JPH077219A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH077219A
JPH077219A JP14730893A JP14730893A JPH077219A JP H077219 A JPH077219 A JP H077219A JP 14730893 A JP14730893 A JP 14730893A JP 14730893 A JP14730893 A JP 14730893A JP H077219 A JPH077219 A JP H077219A
Authority
JP
Japan
Prior art keywords
layer
etching stop
algainp
semiconductor laser
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14730893A
Other languages
Japanese (ja)
Inventor
Hironori Yanagisawa
浩徳 柳澤
Toshiaki Tanaka
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14730893A priority Critical patent/JPH077219A/en
Publication of JPH077219A publication Critical patent/JPH077219A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the etching stop effect, which is equal to or more than the effect of a conventional etching stop layer having a film thickness of 5nm or more by providing a plurality of etching stop layers, and thereby compensating for the deterioration of the stop effect caused by the thinning of the etching stop layer. CONSTITUTION:A superlattice structure, wherein a plurality of etching stop layers 7 are provided, is used. The film thickness of the layer 7 is set so that the effective band-gap width of the etching stop layer 7 and an active layer 4 can be sufficiently provided by a quantum-size effect. A P-type clad layer 6 in the vicinity of the active layer 4 has a superlattice structure. Thus, the average carrier concentration is improved, and the effective difference in conduction band energy is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は短波長AlGaInP系
リッジ型半導体レ−ザ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a short wavelength AlGaInP ridge type semiconductor laser device.

【0002】[0002]

【従来の技術】従来のリッジ型半導体レーザ素子の一例
を図8に示す。このような構造のレーザ素子の従来例は
特開平1−90584 号公報に開示されている。n-AlGa
InPクラッド層2,GaInP活性層4,p-AlG
aInPクラッド層5,p-GaInPコンタクト層1
0の成長後、リッジ部を残してp型クラッド層5の途中
までエッチングしてリッジ9を形成し、除去した部分に
n-GaAs 層11を選択成長で埋込み、次に、リッジ
部9及びn-GaAs埋込み層11上にp-GaAs12を成
長したものである。この時、エッチングによるp型クラ
ッド層5の膜厚制御性を向上するため、p-AlGaI
nP5 中間層としてにエッチングストップ層16を設
けてある。その材料はAlGaInPとのエッチング選
択性の良さからp-GaInP が用いられており、その
膜厚は、本系に特有の秩序配列構造形成に伴う禁制帯幅
の縮小を不純物ドーピングで抑制することに量子サイズ
効果を加えることによりエッチングストップ層の遷移発
光エネルギ−が活性層の禁制帯幅より十分大きくなるよ
うに薄く、かつ、エッチングストップ効果が有効に維持
できる程度に厚くなるように選ばれており、バルクの活
性層の場合では5〜20nm程度となっている。また、
p-AlGaInP クラッド層のキャリア濃度は7*1
0の17乗程度に留まっていた。
2. Description of the Related Art An example of a conventional ridge type semiconductor laser device is shown in FIG. A conventional example of a laser device having such a structure is disclosed in Japanese Patent Laid-Open No. 90584/1990. n-AlGa
InP clad layer 2, GaInP active layer 4, p-AlG
aInP clad layer 5, p-GaInP contact layer 1
After the growth of 0, the p-type cladding layer 5 is etched halfway to form a ridge 9, and the n-GaAs layer 11 is selectively grown to fill the removed portion. The p-GaAs 12 is grown on the -GaAs embedded layer 11. At this time, in order to improve the film thickness controllability of the p-type cladding layer 5 by etching, p-AlGaI is used.
An etching stop layer 16 is provided as an nP5 intermediate layer. As the material, p-GaInP is used because of its good etching selectivity with AlGaInP, and its film thickness suppresses the reduction of the forbidden band width due to the formation of the ordered array structure peculiar to this system by impurity doping. By adding the quantum size effect, the transition emission energy of the etching stop layer is thin enough to be sufficiently larger than the band gap of the active layer, and is thick enough to effectively maintain the etching stop effect. In the case of a bulk active layer, the thickness is about 5 to 20 nm. Also,
Carrier concentration of p-AlGaInP clad layer is 7 * 1
It was about 0 to the 17th power.

【0003】[0003]

【発明が解決しようとする課題】この時、活性層に量子
井戸構造を用いてレーザの短波長化、例えば発振波長6
30nm台の実現をはかった場合、量子サイズ効果によ
る活性層の実効的な禁制帯幅とエッチングストップ層の
遷移発光エネルギがほぼ等しいか、またはエッチングス
トップ層の遷移発光エネルギの方が低くなり、エッチン
グストップ層で再結合するキャリアが生じてキャリアの
ロスとなり、レーザの閾値電流の増大,発振波長の制御
性の低下等をもたらして630nm台の短波長化が困難
であった。エッチングストップ層を薄くしていくと量子
サイズ効果が大きくなり実効的な禁制帯幅の差は大きく
取れるが、エッチングストップ層としての機能が低下
し、リッジ部以外のp-AlGaInP クラッド層のエ
ッチングによる膜厚制御性が低下して、表面状態が悪化
し埋込成長時に界面欠陥を生じる、リッジ近傍でエッチ
ングが不十分となってビーム形状が歪むという問題があ
った。また、630nm帯の発振を得るにあたり、この
材料系のバンド構造を考えると、発振波長が短くなるた
めに活性層とクラッド層との導伝帯エネルギ−差が小さ
くなり、さらに、p型キャリア濃度を高くできないの
で、活性層への電子の閉じ込めが弱くなってp型クラッ
ド層へ電子が漏れて高温動作を得ることが困難になると
いう問題があった。
At this time, the quantum well structure is used in the active layer to shorten the wavelength of the laser, for example, the oscillation wavelength of 6
When it is attempted to achieve the order of 30 nm, the effective forbidden band width of the active layer due to the quantum size effect and the transition emission energy of the etching stop layer are substantially equal to each other, or the transition emission energy of the etching stop layer becomes lower, so that etching Carriers are recombined in the stop layer, resulting in carrier loss, which causes an increase in the threshold current of the laser and a decrease in controllability of the oscillation wavelength, making it difficult to shorten the wavelength to the 630 nm range. As the etching stop layer is made thinner, the quantum size effect increases and the effective band gap difference can be made large, but the function as an etching stop layer deteriorates, and the p-AlGaInP cladding layer other than the ridge portion is etched. There is a problem that the film thickness controllability deteriorates, the surface condition deteriorates, an interface defect occurs at the time of buried growth, and the beam shape is distorted due to insufficient etching near the ridge. Further, considering the band structure of this material system in obtaining the 630 nm band oscillation, the conduction band energy difference between the active layer and the clad layer becomes small because the oscillation wavelength becomes short, and further, the p-type carrier concentration Therefore, there is a problem in that the electron confinement in the active layer is weakened and electrons leak to the p-type cladding layer, making it difficult to obtain high-temperature operation.

【0004】[0004]

【課題を解決するための手段】上記の問題を解決するた
めに、エッチングストップ層と活性層の実効的な禁制帯
幅の差が十分大きく取れる膜厚のGaInPエッチング
ストップ層をp-AlGaInP クラッド層で挾んで2
層以上設けた。また、活性層近傍のp-AlGaInP
クラッド層に1*10の18乗以上のキャリア濃度が得
られるp-GaInP を周期的に挾むことにより、平均
的なキャリア濃度を高くした。さらに、超格子構造によ
り、p-AlGaInP クラッド層に漏れた電子を反射
させて活性層に戻す構造とした。
In order to solve the above problems, a GaInP etching stop layer having a thickness that allows a sufficiently large difference in effective forbidden band width between the etching stop layer and the active layer is formed as a p-AlGaInP cladding layer. Clap in 2
More layers are provided. In addition, p-AlGaInP near the active layer
The average carrier concentration was raised by periodically sandwiching p-GaInP, which can provide a carrier concentration of 1 * 10 18 or higher, in the clad layer. Further, the superlattice structure is used to reflect electrons leaked to the p-AlGaInP cladding layer and return them to the active layer.

【0005】[0005]

【作用】エッチングストップ層の膜厚を実効的な禁制帯
幅の差が十分大きく取れるように薄層化することで、エ
ッチングストップ層でキャリアが再結合することを抑制
しロスを低減すると共に、この層をp-AlGaInP
クラッド層で挾んで複数設けることにより、エッチング
ストップ層としての機能の低下を補償して、良好な表面
が得られた。また、p型不純物であるZnのドーピング
効率が高いGaInPを挾むことにより、平均的なキャリア
濃度を高く設定できたため、実効的な導伝帯エネルギ差
を大きくできた。さらに、超格子構造による電子の反射
により活性層への電子の閉じ込めが向上し、温度特性が
改善した。また、超格子構造の量子井戸層及び量子障壁
層に歪を導入することにより、実効的な導伝帯エネルギ
差をさらに大きくでき、活性層への電子の閉じ込めを一
段と向上させることができた。
[Function] By reducing the thickness of the etching stop layer so that the difference in the effective forbidden band width can be sufficiently large, it is possible to suppress the recombination of carriers in the etching stop layer and reduce the loss. This layer is p-AlGaInP
By providing a plurality of clad layers sandwiched between them, the deterioration of the function as an etching stop layer was compensated, and a good surface was obtained. In addition, by sandwiching GaInP, which has a high doping efficiency of Zn, which is a p-type impurity, the average carrier concentration can be set high, so that the effective conduction band energy difference can be increased. Furthermore, the confinement of electrons in the active layer is improved by the reflection of electrons due to the superlattice structure, and the temperature characteristics are improved. Further, by introducing strain into the quantum well layer and the quantum barrier layer of the superlattice structure, the effective conduction band energy difference can be further increased, and the confinement of electrons in the active layer can be further improved.

【0006】[0006]

【実施例】(実施例1)本発明の第一の実施例を図1,
図2により説明する。図1は本発明の一実施例のレーザ
素子の断面図であり、図2は図1のエッチングストップ
層部分の拡大断面図である。n-GaAs 基板1に有機
金属気相成長法により温度700℃において、1.3μ
mのn-AlGaInP第一クラッド層2,15nmの
アンドープAlGaInP第一光ガイド層3,3nmの
アンドープGaInP量子井戸層を5nmのアンドープ
AlGaInP量子障壁層で挟んで10層積層した多重
量子井戸活性層4,15nmのアンドープAlGaIn
P第二光ガイド層5,0.2μmのp-AlGaInP第
二クラッド層6,10nmのp-AlGaInP層15
で挟んで1.5nmのp-GaInPエッチングストップ
層16を4層積した超格子エッチングストップ層7を2
0nmのp-AlGaInP 層8で挟んで2周期積層し
た多重超格子エッチストップ層,0.8μmのp-AlG
aInP第三クラッド層9,22nmのp-GaInP
バッファ層10を、順次、成長し、リッジ部を残してp
-GaInP バッファ層10及びp-AlGaInP 第
三クラッド層9をp-GaInP エッチングストップ層
7までエッチングし、エッチングストップ層上に0.8
μmのn-GaAs電流ブロック層11を選択成長によ
り埋め込んだ後、リッジ部上及びn-GaAs電流ブロッ
ク層上に2μmのp-GaAsコンタクト層12を成長
し、n-GaAs基板裏面とp-GaAsコンタクト層上
面に電極用金属13,14を蒸着したものである。量子
井戸層膜厚3nm,量子障壁層膜厚5nmの多重量子井
戸活性層に対応するフォトルミネセンス波長は625n
mであった。一方、1.5nm のエッチングストップ層
に対応するフォトルミネセンス波長は585nmであ
り、活性層との実効的な禁制帯幅の差が十分大きく取れ
ていた。リッジ形成には硫酸系のエッチング液を用い
た。この時、この1.5nm ,4層のエッチングストッ
プ層は有効に働いて、エッチングストップ層で制御性良
くエッチングが停止した。こうして得られたレーザは、
図7に示すように630nm台の波長で室温連続発振
し、その近視野像はリッジ部外への光の漏れが無くビー
ム形状の歪みは見られなかった。
EXAMPLE 1 Example 1 of the present invention is shown in FIG.
This will be described with reference to FIG. 1 is a sectional view of a laser device according to an embodiment of the present invention, and FIG. 2 is an enlarged sectional view of an etching stop layer portion of FIG. 1.3 μm at a temperature of 700 ° C. on the n-GaAs substrate 1 by metalorganic vapor phase epitaxy
m n-AlGaInP first cladding layer 2, 15 nm undoped AlGaInP first optical guide layer 3, 3 nm undoped GaInP quantum well layer sandwiched by 5 nm undoped AlGaInP quantum barrier layers, and multiple quantum well active layer 4 , 15 nm undoped AlGaIn
P second optical guide layer 5, 0.2 μm p-AlGaInP second cladding layer 6, 10 nm p-AlGaInP layer 15
The superlattice etching stop layer 7 having four layers of the p-GaInP etching stop layer 16 of 1.5 nm sandwiched between
Multiple superlattice etch stop layers stacked for two periods sandwiching a 0 nm p-AlGaInP layer 8, 0.8 μm p-AlG
aInP third clad layer 9, 22 nm p-GaInP
The buffer layer 10 is sequentially grown, and p
-GaInP buffer layer 10 and p-AlGaInP third clad layer 9 are etched down to p-GaInP etching stop layer 7, and 0.8 is formed on the etching stop layer.
After the n-GaAs current blocking layer 11 having a thickness of μm is embedded by selective growth, a p-GaAs contact layer 12 having a thickness of 2 μm is grown on the ridge portion and the n-GaAs current blocking layer, and the back surface of the n-GaAs substrate and p-GaAs are grown. Metals 13 and 14 for electrodes are vapor-deposited on the upper surface of the contact layer. The photoluminescence wavelength corresponding to the multiple quantum well active layer having a quantum well layer thickness of 3 nm and a quantum barrier layer thickness of 5 nm is 625 n.
It was m. On the other hand, the photoluminescence wavelength corresponding to the etching stop layer of 1.5 nm was 585 nm, and the effective forbidden band difference from the active layer was sufficiently large. A sulfuric acid-based etching solution was used for forming the ridge. At this time, the etching stop layers of four layers having a thickness of 1.5 nm worked effectively, and etching stopped at the etching stop layers with good controllability. The laser thus obtained is
As shown in FIG. 7, continuous oscillation at room temperature was performed at a wavelength in the 630 nm range, and in the near-field image, there was no leakage of light to the outside of the ridge portion and no distortion of the beam shape was observed.

【0007】(実施例2)本発明の第二の実施例を図
3,図4により説明する。ここで、図4は図3のエッチ
ングストッパ部分の拡大断面図である。〔011〕方向
に7度傾いた(100)n-GaAs 基板101に有機金
属気相成長法により温度700℃において、1.3μm
のn-AlGaInP第一クラッド層102,15nm
のアンドープAlGaInP第一光ガイド層103,7
nmのアンドープ (Al0.05Ga0.95)0.5In
0.5P量子井戸層を5nmのアンドープAlGaInP量子
障壁層で挟んで8層積層した多重量子井戸活性層10
4,15nmのアンドープAlGaInP第二光ガイド
層105,22nmのp-AlGaInP 第二クラッド
層106,1.1nmのp-GaInP層117を1.7
nmの p-AlGaInP層118で挾んで6
0周期積層した超格子クラッド構造119,5nmのp-A
lGaInP層115で挟んで1.5nmのp-GaIn
P エッチングストップ層116を7層積層した超格子
エッチングストップ層107,0.8μmのp−AlG
aInP第三クラッド層109,22nmのp-GaI
nPバッファ層110を、順次、成長し、リッジ部を残
してp-GaInP バッファ層110及びp-AlGa
InP第三クラッド層109をp-GaInPエッチン
グストップ層107までエッチングし、エッチングスト
ップ層上に0.8μmのn-GaAs 電流ブロック層1
11を選択成長により埋め込んだ後、リッジ部上及びn
-GaAs電流ブロック層上に2μmのp-GaAsコン
タクト層112を成長し、n-GaAs基板裏面とp-G
aAsコンタクト層上面に電極用金属113,114を蒸着
したものである。
(Second Embodiment) A second embodiment of the present invention will be described with reference to FIGS. Here, FIG. 4 is an enlarged cross-sectional view of the etching stopper portion of FIG. On a (100) n-GaAs substrate 101 tilted by 7 degrees in the [011] direction at a temperature of 700 ° C. and a thickness of 1.3 μm by metalorganic vapor phase epitaxy.
N-AlGaInP first cladding layer 102, 15 nm
Undoped AlGaInP first optical guide layers 103, 7
nm undoped (Al 0.05 Ga 0.95 ) 0.5 In
Multiple quantum well active layer 10 in which 8 layers of 0.5 P quantum well layers are sandwiched by 5 nm undoped AlGaInP quantum barrier layers.
4, 15 nm undoped AlGaInP second optical guide layer 105, 22 nm p-AlGaInP second cladding layer 106, and 1.1 nm p-GaInP layer 117.
6 with a p-AlGaInP layer 118 of 6 nm
Superlattice clad structure with 0-cycle lamination 119,5 nm p-A
1.5 nm p-GaIn sandwiched by the lGaInP layer 115
Superlattice etching stop layer 107 in which seven P etching stop layers 116 are stacked, 0.8 μm p-AlG
aInP third cladding layer 109, 22 nm p-GaI
The nP buffer layer 110 is sequentially grown, and the p-GaInP buffer layer 110 and the p-AlGa layer 110 and the p-AlGa layer are left while leaving the ridge portion.
The InP third cladding layer 109 is etched to the p-GaInP etching stop layer 107, and the 0.8 μm n-GaAs current blocking layer 1 is formed on the etching stop layer.
After burying 11 by selective growth, on the ridge and n
-A 2 μm p-GaAs contact layer 112 is grown on the GaAs current blocking layer, and the back surface of the n-GaAs substrate and p-G
Metals 113 and 114 for electrodes are deposited on the upper surface of the aAs contact layer.

【0008】本実施例によれば、傾角基板の採用により
AlGaInP材料系の秩序配列構造を一部抑制した結
果、量子井戸層膜厚を7nmと厚くしても短波長化が得
られており、この多重量子井戸活性層に対応するフォト
ルミネセンス波長は626nmであった。一方、1.5
nm のエッチングストップ層に対応するフォトルミネ
センス波長は585nmであり、活性層との実効的な禁
制帯幅の差が十分大きく取れていた。リッジ形成には硫
酸系のエッチング液を用いた。この時、この1.5nm
,7層のエッチングストップ層は有効に働いて、エッ
チングストップ層で制御性良くエッチングが停止した。
こうして得られたレーザは630nm台の波長で室温連
続発振した。活性層近傍のp-AlGaInP クラッド
層のキャリア濃度を平均的に高くすることができたこと
及び超格子クラッドにおける電子の反射のため活性層へ
の電子の閉じ込めが向上し、従来発振困難であった80
℃以上の高温まで3mWの出力が得られた。
According to the present embodiment, the use of the tilted substrate partially suppresses the ordered arrangement structure of the AlGaInP material system, and as a result, the wavelength can be shortened even if the quantum well layer thickness is increased to 7 nm. The photoluminescence wavelength corresponding to this multiple quantum well active layer was 626 nm. On the other hand, 1.5
The photoluminescence wavelength corresponding to the etching stop layer of nm is 585 nm, and the effective forbidden band difference from the active layer is sufficiently large. A sulfuric acid-based etching solution was used for forming the ridge. At this time, this 1.5 nm
The 7 etching stop layers worked effectively, and etching stopped with good controllability at the etching stop layers.
The laser thus obtained continuously oscillated at room temperature at a wavelength in the 630 nm range. The carrier concentration in the p-AlGaInP clad layer near the active layer was able to be increased on average, and electron confinement in the active layer was improved due to the reflection of electrons in the superlattice clad, which made oscillation difficult conventionally. 80
An output of 3 mW was obtained up to a high temperature of ℃ or more.

【0009】(実施例3)本発明の第三の実施例を図
5,図6により説明する。ここで、図6は図5のエッチ
ングストッパ部分の拡大断面図である。〔011〕方向
に7度傾いた(100)n-GaAs 基板201に有機金
属気相成長法により温度780℃において、1.3μm
のn-AlGaInP第一クラッド層202,15nm
のアンドープAlGaInP第一光ガイド層203,8
nmのアンドープGaInP量子井戸層を5nmのアン
ドープAlGaInP量子障壁層で挟んで7層積層した
多重量子井戸活性層204,15nmのアンドープAl
GaInP第二光ガイド層205,22nmのp-Al
GaInP第二クラッド層206,1.1nmのp-Ga
0.4In0.6P層217を1.7nmのp-(Al0.7Ga
0.3)0.6In0.4P層218で挾んで10周期積層した超
格子クラッド構造219,0.15μmのp-AlGaI
nP第二クラッド層220,5nmのp-AlGaIn
P層215で挟んで1.5nmのp-GaInPエッチン
グストップ層216を7層積層した超格子エッチングス
トップ層207,0.8nmのp-AlGaInP第三ク
ラッド層209,22nmのp-GaInP バッファ層
210を、順次、成長し、リッジ部を残してp-GaI
nPバッファ層210及びp-AlGaInP第三クラ
ッド層209をp-GaInP エッチングストップ層2
07までエッチングし、エッチングストップ層上に0.
8μmのn-GaAs電流ブロック層211を選択成長
により埋め込んだ後、リッジ部上及びn-GaAs 電流
ブロック層上に2μmのp-GaAsコンタクト層21
2を成長し、n-GaAs基板裏面とp-GaAsコンタ
クト層上面に電極用金属213,214を蒸着したもの
である。
(Third Embodiment) A third embodiment of the present invention will be described with reference to FIGS. Here, FIG. 6 is an enlarged cross-sectional view of the etching stopper portion of FIG. On a (100) n-GaAs substrate 201 tilted by 7 degrees in the [011] direction at a temperature of 780 ° C. and a thickness of 1.3 μm by metalorganic vapor phase epitaxy.
N-AlGaInP first cladding layer 202, 15 nm
Undoped AlGaInP first optical guide layers 203, 8
nm quantum undoped GaInP quantum well layer sandwiched by 5 nm undoped AlGaInP quantum barrier layers to form a multi-quantum well active layer 204, 15 nm undoped Al
GaInP second optical guide layer 205, 22 nm p-Al
GaInP second clad layer 206, 1.1 nm p-Ga
The 0.4 In 0.6 P layer 217 was formed with 1.7 nm of p- (Al 0.7 Ga).
0.3 ) 0.6 In 0.4 P layer 218 sandwiched by 10 periods for superlattice clad structure 219, 0.15 μm p-AlGaI
nP second clad layer 220, 5 nm p-AlGaIn
Superlattice etching stop layer 207 in which seven layers of a 1.5 nm p-GaInP etching stop layer 216 are sandwiched between P layers 215, a 0.8-nm p-AlGaInP third clad layer 209, and a 22 nm p-GaInP buffer layer 210. Are sequentially grown to leave the ridge portion and p-GaI
The nP buffer layer 210 and the p-AlGaInP third clad layer 209 are formed as the p-GaInP etching stop layer 2
Etching up to 07, and etching on the etching stop layer.
After embedding the 8 μm n-GaAs current blocking layer 211 by selective growth, a 2 μm p-GaAs contact layer 21 is formed on the ridge and the n-GaAs current blocking layer.
2 is grown, and electrode metals 213 and 214 are vapor-deposited on the back surface of the n-GaAs substrate and the top surface of the p-GaAs contact layer.

【0010】本実施例によれば、傾角基板の採用ととも
に高温成長を行ったことにより、AlGaInP材料系
の秩序配列構造を完全に抑制した結果、量子井戸層膜厚
8nm,量子障壁層膜厚5nmの多重量子井戸活性層に
対応するフォトルミネセンス波長は625nmであっ
た。一方、1.5nm のエッチングストップ層に対応す
るフォトルミネセンス波長は585nmであり、活性層
との実効的な禁制帯幅の差が十分大きく取れていた。リ
ッジ形成には硫酸系のエッチング液を用いた。この時、
この1.5nm ,7層のエッチングストップ層は有効に
働いて、エッチングストップ層で制御性良くエッチング
が停止した。こうして得られたレーザは630nm台の
波長で室温連続発振した。活性層近傍のp-AlGaI
nP クラッド層のキャリア濃度を平均的に高くするこ
とができたこと及び超格子クラッドにおける電子の反射
のため活性層への電子の閉じ込めが向上し、さらに、超
格子クラッドに格子歪を導入した結果、実効的な導伝帯
エネルギ差をより大きくできた。この結果、3mWの出
力が得られる最高発振温度を従来達成できなかった90
℃以上まで高くすることができた。
According to the present embodiment, by adopting the tilted substrate and performing the high temperature growth, the ordered arrangement structure of the AlGaInP material system was completely suppressed. As a result, the quantum well layer thickness was 8 nm and the quantum barrier layer thickness was 5 nm. The photoluminescence wavelength corresponding to the multi-quantum well active layer of was 625 nm. On the other hand, the photoluminescence wavelength corresponding to the etching stop layer of 1.5 nm was 585 nm, and the effective forbidden band difference from the active layer was sufficiently large. A sulfuric acid-based etching solution was used for forming the ridge. At this time,
The 1.5 nm, 7-layer etching stop layer worked effectively, and etching was stopped with good controllability at the etching stop layer. The laser thus obtained continuously oscillated at room temperature at a wavelength in the 630 nm range. P-AlGaI near the active layer
The carrier concentration of the nP cladding layer could be increased on average and the electron confinement in the active layer was improved due to the reflection of electrons in the superlattice cladding. , The effective conduction band energy difference could be made larger. As a result, the maximum oscillation temperature at which an output of 3 mW was obtained could not be achieved in the past.
It was possible to raise the temperature to ℃ or higher.

【0011】[0011]

【発明の効果】エッチングストップ層と活性層の実効的
な禁制帯幅の差が十分大きく取れているため、エッチン
グストップ層におけるキャリアの再結合が抑制されるの
でキャリアが効果的に活性層に閉じ込められて、閾値電
流の増加が押さえられ、630nm台の室温連続発振が
容易になるとともに、発振波長の制御性が向上した。ま
た、エッチングストップ層薄層化によるエッチングスト
ップ効果の低下は複数のストップ層により補償されて、
5nmの膜厚のエッチングストップ層と同程度以上のス
トップ効果が得られ、リッジ部以外のp-AlGaIn
P クラッド層の膜厚制御性が著しく向上した。さら
に、活性層近傍のp-AlGaInP クラッド層を超格
子構造とすることにより、平均キャリア濃度の向上及び
実効的な導伝帯エネルギ差の増大を達成し、温度特性が
改善された結果、従来この波長帯では得られていなかっ
た80℃以上での発振が可能となった。
EFFECT OF THE INVENTION Since the effective band gap difference between the etching stop layer and the active layer is sufficiently large, carrier recombination in the etching stop layer is suppressed, so that the carriers are effectively confined in the active layer. As a result, the increase in the threshold current was suppressed, room temperature continuous oscillation in the 630 nm range was facilitated, and the controllability of the oscillation wavelength was improved. Further, the decrease in the etching stop effect due to the thinning of the etching stop layer is compensated by the plurality of stop layers,
A stop effect equal to or more than that of the etching stop layer having a thickness of 5 nm is obtained, and p-AlGaIn other than the ridge portion is obtained.
The film thickness controllability of the P clad layer was significantly improved. Furthermore, by making the p-AlGaInP clad layer near the active layer a superlattice structure, the average carrier concentration was improved and the effective conduction band energy difference was increased, resulting in improved temperature characteristics. It became possible to oscillate at 80 ° C or higher, which was not obtained in the wavelength band.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例を示す断面図。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】本発明の第一の実施例のエッチングストップ層
の断面図。
FIG. 2 is a sectional view of an etching stop layer according to the first embodiment of the present invention.

【図3】本発明の第二の実施例を示す断面図。FIG. 3 is a sectional view showing a second embodiment of the present invention.

【図4】本発明の第二の実施例のp-AlGaInP第
二クラッド層近傍の断面図。
FIG. 4 is a sectional view of the vicinity of a p-AlGaInP second cladding layer according to a second embodiment of the present invention.

【図5】本発明の第三の実施例を示す断面図。FIG. 5 is a sectional view showing a third embodiment of the present invention.

【図6】本発明の第三の実施例のp-AlGaInP第
二クラッド層近傍の断面図。
FIG. 6 is a sectional view of the vicinity of a p-AlGaInP second cladding layer according to a third embodiment of the present invention.

【図7】本発明の第一の実施例のレーザの縦モードスペ
クトル図。
FIG. 7 is a longitudinal mode spectrum diagram of the laser according to the first embodiment of the present invention.

【図8】従来のリッジ型半導体レーザの構造を示す断面
図。
FIG. 8 is a sectional view showing the structure of a conventional ridge type semiconductor laser.

【符号の説明】[Explanation of symbols]

1…n-GaAs基板、2…n-AlGaInP第一クラ
ッド層、3…アンドープAlGaInP第一光ガイド
層、4…多重量子井戸活性層、5…アンドープAlGa
InP第二光ガイド層、6…p-AlGaInP 第二ク
ラッド層、7…超格子エッチングストップ層、9…p-
AlGaInP 第三クラッド層、10…p-GaInP
バッファ層、11…n-GaAs 埋込み層、12…p-
GaAs埋込み層、13…n側電極。
1 ... n-GaAs substrate, 2 ... n-AlGaInP first cladding layer, 3 ... undoped AlGaInP first optical guide layer, 4 ... multiple quantum well active layer, 5 ... undoped AlGa
InP second optical guide layer, 6 ... p-AlGaInP second cladding layer, 7 ... Superlattice etching stop layer, 9 ... p-
AlGaInP third clad layer, 10 ... p-GaInP
Buffer layer, 11 ... n-GaAs buried layer, 12 ... p-
GaAs buried layer, 13 ... N-side electrode.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】第一導伝型GaAs基板上に第一導伝型A
lGaInP第一クラッド層,活性層,第二導伝型Al
GaInP第二クラッド層,第二導伝型GaInPエッ
チングストップ層,第二導伝型AlGaInP第三クラ
ッド層を有し、前記活性層は(Alx1Ga1-x1)y1In
1-y1P(0≦x1<0.7,0<y1<1)又は(Alx2
Ga1-x2)y2In1-y2P/(Alx3Ga1-x3)y3In1-y3
P(0≦x2<x3<0.7,0<y2,y3<1)多重量子
井戸構造からなり、前記第二導伝型AlGaInP第三
クラッド層にリッジ部を有するAlGaInP系リッジ
型半導体レーザ素子において、前記GaInPエッチン
グストップ層は、その量子サイズ効果による遷移発光エ
ネルギが前記活性層の禁制帯幅より十分大きくなる膜厚
であり、前記第二導伝型AlGaInP第二クラッド層
と略等しい組成の第二導伝型障壁層で挾まれて複数層存
在する超格子構造となっていることを特徴とする半導体
レーザ素子。
1. A first conductive type A on a first conductive type GaAs substrate.
lGaInP first clad layer, active layer, second conductivity type Al
It has a GaInP second clad layer, a second conductive type GaInP etching stop layer, and a second conductive type AlGaInP third clad layer, and the active layer is (Al x1 Ga 1 -x1 ) y1 In.
1-y1 P (0 ≦ x 1 <0.7, 0 <y 1 <1) or (Al x2
Ga 1-x2 ) y2 In 1-y2 P / (Al x3 Ga 1-x3 ) y3 In 1-y3
AlGaInP-based ridge having a P (0 ≦ x 2 <x 3 <0.7, 0 <y 2 , y 3 <1) multiple quantum well structure and having a ridge portion in the second conductivity type AlGaInP third cladding layer. In the semiconductor laser device of the type, the GaInP etching stop layer has a thickness such that the transition emission energy due to the quantum size effect thereof is sufficiently larger than the forbidden band width of the active layer, and is the same as the second conductivity type AlGaInP second cladding layer. A semiconductor laser device having a superlattice structure in which a plurality of layers are sandwiched between second conductive type barrier layers having substantially the same composition.
【請求項2】請求項項1において、前記第二導伝型Ga
InPエッチングストップ層が、前記第二導伝型AlG
aInP第二クラッド層と略等しい組成で前記第二導伝
型障壁層より膜厚の大きい第二導伝型クラッド層で挟ま
れて複数組設けられている半導体レーザ素子。
2. The second conductivity type Ga according to claim 1.
The InP etching stop layer is the second conductive type AlG.
A plurality of sets of semiconductor laser devices are provided which are sandwiched by a second conductive clad layer having a composition substantially equal to that of the aInP second clad layer and having a film thickness larger than that of the second conductive barrier layer.
【請求項3】請求項1または2において、前記第二導伝
型AlGaInP第二クラッド層の一部または全部が、
(Alx4Ga1-x4)y4In1-y4P/(Alx5Ga1-x5)y5In1-y5
P(0≦x4<x5≦0.7,0<y4,y5<1)多重量子
井戸構造からなる導体レーザ素子。
3. The method according to claim 1 or 2, wherein a part or all of the second conduction type AlGaInP second cladding layer is
(Al x4 Ga 1-x4 ) y4 In 1-y4 P / (Al x5 Ga 1-x5 ) y5 In 1-y5
P (0 ≦ x 4 <x 5 ≦ 0.7, 0 <y 4 , y 5 <1) Conductor laser device having a multiple quantum well structure.
【請求項4】請求項3において、前記第二導伝型第二ク
ラッド層のうち、前記多重量子井戸構造からなる部分の
量子井戸層の一部又は全部のIn組成y4 が0<y4
0.5または0.5<y4<1である半導体レーザ素子。
4. The In composition y 4 of part or all of the quantum well layer of the second conductive type second cladding layer of the second conductive type second cladding layer, wherein the quantum well layer is 0 <y 4 or less. <
A semiconductor laser device in which 0.5 or 0.5 <y 4 <1.
【請求項5】請求項3もしくは4において、前記第二導
伝型第二クラッド層のうち、前記多重量子井戸構造から
なる部分の量子障壁層の一部又は全部のIn組成y5
0<y5<0.5または0.5<y5<1である半導体レー
ザ素子。
5. The In composition y 5 according to claim 3 or 4, wherein the In composition y 5 of part or all of the quantum barrier layer of the second conductive type second clad layer, the quantum barrier layer being a portion having the multiple quantum well structure is 0 <. A semiconductor laser device in which y 5 <0.5 or 0.5 <y 5 <1.
【請求項6】請求項1,2,3,4または5において、
前記GaAs基板の面方位が(100)面から〔011〕方
向に2度以上25.3 度以下傾いている半導体レーザ素
子。
6. The method according to claim 1, 2, 3, 4 or 5.
A semiconductor laser device in which the plane orientation of the GaAs substrate is tilted in the [011] direction from 2 degrees to 25.3 degrees from the (100) plane.
【請求項7】請求項1,2,3,4,5または6におい
て、結晶成長温度が650℃以上780℃以下である半
導体レーザ素子。
7. A semiconductor laser device according to claim 1, 2, 3, 4, 5 or 6, wherein a crystal growth temperature is 650 ° C. or higher and 780 ° C. or lower.
JP14730893A 1993-06-18 1993-06-18 Semiconductor laser element Pending JPH077219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14730893A JPH077219A (en) 1993-06-18 1993-06-18 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14730893A JPH077219A (en) 1993-06-18 1993-06-18 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH077219A true JPH077219A (en) 1995-01-10

Family

ID=15427262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14730893A Pending JPH077219A (en) 1993-06-18 1993-06-18 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH077219A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757835A (en) * 1996-06-27 1998-05-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
JP2002094039A (en) * 2000-09-20 2002-03-29 Fujitsu Ltd Photodetector and its manufacturing method
US6711196B2 (en) * 2002-01-22 2004-03-23 Sharp Kabushiki Kaisha Stripe waveguide structure type semiconductor laser device and fabricating method therefor
JP2021129119A (en) * 2019-06-21 2021-09-02 Dowaエレクトロニクス株式会社 Manufacturing method of semiconductor optical device, and semiconductor optical device
WO2021187543A1 (en) * 2020-03-19 2021-09-23 パナソニック株式会社 Semiconductor laser element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757835A (en) * 1996-06-27 1998-05-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
JP2002094039A (en) * 2000-09-20 2002-03-29 Fujitsu Ltd Photodetector and its manufacturing method
US6711196B2 (en) * 2002-01-22 2004-03-23 Sharp Kabushiki Kaisha Stripe waveguide structure type semiconductor laser device and fabricating method therefor
JP2021129119A (en) * 2019-06-21 2021-09-02 Dowaエレクトロニクス株式会社 Manufacturing method of semiconductor optical device, and semiconductor optical device
WO2021187543A1 (en) * 2020-03-19 2021-09-23 パナソニック株式会社 Semiconductor laser element

Similar Documents

Publication Publication Date Title
JP4011569B2 (en) Semiconductor light emitting device
JP2007049109A (en) Semiconductor laser device
JPH11284282A (en) Short wavelength light emitting element
JP4168202B2 (en) Vertical cavity semiconductor surface emitting laser device and optical system using the laser device
JPH077219A (en) Semiconductor laser element
JP4136272B2 (en) Semiconductor light emitting device
US20020061043A1 (en) Surface emitting semiconductor laser
JPH0815228B2 (en) Semiconductor laser device and method of manufacturing the same
JPH10335742A (en) Semiconductor laser system
JPH09162482A (en) Surface emitting semiconductor laser
JP2001053386A (en) Semiconductor laser element
JP4033930B2 (en) Semiconductor laser
JP2001358407A (en) Semiconductor laser device
JP3472739B2 (en) Manufacturing method of semiconductor laser
JPH09135055A (en) Semiconductor laser
JP2757578B2 (en) Semiconductor laser and method of manufacturing the same
JP2000277865A (en) Semiconductor light emitting device
JP2001345518A (en) Semiconductor laser element
JP2003110199A (en) Semiconductor laser element
JPH07115243A (en) Semiconductor laser device
JP2003023218A (en) Semiconductor laser element
JPH07263810A (en) Semiconductor laser device
JPH0730188A (en) Semiconductor laser element
JP2519879B2 (en) Semiconductor laser device and manufacturing method thereof
JPH0955561A (en) Semiconductor laser