JPH04330794A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH04330794A
JPH04330794A JP1617691A JP1617691A JPH04330794A JP H04330794 A JPH04330794 A JP H04330794A JP 1617691 A JP1617691 A JP 1617691A JP 1617691 A JP1617691 A JP 1617691A JP H04330794 A JPH04330794 A JP H04330794A
Authority
JP
Japan
Prior art keywords
layer
ultra
thin film
electrons
mqb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1617691A
Other languages
Japanese (ja)
Inventor
Isao Hino
日野 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1617691A priority Critical patent/JPH04330794A/en
Publication of JPH04330794A publication Critical patent/JPH04330794A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a lateral mode control type semiconductor laser having high reliability and a high efficiency. CONSTITUTION:A mesa side of a current injection stripe 11 state formed of double hetero structures 2-4 is covered with a multiple ultrathin film layer (so-called a multiple quantum barrier-MQB-layer 10) in which two types of semiconductor ultrathin film layers having different energy gaps are alternately deposited so that the total thickness of the layers is a thickness or less in which a phase difference between electrons incident to the layer and reflected electrons is about odd times as large as pi to maintain coherence of the electrons.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、横モード制御特性の優
れた高信頼の半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly reliable semiconductor laser with excellent transverse mode control characteristics.

【0002】0002

【従来の技術】光通信,光情報機器,ディスプレー等に
用いられる電流注入型レーザは、活性層をそれよりも大
きなエネルギギャップをもつ半導体をクラッド層として
挟んだダブルヘテロ構造をもつ。さらに水平横モードを
単一な基本モードに保つために接合に平行な方向に屈折
率分布をつけた構造がとられる。図2は従来技術による
構造例(IEEE  J.Quantum  Elec
tron.(アイ・イー・イー・イー・ジャーナル・オ
ブ・クァンタム・エレクトロニクス)第QE16巻,p
.205(1980年))とレーザ光出射端面よりみた
模式図である。電流注入されるストライプ領域は紙面に
垂直な方向に延びている。本従来例はいわゆる埋め込み
ヘテロ構造であり以下のように構成されている。n−G
aAs基板201上にAl0.07Ga0.93As活
性層203をn−Al0.35Ga0.65Asクラッ
ド層202と、p−Al0.35Ga0.65Asクラ
ッド層204により挟み込んだダルブヘテロ構造を形成
し、このダブルヘテロ構造部を電流注入するストライプ
状にメサ形状にして電流注入ストライプ部206を形成
し、このダブルヘテロ構造電流注入ストライプ206を
n−Al0.35Ga0.65As埋め込み層210で
埋め込み、埋め込みヘテロ構造を成している。このよう
に接合に水平な方向に屈折率差をつけることにより、水
平横方向の光閉じ込めを行い単一水平横モード発振を得
るものである。また、p−Al0.35Ga0.65A
sクラッド層204とn−Al0.35Ga0.65A
s埋め込み層210との間のポテンシャル障壁と、p−
Al0.35Ga0.65Asクラッド層205とAl
0.07Ga0.93As活性層203との間のポテン
シャル障壁との差により、注入電流をストライプ領域2
06に制限するようにしている。
2. Description of the Related Art Current injection lasers used in optical communications, optical information equipment, displays, etc. have a double heterostructure in which an active layer is sandwiched between cladding layers of a semiconductor having a larger energy gap. Furthermore, in order to maintain the horizontal transverse mode as a single fundamental mode, a structure is adopted in which a refractive index distribution is provided in a direction parallel to the junction. FIG. 2 shows an example of a structure according to the prior art (IEEE J. Quantum Elec
tron. (IEE Journal of Quantum Electronics) Volume QE16, p.
.. 205 (1980)) as viewed from the laser beam emitting end face. The striped region into which current is injected extends in a direction perpendicular to the plane of the paper. This conventional example is a so-called buried heterostructure and is configured as follows. n-G
A Darb heterostructure in which an Al0.07Ga0.93As active layer 203 is sandwiched between an n-Al0.35Ga0.65As cladding layer 202 and a p-Al0.35Ga0.65As cladding layer 204 is formed on an aAs substrate 201, and this double heterostructure portion A current injection stripe portion 206 is formed in a mesa shape into a stripe shape for current injection, and this double heterostructure current injection stripe 206 is buried with an n-Al0.35Ga0.65As buried layer 210 to form a buried heterostructure. . By creating a refractive index difference in the horizontal direction in the junction in this way, light is confined in the horizontal and lateral directions, and single horizontal transverse mode oscillation is obtained. Also, p-Al0.35Ga0.65A
s cladding layer 204 and n-Al0.35Ga0.65A
The potential barrier between the s buried layer 210 and the p-
Al0.35Ga0.65As cladding layer 205 and Al
Due to the difference in potential barrier between the 0.07Ga0.93As active layer 203 and the stripe region 203, the injected current is
I am trying to limit it to 06.

【0003】0003

【発明が解決しようとする課題】前述の従来技術によれ
ば、埋め込み層への漏れ電流を無くすことは困難である
。また、埋め込み層を高抵抗層にしようとしても高品質
の高抵抗半導体層を得るとが困難である。なぜならば、
高抵抗半導体層を得るためには、酸素,クロム,鉄など
キャリアを捕獲するために深い準位を形成する不純物を
導入せねばならなく、このことはメサ側面の埋め込み界
面の品質を著しく損うためである。このために、レーザ
素子として高品質を維持することが困難となる。かくて
、従来構造は以上述べたような欠点を有している。
According to the prior art described above, it is difficult to eliminate leakage current to the buried layer. Furthermore, even if an attempt is made to make the buried layer a high-resistance layer, it is difficult to obtain a high-quality, high-resistance semiconductor layer. because,
In order to obtain a high-resistance semiconductor layer, it is necessary to introduce impurities such as oxygen, chromium, and iron that form deep levels to capture carriers, which significantly impairs the quality of the buried interface on the mesa side. It's for a reason. This makes it difficult to maintain high quality as a laser element. Thus, the conventional structure has the drawbacks mentioned above.

【0004】そこで本発明の目的は、半導体多重超薄膜
層中のキャリアの性質を利用して、上述の欠点を除き、
高信頼な高出力半導体レーザを提供することにある。
Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks by utilizing the properties of carriers in semiconductor multiple ultra-thin film layers.
Our objective is to provide highly reliable, high-power semiconductor lasers.

【0005】[0005]

【課題を解決するための手段】この発明の要旨とすると
ころは、ストライプ状に電流の注入されるレーザ活性領
域を有し、エネルギギャップの異なる2種の半導体超薄
膜層が交互に形成されてなり、その超薄膜層の厚さの合
計がこの超薄膜層に入射する電子と反射する電子の位相
差がπのほぼ奇数倍でかつ電子の可干渉性が維持される
厚さ以下である多重超薄膜層により、前記ストライプ状
活性領域が被覆された構造としたことである。多重超薄
膜層の形成法は、有機金属熱分解気相エピタキシャル法
(MOVPE法)、分子ビームエピタキシャル法(MB
E法)など、その方法によらない。また、半導体材料と
しては、AlGaAs系,GaIn.PAs系,AlG
aInP系,AlGaInAs系,AlGaAsSb系
,ZnSeS系その他材料系によらずいずれの場合にも
適用される。
[Means for Solving the Problems] The gist of the present invention is to provide a laser active region in which a current is injected in a stripe pattern, and in which two types of semiconductor ultra-thin film layers having different energy gaps are alternately formed. The total thickness of the ultra-thin film layer is a multilayer film in which the phase difference between the electrons incident on the ultra-thin film layer and the reflected electrons is approximately an odd multiple of π, and is less than the thickness at which electron coherence is maintained. The structure is such that the striped active region is covered with an ultra-thin film layer. Methods for forming multiple ultra-thin film layers include metal organic pyrolysis vapor phase epitaxial method (MOVPE method) and molecular beam epitaxial method (MB
Method E), etc., regardless of the method. In addition, examples of semiconductor materials include AlGaAs, GaIn. PAs-based, AlG
It is applicable to any case, regardless of the material type, such as aInP type, AlGaInAs type, AlGaAsSb type, ZnSeS type, and others.

【0006】[0006]

【作用】図3に、本発明の多重超薄膜構造(以後MQB
と略す)の例を示す。可視光レーザ材料として用いられ
るGa0.5 In0.5 P/Al0.5 In0.
5 PからなるMQBについてその機能を示す(電子情
報通信学会技術研究報告OQE90(1990年)p.
39)。図3(a),(b)にMQB構造に対する導伝
帯のエネルギバンドダイヤグラムを層の積層方向に示し
、それぞれMQB1,MQB2とする。ともにAl0.
5 In0.5 Pバリア層31とGa0.5 In0
.5 Pウェル層32から成る。Ga0.5 In0.
5 P層33の上にMQBを形成してある。順にAl0
.5 In0.5 Pバリア層,Ga0.5 In0.
5 Pウェル層を交互に形成する。1層目のAl0.5
 In0.5 Pバリア層は厚さ10nmとし、他のバ
リア層は3nmとする。最後にAl0.5 In0.5
 P層34で被覆した場合を示す。MQB1では、Ga
0.5 In0.5 P層33に近い側から順にGa0
.5 In0.5 Pウェル層の幅を0.71nm,1
.2nm,1.67nm,2.14nm,2.62nm
とし、またMQB2ではGa0.5 In0.5 Pウ
ェル層の厚さをすべて1.67nmとする。 層数は、全体の厚さが電子のコヒーレント長程度となる
ようにする。この時、Ga0.5 In0.5 P層3
3側からみた電子の反射率の電子エネルギー(Ga0.
5 In0.5 Pの導伝帯の底から測った値)依存性
を図3(c)に示す。MQB1に対するものを点線で、
MQB2に対するものを実線で示す。また矢印AはAl
0.5 n0.5 Pの導伝帯の底のエネルギ値を示す
。この図に示されるように、Ga0.5 In0.5 
P層33からは、Ga0.5 In0.5 Pの導伝帯
の底から約370meV高いエネルギの電子までもこの
MQB層で100%の反射率をもつ。このことは、Ga
0.5 In0.5 P層からの障壁がAl0.5 I
n0.5 P層単独によるよりも高く、一般に(Alx
 Ga1−x )0.5 In0.5 P(0≦x<1
)に対してこのMQBを電子障壁として用いた場合、A
l0.5 In0.5 Pよりも実効的に高い障壁が得
られる。以上は電子についての議論であるが、正孔につ
いても同様のことがいえる。そこで、(Aly Ga1
−y )0.5 In0.5 P層をp型及びn型の(
Alz Ga1−z )0.5 In0.5 P層(0
≦y<z<1)で挟み込んだダブルヘテロ構造の側面に
各層に接するように前述のMQB層を形成し、p−n層
間に電流を注入すると、このMQB層には電流が注入さ
れず、MQB層に起因する漏れ電流は発生しない。従っ
てこのようなMQB層を高抵抗にしなくても、漏れ電流
を生じない半導体被膜を得ることができる。
[Operation] Figure 3 shows the multilayer ultra-thin film structure (hereinafter MQB) of the present invention.
(abbreviated as ) is shown below. Ga0.5 In0.5 P/Al0.5 In0.5 used as visible light laser material.
The function of MQB consisting of 5 P is shown (IEICE technical research report OQE90 (1990) p.
39). FIGS. 3A and 3B show energy band diagrams of conduction bands for the MQB structure in the layer stacking direction, and are denoted by MQB1 and MQB2, respectively. Both Al0.
5 In0.5 P barrier layer 31 and Ga0.5 In0
.. 5 P well layer 32. Ga0.5 In0.
5 MQB is formed on the P layer 33. Al0 in order
.. 5 In0.5 P barrier layer, Ga0.5 In0.
5 P well layers are formed alternately. 1st layer Al0.5
The In0.5P barrier layer has a thickness of 10 nm, and the other barrier layers have a thickness of 3 nm. Finally, Al0.5 In0.5
A case where the P layer 34 is coated is shown. In MQB1, Ga
0.5 In0.5 Ga0 in order from the side closest to the P layer 33
.. 5 In0.5 P well layer width 0.71 nm, 1
.. 2nm, 1.67nm, 2.14nm, 2.62nm
In addition, in MQB2, the thickness of all Ga0.5 In0.5 P well layers is 1.67 nm. The number of layers is determined so that the total thickness is approximately the coherence length of electrons. At this time, Ga0.5 In0.5 P layer 3
The electron energy of the electron reflectance seen from the 3 side (Ga0.
The dependence (value measured from the bottom of the conduction band of 5In0.5P) is shown in FIG. 3(c). The dotted line is for MQB1,
The one for MQB2 is shown by a solid line. Also, arrow A is Al
The energy value at the bottom of the conduction band of 0.5 n0.5 P is shown. As shown in this figure, Ga0.5 In0.5
From the P layer 33, this MQB layer has a 100% reflectance even to electrons with an energy approximately 370 meV higher than the bottom of the conduction band of Ga0.5 In0.5 P. This means that Ga
0.5 In0.5 Barrier from P layer is Al0.5 I
n0.5 higher than that of the P layer alone, generally (Alx
Ga1-x)0.5 In0.5 P(0≦x<1
), when this MQB is used as an electron barrier, A
An effectively higher barrier than l0.5 In0.5 P is obtained. The above discussion is about electrons, but the same can be said about holes. Therefore, (Aly Ga1
-y )0.5 In0.5 P layer is formed into p-type and n-type (
Alz Ga1-z )0.5 In0.5 P layer (0
When the aforementioned MQB layer is formed so as to be in contact with each layer on the sides of the double heterostructure sandwiched by ≦y<z<1) and a current is injected between the p-n layers, no current is injected into this MQB layer, No leakage current occurs due to the MQB layer. Therefore, a semiconductor film that does not generate leakage current can be obtained without making such an MQB layer high in resistance.

【0007】[0007]

【実施例】図1は本発明の実施例をレーザ出射端面側か
らみた模式図である。n−GaAs基板1上にMOVP
E法により、厚さ1μmのn−(Al0.7Ga0.3
 )0.5 In0.5 Pクラッド層、厚さ0.1μ
mの(Al0.1 Ga0.9 )0.5 In0.5
 P活性層3、厚さ1μmのp−(Al0.7 Ga0
.3 )0.5 In0.5 Pクラッド層4、厚さ0
.1μmのp−Ga0.5 In0.5 P層5をこの
順に形成する。続いて電流注入ストライプ11上にのみ
SiO2 膜を形成して、ストライプ外の部分を塩酸系
のエッチャントを用いて化学エッチングによりダブルヘ
テロ構造層2〜5を除去し、メザ状に電流注入ストライ
プ部を残す。さらに前述のSiO2 膜を利用してメサ
側面及び露出したGaAs基板1表面上にMQB層10
をMOVPE法により形成する。構造としては、作用の
項で述べたMQB1の構造とする。つまり、最初10n
mのAl0.5 In0.5 Pを形成し、続いて3n
mの厚さのAl0.5 In0.5 P層を介して、G
a0.5 In0.5 P層を順に0.71nm,1.
2nm,1.67nm,2.14nm,2.62nmの
厚さで形成する。その後、Al0.5 In0.5 P
埋め込み層6を成長し、メサ側部全体を埋め込む。続い
て、電流注入ストライプ部11上のSiO2 膜を除去
して、全面にp−GaAs層7を成長する。こののち、
p電極8およびn電極9を蒸着法などにより形成する。 各層の形成は、MOVPE法以外のMBE法によっても
よく、その製法によらない。メサ形成法は、化学エッチ
ング法以外のドライエッチング法などその製法によらな
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram of an embodiment of the present invention viewed from the laser emitting end face side. MOVP on n-GaAs substrate 1
By the E method, a 1 μm thick n-(Al0.7Ga0.3
)0.5 In0.5 P cladding layer, thickness 0.1μ
m(Al0.1 Ga0.9)0.5 In0.5
P active layer 3, 1 μm thick p-(Al0.7 Ga0
.. 3) 0.5 In0.5 P cladding layer 4, thickness 0
.. A 1 μm p-Ga0.5 In0.5 P layer 5 is formed in this order. Next, a SiO2 film is formed only on the current injection stripe 11, and the double heterostructure layers 2 to 5 are removed by chemical etching using a hydrochloric acid-based etchant in the area outside the stripe, and the current injection stripe portion is formed in a meza shape. leave. Furthermore, an MQB layer 10 is formed on the mesa side surface and the exposed surface of the GaAs substrate 1 using the aforementioned SiO2 film.
is formed by MOVPE method. The structure is the same as that of MQB1 described in the operation section. In other words, the first 10n
m of Al0.5 In0.5 P, followed by 3n
G through a Al0.5 In0.5 P layer with a thickness of
The a0.5 In0.5 P layer is sequentially 0.71 nm, 1.
It is formed to have a thickness of 2 nm, 1.67 nm, 2.14 nm, and 2.62 nm. After that, Al0.5 In0.5 P
A buried layer 6 is grown to bury the entire mesa side. Subsequently, the SiO2 film on the current injection stripe portion 11 is removed, and a p-GaAs layer 7 is grown on the entire surface. After this,
A p-electrode 8 and an n-electrode 9 are formed by a vapor deposition method or the like. Each layer may be formed by an MBE method other than the MOVPE method, and does not depend on the manufacturing method. The mesa formation method does not depend on the manufacturing method, such as a dry etching method other than a chemical etching method.

【0008】この実施例は波長650nmで発振する可
視光半導体レーザである。p−Ga0.5 In0.5
 P層5は、p−(Al0.7 Ga0.3 )0.5
 In0.5 Pクラッド層4とp−GaAs層7との
界面に生ずるポテンシャル障壁を低減して、電気抵抗を
低減するためのものである。この実施例では、作用の項
で述べたように、MQB膜への漏れ電流がないため、埋
め込み層を流れる漏れ電流を無くすことができる。この
ことにより埋め込みヘテロ構造をとることによる動作電
流の上昇を抑制することができる。また、MQB中のG
a0.5 In0.5 Pは超薄膜であり、その量子効
果により発振波長に対する光吸収はない。従って、MQ
B形成に基づく光吸収による動作電流の上昇はない。従
って、本実施例では、動作電流が低く、効率のよい、単
一基本横モード発振のレーザが実現できた。またMQB
膜及び端面との界面の品質は高く維持され、また、空気
に触れるMQBの最外面はGa0.5 In0.5 P
であるため酸化されにくく、高信頼のものが得られる。 本実施例でMQB層は、特定の膜組成,膜厚としたが、
請求の範囲を満たすものであれば、他の膜組成,膜厚で
同様の効果が得られる組み合わせは多く存在する。以上
AlGaInP系材料で詳細に説明したが、他の半導体
材料AlGaAs系,AlGaInAs系,GaInP
As系,ZnZeS系,その他の材料、或いはこれらの
材料の組み合わせで、同様の効果が得られる。
This embodiment is a visible light semiconductor laser that oscillates at a wavelength of 650 nm. p-Ga0.5 In0.5
P layer 5 is p-(Al0.7 Ga0.3)0.5
This is intended to reduce the potential barrier generated at the interface between the In0.5P cladding layer 4 and the p-GaAs layer 7, thereby reducing electrical resistance. In this embodiment, as described in the operation section, since there is no leakage current to the MQB film, leakage current flowing through the buried layer can be eliminated. This makes it possible to suppress an increase in operating current due to the buried heterostructure. Also, G in MQB
a0.5 In0.5 P is an ultra-thin film and does not absorb light at the oscillation wavelength due to its quantum effect. Therefore, MQ
There is no increase in operating current due to light absorption due to B formation. Therefore, in this example, a single fundamental transverse mode oscillation laser with low operating current and high efficiency was realized. Also MQB
The quality of the interface with the membrane and end face is maintained high, and the outermost surface of MQB that is exposed to air is made of Ga0.5 In0.5 P.
Therefore, it is resistant to oxidation and highly reliable. In this example, the MQB layer had a specific film composition and film thickness, but
There are many combinations in which similar effects can be obtained with other film compositions and film thicknesses as long as they meet the scope of the claims. Although the details have been explained above using AlGaInP-based materials, other semiconductor materials such as AlGaAs-based, AlGaInAs-based, and GaInP
Similar effects can be obtained using As-based, ZnZeS-based, other materials, or a combination of these materials.

【0009】[0009]

【発明の効果】この様に、本発明の構造をとることによ
り、安定で高品質かつもれ電流を生じさせない被覆膜を
得ることができるため、従来よりも高性能かつ高信頼な
横モード安定な半導体レーザを得ることができる。
[Effects of the Invention] As described above, by adopting the structure of the present invention, it is possible to obtain a coating film that is stable, high quality, and does not generate leakage current. A stable semiconductor laser can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示した横モード制御型レーザ
の光出射端面から見た構造を模式的に示した図。
FIG. 1 is a diagram schematically showing the structure of a transverse mode control laser according to an embodiment of the present invention, as viewed from the light emitting end face.

【図2】従来の横モード制御型レーザの光出射端面から
みた構造を模式的に示した図。
FIG. 2 is a diagram schematically showing the structure of a conventional transverse mode control laser as seen from the light emitting end face.

【図3】本発明の作用を記述するために用いた説明図。FIG. 3 is an explanatory diagram used to describe the action of the present invention.

【符号の説明】[Explanation of symbols]

1,201    n−GaAs基板 2    n−(Al0.7 Ga0.3 )0.5 
In0.5 Pクラッド層 3    (Al0.1 Ga0.9 )0.5 In
0.5 P活性層4    p−(Al0.7 Ga0
.3 )0.5 In0.5 Pクラッド層 5    p−Ga0.5 In0.5 P層6   
 Al0.5 In0.5 P埋め込み層7    p
−GaAs層 8    p電極 9    n電極 10    MQB層
1,201 n-GaAs substrate 2 n-(Al0.7 Ga0.3)0.5
In0.5 P cladding layer 3 (Al0.1 Ga0.9)0.5 In
0.5 P active layer 4 p-(Al0.7 Ga0
.. 3) 0.5 In0.5 P cladding layer 5 p-Ga0.5 In0.5 P layer 6
Al0.5 In0.5 P buried layer 7 p
-GaAs layer 8 P electrode 9 N electrode 10 MQB layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ストライプ状に電流の注入されるレー
ザ活性領域を有し、エネルギギャップの異なる2種の半
導体超薄膜層が交互に形成されて成り、その超薄膜層の
厚さの合計がこの超薄膜層に入射する電子と反射する電
子の位相差がπのほぼ奇数倍でかつ電子の可干渉性が維
持される厚さ以下である多重超薄膜層により、少くとも
前記ストライプ状活性領域の側面が被覆されていること
を特徴とする半導体レーザ。
1. A laser active region into which current is injected in a stripe pattern, consisting of two types of semiconductor ultra-thin film layers having different energy gaps formed alternately, and the total thickness of the ultra-thin film layers being The multilayer ultra-thin film layer, in which the phase difference between the electrons incident on the ultra-thin film layer and the reflected electrons is approximately an odd multiple of π, and the thickness is less than that at which electron coherence is maintained, at least the stripe-shaped active region. A semiconductor laser characterized in that its side surfaces are coated.
JP1617691A 1991-02-07 1991-02-07 Semiconductor laser Pending JPH04330794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1617691A JPH04330794A (en) 1991-02-07 1991-02-07 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1617691A JPH04330794A (en) 1991-02-07 1991-02-07 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH04330794A true JPH04330794A (en) 1992-11-18

Family

ID=11909202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1617691A Pending JPH04330794A (en) 1991-02-07 1991-02-07 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH04330794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114328A (en) * 2010-11-26 2012-06-14 Toshiba Corp Optical semiconductor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114328A (en) * 2010-11-26 2012-06-14 Toshiba Corp Optical semiconductor element
US8604496B2 (en) 2010-11-26 2013-12-10 Kabushiki Kaisha Toshiba Optical semiconductor device

Similar Documents

Publication Publication Date Title
JP3753216B2 (en) Semiconductor laser device
JPH05283791A (en) Surface emission type semiconductor laser
JP3189791B2 (en) Semiconductor laser
JPH11243259A (en) Semiconductor laser and drive method thereof
JP3555727B2 (en) Semiconductor laser device
JP3859839B2 (en) Refractive index semiconductor laser device
JP2019079911A (en) Semiconductor laser element
JPH04330794A (en) Semiconductor laser
JP3991409B2 (en) Semiconductor laser
JP3246148B2 (en) Semiconductor laser and method of manufacturing the same
JPH04350988A (en) Light-emitting element of quantum well structure
JPH0983070A (en) Semiconductor laser element
JP3540508B2 (en) Ridge waveguide type semiconductor laser diode
JP2003069148A (en) Semiconductor laser device
JP3166178B2 (en) Semiconductor laser
JP4069479B2 (en) Multiple quantum well semiconductor light emitting device
Mawst et al. MOVPE-grown high CW power InGaAs/InGaAsP/InGaP diode lasers
JP2748570B2 (en) Semiconductor laser device
JPH077219A (en) Semiconductor laser element
US7551658B2 (en) Buried ridge waveguide laser diode
JPH0936479A (en) Semiconductor laser and fabrication thereof
JP2504372B2 (en) Superlattice structure
JPWO2005124952A1 (en) Semiconductor light emitting device and method of manufacturing the same
JP2003347679A (en) Semiconductor laser device
JP2001189528A (en) Semiconductor laser element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000404