宴a ’ −−−−一ぐa       ・・・2従っ
て、電源側のC相と負荷側のC相間の電位差は、下式3
で示されるように39a/2となる。
Qb+9c 1 Banquet a' -----1gu a...2 Therefore, the potential difference between the C phase on the power supply side and the C phase on the load side is given by the following formula 3.
As shown, it becomes 39a/2.

?a −(−?a /2) −3?a /2   −3
この時の負荷側の零相電圧窒0は、下式4で示される。
? a -(-?a/2) -3? a /2 -3
The zero-sequence voltage on the load side at this time is expressed by the following equation 4.

9O−9a’+9b+?c −− (fb +?c )  −−一京a    ・・
・4また、C相断線時には、laは零であり、B相の電
流ibは、B相端子−B相負荷−C相の負荷→C相配電
線に流れ、C相の電流1cは、C相端子−C相負荷→B
相の負荷−B相配電線に流れる。
9O-9a'+9b+? c -- (fb +?c) --Ikkyo a...
・4 Also, when the C phase is disconnected, la is zero, the B phase current ib flows from the B phase terminal - the B phase load - the C phase load → the C phase distribution line, and the C phase current 1c flows from the C phase Terminal - C phase load → B
Phase load - Flows to the B phase distribution line.

このときの零相電流i0は、下式5で示されるようにな
る。
The zero-sequence current i0 at this time is expressed by the following equation 5.

io −fb +ic −o           ・
・・5即ち、−線断線時には零相電圧ぐ0が現れ、零相
電流10は現れない。
io -fb +ic -o ・
...5 That is, when the - wire is disconnected, a zero-sequence voltage of 0 appears, and a zero-sequence current of 10 does not appear.

2)次いで、正相電流i■、逆相電流12に基いて解析
する。
2) Next, analysis is performed based on the positive sequence current i■ and the negative sequence current 12.

正相電流11.逆相電流!2は6式で示される。Positive sequence current11. Negative sequence current! 2 is shown by equation 6.

上記6式により、定常時においては、正相電流11は大
きさが311alであり、逆相電流12は零である。し
かし、C相が断線すると、ia −0、且つil) +
1e−0であるから、式6は下式そして、α(1−α)
−jJゴであるから、ll。
According to the above formula 6, in steady state, the magnitude of the positive sequence current 11 is 311al, and the magnitude of the negative sequence current 12 is zero. However, if the C phase is disconnected, ia −0 and il) +
Since 1e-0, equation 6 becomes the following equation, and α(1-α)
-jJgo, so ll.

12は大きさが、/””’Jlib+となり、位相が1
80度異なる。
12 has a magnitude of /””’Jlib+ and a phase of 1.
80 degrees different.

3)さらに、零相電流!■と逆相電流12の差をとるこ
とにより、laを消去することにか可能であることにに
に着目して回路解析を行なう。
3) Furthermore, zero-sequence current! A circuit analysis will be conducted focusing on the fact that it is possible to eliminate la by taking the difference between (2) and the negative phase current 12.

上式6同士の差をとり、整理すると、下式8となる。By taking the difference between the above equations 6 and rearranging them, the following equation 8 is obtained.

ti−tz−α(1−α)(fb−fc)・・・8配電
線が正常の場合、即ち、定常状態においては、ib −
1c−v’丁11b+であるから、式8は下式9で表さ
れる。
ti-tz-α (1-α) (fb-fc)...8 When the distribution line is normal, that is, in a steady state, ib -
Since 1c-v'd11b+, Equation 8 can be expressed as Equation 9 below.

1l−12−α(1−α)f311b 1−311b+
         ・・・9しかし、C相が断線すると
、ib +ic =Oより、式8は下式10となる。
1l-12-α(1-α)f311b 1-311b+
...9 However, if the C phase is disconnected, Equation 8 becomes Equation 10 below because ib + ic = O.

1t−72−α(1−α)211b+ −2l丁+1bl       ・・・lOまた、b相
が断線すると1b−0より、式8は下式11となる。
1t-72-α(1-α)211b+-2l+1bl...lO Also, when the b phase is disconnected, from 1b-0, equation 8 becomes equation 11 below.

1t−i2−α (1−α)ltc −f丁1fcl         ・・・11また、C
相が断線すると1c−0であるから、式7は、下式12
となる。
1t-i2-α (1-α) ltc -f 1fcl ...11 Also, C
Since it is 1c-0 when the phase is disconnected, Equation 7 becomes the following Equation 12
becomes.

1l−i2−α(1−α)Nbl −1(丁fb l        ・・・12即ち、上
記1O111,12式より、1t−i2は、C相が断線
すると2f丁11bl、b相が断線するとJ丁1fcl
、C相が断線すると 7丁1!b 1となる。
1l-i2-α(1-α)Nbl -1(dfbl...12 That is, from the above formulas 1O111 and 12, 1t-i2 is 2fd11bl when the C phase is disconnected, and J when the b phase is disconnected. Ding 1fcl
, if the C phase is disconnected, 7-1! b becomes 1.

第5図はB相、C相が断線した場合を示す回路図である
。B相、C相の2線が断線の場合には、電源側より?b
、?cが供給されないから、vb−o、?c−0であり
、上記式1により零相電流90はQaとなる。また、二
線が断線すれば閉回路を構成しないから、相電流tar
  ib。
FIG. 5 is a circuit diagram showing a case where the B phase and C phase are disconnected. If the two wires of phase B and phase C are disconnected, connect from the power supply side. b
,? Since c is not supplied, vb-o,? c-0, and the zero-sequence current 90 becomes Qa according to equation 1 above. Also, if the two wires are disconnected, a closed circuit will not be formed, so the phase current tar
ib.

1cは零であり、零相電流10、正相電流11、逆相電
流12も零である。
1c is zero, and the zero-sequence current 10, positive-sequence current 11, and negative-sequence current 12 are also zero.

即ち、二線が断線すると、−線断線の場合と同様に零相
電圧MOが現れ、零相電流10が現れない。
That is, when the two wires are disconnected, the zero-sequence voltage MO appears and the zero-sequence current 10 does not appear, as in the case of the negative wire disconnection.

しかしながら、実験結果゛によれば、負荷側に回転機器
が接続されている場合には、配電線が断線したときに零
相電流10が現れる。従って、零相電圧90が現れ、零
相電流!0が現れないことのみに基いて、配電線の断線
かどうかを判別すると誤る虞れがある。
However, according to experimental results, when a rotating device is connected to the load side, a zero-sequence current 10 appears when the distribution line is disconnected. Therefore, a zero-sequence voltage 90 appears, and a zero-sequence current! There is a risk of making a mistake if it is determined whether the distribution line is disconnected based solely on the fact that 0 does not appear.

そして、−線断線故障時には、上記零相電流の発生に加
えて、非断線相の電流が増大する。従って、回転機器が
負荷側に接続されている場合には、上記零相電流10が
あるために、断線故障か地絡敵陣かの判別を誤る虞れが
ある。
In addition to the generation of the above-mentioned zero-sequence current, at the time of a - line disconnection failure, the current in the non-disconnection phase increases. Therefore, when a rotating device is connected to the load side, the presence of the zero-sequence current 10 may lead to erroneous determination of whether the fault is a disconnection or a ground fault.

また、二線断線の場合には、ia、lb、icは共に略
零となり、零相電流10は零に近くなるが、各相の電圧
?a、?b、vcは、第6図に示されるように、断線後
減少した後、正常時よりも僅かに上昇するという特性を
示す。
In addition, in the case of a two-wire disconnection, ia, lb, and ic are all approximately zero, and the zero-sequence current 10 is close to zero, but the voltage of each phase? a,? As shown in FIG. 6, b and vc exhibit a characteristic in that they decrease after a wire breakage and then rise slightly compared to normal times.

尚、零相電流10が現れることや、及び諸特性は、当業
者の知るところである。
Incidentally, the appearance of the zero-sequence current 10 and its various characteristics are well known to those skilled in the art.

上記の解析結果、及び本件発明者等がさらに模擬回路に
より試験した結果に基いて欠相検出手段の欠相検出条件
を次のように設定する。
Based on the above analysis results and the results of tests conducted by the inventors using a simulated circuit, the open phase detection conditions of the open phase detection means are set as follows.

尚、■〜■は一相欠相検出を主とする場合の条件であり
、[有]〜■は二相欠相検出を主とする場合の条件であ
り、@〜■は、−相欠相と二相欠相とを識別する場合の
条件であり、■、[相]〜0は負荷側に回転機器が接続
されている場合の条件である。
In addition, ■~■ are the conditions when mainly detecting one-phase open phase, [Yes]~■ are the conditions when mainly detecting two-phase open phase, and @~■ are the conditions when detecting -phase open phase. These are conditions for identifying a phase and a two-phase open phase, and ■, [phase] to 0 are conditions when a rotating device is connected to the load side.

■、三相の電流の何れか二相のベクトル和が零である場
合を一相欠相とする。即ち、la + ib 。
(2) If the vector sum of any two phases of the three-phase currents is zero, one phase is considered to be open. That is, la + ib.

fb+fc、fc+laの内の何れか一つが零となる場
合を一相欠相とする(式5に基く)。
A case where either one of fb+fc and fc+la is zero is defined as one-phase open phase (based on equation 5).

■、三相のia、ib、icの内の何れか二つの位相の
エツジが揃った場合を一相欠相とする。即ち、−相が欠
相した場合には、三相の電流の何れか二相のベクトル和
が零であることによる。上記欠相検出装置(14)によ
り、−線断線時の位相比較を行なった場合の模式図を第
7図に示す。
(2) When the edges of any two of the three phases ia, ib, and ic are aligned, one phase is considered to be open. That is, when the negative phase is open, the vector sum of any two phases of the three-phase currents is zero. FIG. 7 shows a schematic diagram when phase comparison is performed using the open phase detection device (14) at the time of - wire breakage.

■、負負荷が、 Qa I−1lb +Qc)l/2、または?b I−
l  (?c +9a)  l/2、マタハVc l−
l  (Qa +?b)  l、/’2となる場合を一
相欠相とする(式2に基く)。
■The negative load is Qa I-1lb +Qc)l/2, or? b I-
l (?c +9a) l/2, Mataha Vc l-
The case where l (Qa +?b) l, /'2 is defined as one-phase open phase (based on formula 2).

■、負負荷の相電圧の何れか一つの位相が、180度変
化する場合を一相欠相とする(式2に基く)。
(2) A case where the phase of any one of the phase voltages of the negative load changes by 180 degrees is considered to be one phase open phase (based on formula 2).

■、電源側に配置された伝送装置(15)から伝送され
る電圧情報と、負荷側に配置された伝送装置(15)か
ら伝送される電圧情報との差が、断線前の相電圧よりも
大きい場合を一相欠相とするものである(式3に基く)
■The difference between the voltage information transmitted from the transmission device (15) placed on the power supply side and the voltage information transmitted from the transmission device (15) placed on the load side is greater than the phase voltage before the disconnection. If it is large, one phase is missing (based on formula 3)
.

■、何れか一相の電流の急激な変化に基いて一相欠相を
検出する。
(2) Detecting a phase open phase based on a sudden change in the current of any one phase.

■、所定サすクル前の零相電圧MOと現在の零相電圧−
VOとの大きさに変化がある場合を、欠相とする(式4
に基く)。
■, Zero-sequence voltage MO before a predetermined cycle and current zero-sequence voltage -
The case where there is a change in magnitude with respect to VO is considered to be an open phase (Equation 4
(based on).

■、ia、ib、lcの白河れか一つの大きさが変化し
、且つ当該変化した電流の位相が反転した場合を、負荷
側に回転機器が接続されている状態における一相欠相と
する(式5と実験結果に基く)■、所定サすクル前のl
l’と現在の11とを比較し、if /il°く1の場
合を断線とする。尚、定常時の正相電流IIは31fa
lであり、−相欠相するとtlはf丁1talに低下し
、二相欠相の場合には、11−0に低下する。このこと
に基いて、−相欠相と二相欠相とを区別することも可能
である(式6に基く)。
■If the magnitude of one of Shirakawa, ia, ib, and lc changes and the phase of the changed current is reversed, this is considered to be one phase open phase when rotating equipment is connected to the load side. (Based on Equation 5 and experimental results) ■, l before a given cycle
l' is compared with the current value of 11, and if if/il° is 1, the wire is broken. In addition, the positive sequence current II during steady state is 31fa.
1, and when there is a negative phase, t1 decreases to f1tal, and when there is a two-phase phase loss, t1 decreases to 11-0. Based on this, it is also possible to distinguish between a -phase open phase and a two phase open phase (based on equation 6).

[株]、正相電流11と逆相電流12の大きさが等しい
場合を断線とする(式7に基く)。尚、二相欠相時には
、1l−i2−0であるから、このことは二相欠相の場
合にも成立する。
[Co., Ltd.], the case where the magnitude of the positive sequence current 11 and the negative sequence current 12 are equal is considered as a disconnection (based on formula 7). In addition, since 11-i2-0 is established when there is a two-phase open phase, this also holds true when there is a two-phase open phase.

■、ia、lb、lcの内値何れか一つが零であり、且
つ下式の何れかを満足する場合を一相欠相とする(式7
に基く)。
If any one of the internal values of ■, ia, lb, and lc is zero and one of the following formulas is satisfied, it is considered to be one phase open phase (Formula 7
(based on).

t2/(fa又は1b又はtc) −v’丁tl / 
(ta又はib又はtc)−−’丁(但し、括弧ないの
fa、rb、feは零でないもの、即ち断線相以外の相
の電流値である)■、ia、ib、lcの内何れか最大
のものが、lr/77に略等しい場合には、−相欠相と
する(式7に基く)。
t2/(fa or 1b or tc) -v'dingtl/
(ta or ib or tc) --' ding (however, fa, rb, and fe without parentheses are non-zero, that is, the current value of the phase other than the disconnection phase) ■, ia, ib, or lc If the maximum value is approximately equal to lr/77, it is assumed to be a -phase deficit (based on equation 7).

■、零相電圧宴0が検出され、且つif /12−1の
場合を一相欠相とする(式7に基く)。尚、定常時には
、il/12−ooである。
(2) If zero-phase voltage difference 0 is detected and if/12-1, one phase is assumed to be open (based on equation 7). Incidentally, in steady state, it is il/12-oo.

[有]、fl−12が、2l丁+tb f丁1icl、v’丁11c 1となる場合を一相欠相
とする(式10S11.12に基く)。
[Yes], the case where fl-12 becomes 2l+tb f+1icl, v'+11c is defined as one phase open phase (based on Formula 10S11.12).

■、lfa l、ltb I、lfc lについて、所
定サイクル前の値と現在の値とを比較し、何れか一つの
比が大きく変化した場合を一相欠相とする。
(2) For lfa l, ltb I, and lfc l, the values before a predetermined cycle are compared with the current values, and if any one of the ratios changes significantly, it is determined that one phase is missing.

これは、配電線の末端、或は−本の配電線に重負荷が接
続されている場合において、負荷が運転を停止するとl
a、lb、lcは全て零になる。この電流が零の状態を
誤って欠相と判定する虞れがある。そこで、−相欠相の
場合には、ia、ib。
This means that when a heavy load is connected to the end of a distribution line or two distribution lines, if the load stops operating, l
a, lb, and lc are all zero. There is a possibility that a state where this current is zero may be mistakenly determined to be an open phase. Therefore, in the case of - mutually absent phase, ia, ib.

ICの何れか一つが零となることに着目し、何れか一つ
の比が変化する場合を一相欠相とすることにより、誤検
出を防止することができる。
Erroneous detection can be prevented by focusing on the fact that any one of the ICs becomes zero and defining the case where the ratio of any one changes as one phase open phase.

尚、所定サイクル前ノI la 1.  I fb  
I。
Note that I la 1. before the predetermined cycle. I fb
I.

11C1と現在のそれとの差に基いて欠相を検出するこ
とも可能である。
It is also possible to detect an open phase based on the difference between 11C1 and the current one.

(以下余白) なる演算を行ない、これが1より大きい場合を断線とす
る。断線相の電流が零になることに基く。
(Left below) is calculated, and if this is greater than 1, it is considered a disconnection. This is based on the fact that the current in the disconnected phase becomes zero.

尚、上記演算の結果は、−相欠相のとき3/2であり、
二相欠相のとき■になる。
In addition, the result of the above calculation is 3/2 when the phase is negative,
When there is a two-phase open phase, it becomes ■.

■、零相電圧−>0があり、且つia、jb、lcの全
てが零となる場合を二相欠相とする(第5図の解析結果
に基く) [有]、負荷側のQa、9b、Qcが共に等しくなる場
合を2相欠相とする。即ち、各相の電圧Qa。
■If there is a zero-phase voltage -> 0 and all of ia, jb, and lc are zero, it is considered a two-phase open phase (based on the analysis results in Figure 5) [Yes], Qa on the load side, The case where both 9b and Qc are equal is defined as two-phase open phase. That is, the voltage Qa of each phase.

9b、ycの大きさと位相が等しくなる場合を二相欠相
とする(第5図の解析結果に基く)。上記欠相検出装置
(14)により、二線断線時の位相比較を行なった場合
の模式図を第8図に示す。
A case where the magnitude and phase of 9b and yc are equal is defined as a two-phase open phase (based on the analysis results in FIG. 5). FIG. 8 shows a schematic diagram when phase comparison is performed when two wires are broken using the open phase detection device (14).

■、負負荷の各相の電圧?a、?b、?cが共に略0゜
1バ一ユニツト程度低下する場合を二相欠相とする。こ
れは、模擬回路で断線試験を行なった結果に基くもので
あり、一般的にこの様な結果が得られることが知られて
いる。
■ Voltage of each phase of negative load? a,? b.? A case where c both decrease by approximately 0° and one unit is considered to be a two-phase open phase. This is based on the results of a disconnection test using a simulated circuit, and it is generally known that such a result can be obtained.

[相]、零相電圧MOがあり、三相の内何れか一相以上
の電流が零の場合を欠相とし、さらに、負荷側のfa、
Qb、Qcが共に等しくなるか、負荷側のQa、Qb、
9eが共に略0.1バーユニツト低下する場合には、2
相欠相とする。上記[有]■の条件と欠相時に零相電圧
が現れることを組み合わせたものである。
[Phase] If there is a zero-phase voltage MO and the current in one or more of the three phases is zero, it is considered an open phase, and in addition, fa on the load side,
Qb, Qc are both equal, or Qa, Qb on the load side,
9e both decrease by approximately 0.1 bar unit, 2
Assume that the phases are mutually exclusive. This is a combination of the above condition [Yes] (2) and the fact that a zero-sequence voltage appears during an open phase.

■、ta、fb、fcの何れか最大のものが、略12に
等しいとき二相欠相とする(第5図の解析結果に基く)
■When the maximum of any of ta, fb, and fc is approximately equal to 12, it is assumed to be a two-phase open phase (based on the analysis results in Figure 5).
.

■、零相電圧MOがあり、且つla、ib、icの何れ
か一つが零の場合を一相欠相とし、零相電圧MOがあり
、且つla、ib、icの全てが零となる場合を二相欠
相とする。これにより、−相欠相と二相欠相とを識別す
ることができる。
■If there is a zero-sequence voltage MO and any one of la, ib, and ic is zero, it is considered a one-phase open phase, and when there is a zero-sequence voltage MO and all of la, ib, and ic are zero. Let be two-phase open phase. Thereby, it is possible to distinguish between a -phase open phase and a two-phase open phase.

■、下式が成立し、且つja、lb、icの何れか一つ
が零の場合を一相欠相とし、 t2/(ta又はib又はfe)−f丁(但し、括弧な
いは断線相以外の相の電流値であ12−βであり、且つ
!a、tb、fcの何れか一つ以上が零の場合を二相欠
相とする。これにより、−相欠相と二相欠相とを識別す
ることができる。尚、上記βは、配電線(5)と大地間
に対地静電容量があるため、配電線6)が断線した場合
には、この対地静電容量を介して数十〜数百a+Aの零
相電流が流れることを考慮するためである。そして、地
絡故障と区別するため、このβを数アンペア程度(′、
O)に設定する。
■If the following formula holds and any one of ja, lb, and ic is zero, one phase is considered to be an open phase. If the current value of the phase is 12-β and one or more of !a, tb, and fc is zero, it is considered a two-phase open phase.Thereby, -phase open phase and two-phase open phase Since there is a ground capacitance between the distribution line (5) and the ground, if the distribution line 6) is disconnected, the above β will be This is to take into account that a zero-sequence current of several tens to hundreds of A+A flows. In order to distinguish it from a ground fault, we set this β to about several amperes (′,
O).

■、11−J丁(ia又は1b、ic)の場合を一相欠
相とし、12−β−0の場合を二相欠相とする(式7及
び上記[相]に基く)。
(2) The case of 11-J (ia or 1b, ic) is assumed to be one phase open phase, and the case of 12-β-0 is assumed to be two phase open phase (based on formula 7 and the above [phase]).

■、零相電圧−VOがあり、且ツ?a 、 fb 、 
?cが増加しない場合を断線とする。これにより、地絡
故障と区別することができる。即ち、地絡故障が発生し
た場合には、零相電圧ぐ0が現れる点においては、共通
するが、9a、♀b、立Cが増加する点に断線故障との
相違がある。
■There is a zero-sequence voltage -VO, and ? a, fb,
? If c does not increase, the wire is broken. This allows it to be distinguished from a ground fault. That is, when a ground fault occurs, the zero-sequence voltage (0) appears in common, but it differs from a disconnection fault in that 9a, ♀b, and C increase.

[相]、零相電圧−VOと零相電流!0があって、二相
の電流が増加する場合を負荷側に回転機器が接続されて
いる場合における一相欠相とし、零相電圧MOと零相電
流!0があって、三相の電流全てが零近傍の場合を負荷
側に回転機器が接続されている場合における二相欠相と
する(実験結果に基く)■、逆相電流12があり、且つ
lB、ib、icの何れか一つが零の場合を一相欠相と
し、逆相電流12があり、且つta、fb、、icの何
れもが零の場合を二相欠相とする。即ち、逆相電流12
は、地絡、短絡故障の場合にも、発生することから、f
a、ib、tcの出力条件に基いて他の故障と区別し、
さらに−相欠相と、二相欠相とを識別する。これにより
、回転機器が負荷側に接続されている場合であっても、
欠相を検出することができる。
[Phase], zero-sequence voltage -VO and zero-sequence current! 0 and the two-phase current increases is considered to be one phase open phase when rotating equipment is connected to the load side, and zero-sequence voltage MO and zero-sequence current! 0 and all three phase currents are near zero, this is considered a two-phase open phase when a rotating device is connected to the load side (based on experimental results) ■, there is a negative sequence current of 12, and A case where any one of IB, ib, and ic is zero is defined as a one-phase open phase, and a case where there is a negative phase current 12 and all of ta, fb, and ic are zero is defined as a two-phase open phase. That is, the negative sequence current 12
occurs also in the case of ground faults and short circuit faults, so f
Distinguish from other failures based on the output conditions of a, ib, and tc,
Further - distinguish between a phase-loss phase and a two-phase phase-loss phase. This allows even if rotating equipment is connected to the load side.
Phase loss can be detected.

[相]、零相電圧!0と上記Oの条件とに基いて一相欠
相と、二相欠相とを識別する。上記Oと同様1こ回転機
器が負荷側に接続されている場合であっても、欠相を検
出することができる。
[Phase], zero-sequence voltage! One-phase open phase and two-phase open phase are distinguished based on 0 and the above-mentioned condition O. Similar to O above, even if one rotating device is connected to the load side, an open phase can be detected.

尚、この発明は上記の実施例に限定されるものではなく
、例えば、上記伝送装置が、他の区間に配置された伝送
装置と送受信して他の区間の配電線の電流及び/又は電
圧情報に基いて当該区間の断線を検出し、この断線検出
信号に区間番号を付して配電用変電所に送信するように
構成することが可能である。
Note that the present invention is not limited to the above-described embodiments, and for example, the transmission device transmits and receives current and/or voltage information of the distribution line in the other section by transmitting and receiving with the transmission device located in the other section. It is possible to detect a disconnection in the section based on this, and to send the disconnection detection signal to the distribution substation with a section number attached.

〈発明の効果〉 以上の第1の発明によれば、区分開閉器で分割された各
区間にセンサ、欠相検出手段、及び伝送手段を配置し、
各区間毎に欠相を検出して、配電用変電所の断線区間検
出手段に伝送し、断線区間検出手段は、各伝送手段から
供給される欠相検出信号の内から、配電用変電所に最も
近い欠相検出区間を断線区間とすることにより、断線区
間を検出しているので、従来の如く区間開閉器を順番に
開閉して断線区間を検出するのと比較して、断線区間の
検出に要する時間を短縮することができ、また、連系さ
れていない配電線であっても断線の検出、及び断線区間
の検出を行なうことができるという効果が得られる。
<Effects of the Invention> According to the above first invention, the sensor, the open phase detection means, and the transmission means are arranged in each section divided by the section switch,
An open phase is detected for each section and transmitted to the open circuit section detection means of the distribution substation, and the open circuit section detection means detects the open phase detection signal from among the open phase detection signals supplied from each transmission means to the distribution substation. Since the disconnection section is detected by setting the nearest open phase detection section as the disconnection section, the detection of the disconnection section is easier than the conventional method of opening and closing the section switches in order to detect the disconnection section. It is possible to shorten the time required for the process, and it is also possible to detect disconnections and disconnection sections even in distribution lines that are not interconnected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の断線検出方式を実施するための配
電系統図、 第2図は欠相検出装置のブロック図、 第3図は人相が断線した状態を示す回路図、第4図は第
3図の断線状態におけるベクトル図、第5図はB相、C
相の2線が断線を示す図、第6図は負荷側に回転機器が
接続されている場合における電圧−時間の特性図、 第7図は一線断線時の位相比較を行なった場合の模式図
。 第8図は二線断線時の位相比較を行なった場合の模式図
。 (9)・・・受信装置、00)・・・断線・地絡識別装
置、(11)・・・区分開閉器、(13)・・・センサ
、(14)・・・欠相検出装置、(15)・・・伝送装
置、(1B)・・・伝送ライン 第 図 第 図 第 図
Fig. 1 is a power distribution system diagram for implementing the disconnection detection method of the present invention, Fig. 2 is a block diagram of an open phase detection device, Fig. 3 is a circuit diagram showing a state in which the human phase is disconnected, and Fig. 4 is a vector diagram in the disconnected state in Fig. 3, and Fig. 5 is a vector diagram for the B phase and C phase.
Figure 6 is a voltage-time characteristic diagram when two phase wires are disconnected. Figure 6 is a voltage-time characteristic diagram when a rotating device is connected to the load side. Figure 7 is a schematic diagram when phase comparison is performed when one wire is disconnected. . FIG. 8 is a schematic diagram when phase comparison is performed when two wires are broken. (9)...Receiving device, 00)...Disconnection/ground fault identification device, (11)...Sectional switch, (13)...Sensor, (14)...Open phase detection device, (15)...Transmission device, (1B)...Transmission line diagram diagram diagram diagram diagram diagram

Claims (1)

【特許請求の範囲】 1、区分開閉器により配電線を複数区間に区分し、この
複数区間毎に配電線の電流及び/又は電圧を検出する複
数のセンサと、このセンサにより検出される電流及び/
又は電圧に基いて配電線の欠相を検出する欠相検出手段
と、欠相検出手段からの欠相検出信号を配電用変電所に
伝送する伝送手段とを配置し、 配電用変電所に各区間に配置された伝送手段からの欠相
検出信号を受信し、欠相検出信号が伝送された配電用変
電所に最も近い欠相区間を断線区間とする断線区間検出
手段を備えたたことを特徴とする配電線の断線検出方式
。 2、上記請求項1の伝送手段が、配電用変電所と送信す
ると共に、他の区間に配置された伝送手段と送受信する
ものであり、欠相検出装置が他の区間に配置された伝送
手段からの配電線の電流及び/又は電圧情報に基いて当
該区間の断線を検出することを特徴とする配電線の断線
検出方式。
[Claims] 1. A distribution line is divided into a plurality of sections by a sectional switch, and a plurality of sensors detecting the current and/or voltage of the distribution line for each of the sections, and the current and/or voltage detected by the sensor. /
Alternatively, an open phase detection means for detecting an open phase in a distribution line based on voltage and a transmission means for transmitting an open phase detection signal from the open phase detection means to a distribution substation are installed, and Disconnection section detection means is provided, which receives an open phase detection signal from a transmission means arranged in the section, and determines, as a disconnection section, the open phase section closest to the distribution substation to which the open phase detection signal was transmitted. Features a distribution line disconnection detection method. 2. The transmission means according to claim 1 transmits data to a distribution substation and also transmits and receives data to a transmission means arranged in another section, and the transmission means has an open phase detection device arranged in the other section. A method for detecting a disconnection in a distribution line, characterized in that a disconnection in the section is detected based on current and/or voltage information of the distribution line.
JP8661589A 1989-04-04 1989-04-04 Detection of disconnection in distribution line Pending JPH02266822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8661589A JPH02266822A (en) 1989-04-04 1989-04-04 Detection of disconnection in distribution line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8661589A JPH02266822A (en) 1989-04-04 1989-04-04 Detection of disconnection in distribution line

Publications (1)

Publication Number Publication Date
JPH02266822A true JPH02266822A (en) 1990-10-31

Family

ID=13891926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8661589A Pending JPH02266822A (en) 1989-04-04 1989-04-04 Detection of disconnection in distribution line

Country Status (1)

Country Link
JP (1) JPH02266822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331417A (en) * 1991-05-01 1992-11-19 Nissin Electric Co Ltd System for detecting fault section of distribution line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331417A (en) * 1991-05-01 1992-11-19 Nissin Electric Co Ltd System for detecting fault section of distribution line

Similar Documents

Publication Publication Date Title
US8866487B2 (en) Directional fault sectionalizing system
CN103548228B9 (en) For protecting the system and method for electric power networks
JPH06296308A (en) Distribution equipment having remotely monitoring function
Conti et al. Innovative solutions for protection schemes in autonomous MV micro-grids
US6671151B2 (en) Network protector relay and method of controlling a circuit breaker employing two trip characteristics
CN103163357A (en) Multi-channel leakage current monitoring system
CN109193595B (en) Active power distribution network failure separation method based on current phase comparison
JPH02266822A (en) Detection of disconnection in distribution line
JP2000014017A (en) Substation breaker release detection method, substation breaker release detection device and reception/ distribution facility equipped with the detection device
JP3540778B2 (en) Total power measurement method for specific load and total power measurement device for specific load
JP2010148269A (en) Protective relay system
JPH04158274A (en) Method for detecting breakage of high voltage power distribution system
CN217085087U (en) Detection apparatus for three-phase four-wire is zero line dual supply residual current altogether
Menezes et al. Dual-Layer Based Microgrid Protection Using Voltage Synchrophasors
JPH02266821A (en) Detection of disconnection in distribution line
CN216598970U (en) Current monitoring circuit and current monitoring system
Al-Maitah et al. Wide area protection in modern power systems
JPH01180469A (en) Accident section detecting device for power transmission line
JPH03218229A (en) Incoming line switch for underground power distribution line and switching method for uninterruptible power supply
JP2001016767A (en) Failure section decision device for transformer station
JPH05292657A (en) Fault section of distribution system detecting system
JPS6330195Y2 (en)
KR20220078489A (en) Method and system for detecting faults in a low voltage three-phase network
JPH11308758A (en) Grounding detector
JPH02266823A (en) Disconnection/ground fault discriminating system for distribution line