JPH04330403A - Glass optical element - Google Patents
Glass optical elementInfo
- Publication number
- JPH04330403A JPH04330403A JP10097391A JP10097391A JPH04330403A JP H04330403 A JPH04330403 A JP H04330403A JP 10097391 A JP10097391 A JP 10097391A JP 10097391 A JP10097391 A JP 10097391A JP H04330403 A JPH04330403 A JP H04330403A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- optical element
- ring
- mold
- press
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 39
- 239000011521 glass Substances 0.000 title claims abstract description 20
- 238000000465 moulding Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000005520 cutting process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/40—Product characteristics
- C03B2215/46—Lenses, e.g. bi-convex
- C03B2215/49—Complex forms not covered by groups C03B2215/47 or C03B2215/48
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Lens Barrels (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明はプレス成形により得られ
るガラス光学素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass optical element obtained by press molding.
【0002】0002
【従来の技術】レンズ精密加工に際して常に重要な問題
となるのは、偏心(傾き偏心および平行偏心)および芯
取精度である。偏心がなく、精密に芯取されたレンズを
得るための技術として従来から数多くの技術が提案され
ている。例えば特開昭63−60114号公報、特開昭
63−297233号公報、特開平1−126232号
公報、特開平1−183611号公報、特開平1−18
3612号公報には、偏心、芯取、組込み基準となる面
またはそれらの治具を有している金型とそれから得られ
る光学素子に関する技術を開示しているが、リング状の
溝を用いてそれらを達成することについては全く記載が
ない。2. Description of the Related Art In lens precision machining, eccentricity (tilt eccentricity and parallel eccentricity) and centering accuracy are always important issues. Many techniques have been proposed in the past as techniques for obtaining precisely centered lenses without eccentricity. For example, JP-A-63-60114, JP-A-63-297233, JP-A-1-126232, JP-A-1-183611, JP-A-1-18
Publication No. 3612 discloses a technique relating to a mold having eccentricity, centering, a surface serving as an assembly reference, or a jig thereof, and an optical element obtained from the mold. There is no mention of how to achieve them.
【0003】偏心の補正は従来レンズを作っては補正し
、作っては補正すると言う試行錯誤の繰返しにより行わ
れていたが、この操作は極めて煩雑であった。Correction of eccentricity has conventionally been carried out through repeated trial and error of making a lens, making corrections, and making and making corrections, but this operation is extremely complicated.
【0004】0004
【発明が解決しようとする課題】本発明は簡単な操作に
より偏心がなく、芯取精度の高い光学レンズを得ること
を目的とする。SUMMARY OF THE INVENTION An object of the present invention is to obtain an optical lens that is free from eccentricity and has high centering accuracy through simple operations.
【0005】[0005]
【課題を解決するための手段】本発明はレンズの有効径
の外部にリング状溝または突起をレンズ両面に有するプ
レス成形されたガラス光学素子およびその製法に関する
。本発明光学素子(1)を図1に示す。(2)はリング
状溝を示す。SUMMARY OF THE INVENTION The present invention relates to a press-molded glass optical element having ring-shaped grooves or protrusions on both sides of the lens outside the effective diameter of the lens, and a method for manufacturing the same. The optical element (1) of the present invention is shown in FIG. (2) shows a ring-shaped groove.
【0006】本発明のガラス光学素子を得るには軟化し
たガラスゴブ(5)を図2に示すごとくリング状突起(
6)(溝でもよいが、典型的かつ最も有効なのは突起で
あるので以下、突起で説明する)を有するレンズ成型用
上型(3)および下型(4)(両者を特に区別する必要
がないときは以下単に金型と云う)にはさんでプレス成
形する。
その際ガラスゴブ(5)の温度はガラスの軟化点以上で
あればよいが、温度が高すぎると金型中での冷却に時間
を要し、あるいは収縮による歪み、金型との温度差によ
るひけあるいはへその発生をみるので、ゴブ表面が軟化
温度よりやゝ低く、内部が軟化温度よりやゝ高い温度に
設定しておくのが好ましい。通常750〜500℃、よ
り好ましくは550〜500℃程度である。In order to obtain the glass optical element of the present invention, a softened glass gob (5) is formed into a ring-shaped protrusion (5) as shown in FIG.
6) Lens molding upper mold (3) and lower mold (4) having (grooves may be used, but protrusions are typical and most effective, so the protrusions will be explained below) (there is no need to particularly distinguish between the two) (hereinafter simply referred to as a mold) and press-forming. At this time, the temperature of the glass gob (5) should be above the softening point of the glass, but if the temperature is too high, it will take time to cool down in the mold, or there will be distortion due to shrinkage or shrinkage due to the temperature difference with the mold. Alternatively, since the formation of navels is to be observed, it is preferable to set the gob surface to a temperature slightly lower than the softening temperature and the inside to a temperature slightly higher than the softening temperature. The temperature is usually about 750 to 500°C, more preferably about 550 to 500°C.
【0007】金型の温度は、ガラスの軟化点よりなる7
00〜450℃、より好ましくは500〜450℃低い
温度に設定する。金型の温度を当初ガラス軟化温度より
高くし、金型全体を軟化温度以下に冷却しながらプレス
成形してもよい。The temperature of the mold is determined by the softening point of the glass.
The temperature is set at 00 to 450°C, more preferably 500 to 450°C. Press molding may be performed by initially raising the temperature of the mold higher than the glass softening temperature and cooling the entire mold to below the softening temperature.
【0008】成形は不活性ガス、例えば窒素ガスの存在
下に行なうのが好ましく、その雰囲気温度をガラスの軟
化温度よりやゝ高く、例えばガラス軟化点の30〜50
℃高い温度に設定し、偏心を矯正した後冷却して成形し
てもよい。成形圧力は2.0〜5.0kg/cm2、特
に3kg/cm2程度が好ましい。[0008] Molding is preferably carried out in the presence of an inert gas, such as nitrogen gas, and the ambient temperature is slightly higher than the softening temperature of the glass, for example 30-50% of the glass softening point.
It is also possible to set the temperature at a high temperature, correct eccentricity, and then cool and mold. The molding pressure is preferably about 2.0 to 5.0 kg/cm2, particularly about 3 kg/cm2.
【0009】成形用上型(3)および成形用下型(4)
は、レンズ機能面が球面、非球面、その他自由な曲面を
成形し得るよう任意の形状を有してよい。Upper mold for molding (3) and lower mold for molding (4)
may have any shape so that the lens functional surface can be formed into a spherical surface, an aspherical surface, or any other freely curved surface.
【0010】また上型(3)および下型(4)は、図2
に示すごとく水平方向(x軸方向)およびθ方向いずれ
にも移動可能に設けられている。これによって平行偏心
および傾き偏心の修正が可能である。The upper mold (3) and lower mold (4) are shown in FIG.
As shown in the figure, it is provided so as to be movable in both the horizontal direction (x-axis direction) and the θ direction. This allows correction of parallel eccentricity and tilt eccentricity.
【0011】上型(3)と下型(4)とが図3のごとく
傾き偏心を生じているときは、光学素子の両面の溝はそ
れぞれ円としては観察されない。そこで片面の溝を正確
な円となるよう、例えば下型(4)を制御する。傾き偏
心があるときは、他面は当然楕円となるのでその長軸、
即ち円の半径aと短軸bを測定し、以下の式により傾き
偏心の量を知ることができる。
θ=cos−1b/aWhen the upper mold (3) and the lower mold (4) are tilted and eccentric as shown in FIG. 3, the grooves on both surfaces of the optical element are not observed as circles. Therefore, for example, the lower die (4) is controlled so that the groove on one side becomes an accurate circle. When there is tilt eccentricity, the other surface naturally becomes an ellipse, so its long axis,
That is, by measuring the radius a and short axis b of the circle, the amount of tilt eccentricity can be determined using the following equation. θ=cos-1b/a
【0012】従って、この値にもとづき、例えば上型(
3)あるいは下型(4)を、θ方向に移動させる等の手
段により傾き偏心を矯正した後、平行偏心を測定する。
例えば図4に示すごとく、レンズの上面のリング状溝(
7)と下面のリング状溝(8)がdだけ平行偏心を生じ
ているときは、上型(3)または下型(4)をdだけ平
行に移動することにより、平行偏心を解消することがで
きる。Therefore, based on this value, for example, the upper type (
3) Alternatively, after correcting the tilt eccentricity by moving the lower die (4) in the θ direction, measure the parallel eccentricity. For example, as shown in Figure 4, a ring-shaped groove (
7) and the ring-shaped groove (8) on the lower surface have a parallel eccentricity by d, eliminate the parallel eccentricity by moving the upper mold (3) or the lower mold (4) in parallel by d. Can be done.
【0013】これらの観察は肉視によっても容易に行な
い得るが、高倍率顕微鏡によりずれ量(数値)を直接測
定する等の手段により行なってもよい。[0013] These observations can be easily carried out visually, but may also be carried out by means such as directly measuring the amount of deviation (numerical value) using a high-magnification microscope.
【0014】平衡偏心および傾き偏心共にレンズのリン
グ状溝の幅を可能な限り小さくその先端部を鋭く浅くす
ることによりその精度を向上させることができる。The accuracy of both the equilibrium eccentricity and the tilt eccentricity can be improved by making the width of the ring-shaped groove of the lens as small as possible and making the tip thereof sharp and shallow.
【0015】その様なリング状溝を形成させるために金
型の材質は、ガラスの軟化温度(成型温度)で熱膨張が
小さく、化学変化および物理変化を受けず、しかも剛性
が高く、低い脆性を有する材質のものが好ましい。この
様な材料として、例えばステンレスがある。In order to form such a ring-shaped groove, the material of the mold must have low thermal expansion at the glass softening temperature (molding temperature), be unsusceptible to chemical and physical changes, and have high rigidity and low brittleness. Preferably, the material has the following properties. An example of such a material is stainless steel.
【0016】金型に設ける突起は例えば図5に示すごと
き超精密切削刃(9)を用い図6に示すごとく両側から
金型面を切削することにより得ればよい。The protrusions provided on the mold may be obtained by cutting the mold surface from both sides as shown in FIG. 6 using an ultra-precision cutting blade (9) as shown in FIG. 5, for example.
【0017】金型に設けられるリング状突起(6)は、
図7に示すごとく先端部のとがった三角形状をしている
のが好ましく、四角形、円、楕円形状のものは精度を得
る上で好ましくない。リング状突起の長さは1.5〜5
.0μm、より好ましくは1.5〜3.0μm、および
三角形の底辺部の長さは、0.5〜6.0μm、好まし
くは1.0〜3.0μmで、リング状突起の直角断面の
頂角が20゜〜60゜、特に30゜〜50゜が好ましい
。20゜より小さいと強度的に十分なものが得られず、
またレンズ成形後、レンズが金型から外れ難くなる。逆
に、60゜より大きいとリング状の溝が太くなってしま
い、精度良く偏心をなくしたりすることが難しくなる。[0017] The ring-shaped protrusion (6) provided on the mold is
As shown in FIG. 7, it is preferable to have a triangular shape with a pointed tip; square, circular, or elliptical shapes are not preferable in terms of accuracy. The length of the ring-shaped protrusion is 1.5 to 5
.. 0 μm, more preferably 1.5 to 3.0 μm, and the length of the base of the triangle is 0.5 to 6.0 μm, preferably 1.0 to 3.0 μm, and the apex of the right-angled cross section of the ring-shaped protrusion is Preferably, the angle is between 20° and 60°, particularly between 30° and 50°. If it is smaller than 20°, sufficient strength cannot be obtained,
Furthermore, after the lens is molded, it becomes difficult to remove the lens from the mold. On the other hand, if the angle is larger than 60°, the ring-shaped groove becomes thick, making it difficult to eliminate eccentricity with high precision.
【0018】また、金型にリング状突起を設けることに
より、金型に対する光学素子の存在する位置を知ること
も可能になる。Furthermore, by providing a ring-shaped projection on the mold, it becomes possible to know the position of the optical element with respect to the mold.
【0019】本発明光学素子はレンズ周縁部にリング状
溝を有するため、芯取り精度のばらつきを減らし、その
精度自体を向上させることが可能となる。即ち図8に示
すごとく、光学素子(1)をそのリング状溝(2)の光
軸対称位置に複数の支持棒(10)を当てがい固定する
と、光学素子は、しっかりと固定されるため、その側面
を光軸に平行な面を持つカッター(11)に当てがい光
学素子を支持棒と共に回転させて、芯取を行なった際、
芯がずれることがない。従って、レンズの形状がどの様
なもの、例えば凹レンズ、凸レンズ、メニスカスレンズ
いずれでも高い芯取精度が得られる。Since the optical element of the present invention has a ring-shaped groove on the peripheral edge of the lens, it is possible to reduce variations in centering accuracy and improve the accuracy itself. That is, as shown in FIG. 8, when the optical element (1) is fixed by applying a plurality of support rods (10) to optical axis symmetrical positions of the ring-shaped groove (2), the optical element is firmly fixed. When centering the optical element by applying the side surface to a cutter (11) having a surface parallel to the optical axis and rotating the optical element together with the support rod,
The core never shifts. Therefore, high centering accuracy can be obtained regardless of the shape of the lens, such as a concave lens, a convex lens, or a meniscus lens.
【0020】本発明光学素子をレンズ鏡胴に組み込む際
、リング状溝を用いると高い組込み精度が達成できる。
例えば図9に示すごとく、光学素子(1)をそのリング
状溝(2)において、図8に示すごとき複数の支持棒(
10)で固定し、突状歯(12)を有する鏡胴(13)
内に挿入し、リング状溝(2)の外周部(14)を突状
歯(12)に接着剤(15)で固定し、さらに固定部材
(16)を鏡胴内に挿入して光学素子を固定する。この
方法では鏡胴内部の面精度があれば複数の光学素子の組
込みも敏速にかつ調心も正確に行なうことができる。When the optical element of the present invention is assembled into a lens barrel, high assembly accuracy can be achieved by using a ring-shaped groove. For example, as shown in FIG. 9, an optical element (1) is placed in its ring-shaped groove (2), and a plurality of support rods (as shown in FIG.
10) and a lens barrel (13) having protruding teeth (12).
The outer periphery (14) of the ring-shaped groove (2) is fixed to the protruding tooth (12) with adhesive (15), and the fixing member (16) is further inserted into the lens barrel to secure the optical element. to be fixed. In this method, as long as there is surface precision inside the lens barrel, a plurality of optical elements can be assembled quickly and the alignment can be performed accurately.
【0021】[0021]
【発明の効果】本発明光学素子は成形に際して簡単かつ
高精度で偏心をなくすことができ、高い芯取精度が得ら
れまた組込みに際しては調心が容易である。Effects of the Invention The optical element of the present invention can eliminate eccentricity easily and with high precision during molding, can achieve high centering accuracy, and can be easily aligned when assembled.
【図1】 本発明光学素子の一具体例の概要を示す断
面図[Fig. 1] A cross-sectional view showing an outline of a specific example of the optical element of the present invention
【図2】 ガラスゴブのプレス成形機の模式的断面図
[Figure 2] Schematic cross-sectional view of a glass gob press molding machine
【図3】 傾き偏心した光学素子の模式断面図[Figure 3] Schematic cross-sectional view of a tilted and decentered optical element
【図4
】 平行偏心した光学素子の模式図[Figure 4
] Schematic diagram of a parallel decentered optical element
【図5】 超精
密切削刃の模式的断面図[Figure 5] Schematic cross-sectional view of ultra-precision cutting blade
【図6】 超精密切削刃の移
動方向を示す模式図[Figure 6] Schematic diagram showing the direction of movement of the ultra-precision cutting blade
【図7】 金型のリング状突起を
光学素子のリング状溝を示す図[Figure 7] Diagram showing the ring-shaped protrusion of the mold and the ring-shaped groove of the optical element
【図8】 光学素子の固定装置の模式図[Figure 8] Schematic diagram of optical element fixing device
【図9】
光学素子の鏡胴への組込み模式図[Figure 9]
Schematic diagram of incorporating optical elements into lens barrel
1: レンズ 2: リング状溝 3: 上型 4: 下型 5: ガラスゴブ 6: リング状突起 7: 光学素子上面のリング状溝 8: 光学素子下面のリング状溝 9: 超精度切削刃 10: 支持棒 11: カッター 12: 突状歯 13: 鏡胴 14: 光学素子外周部 15: 接着剤 16: レンズ固定部材 1: Lens 2: Ring-shaped groove 3: Upper mold 4: Lower mold 5: Glass gob 6: Ring-shaped projection 7: Ring-shaped groove on the top surface of the optical element 8: Ring-shaped groove on the bottom surface of the optical element 9: Ultra precision cutting blade 10: Support rod 11: Cutter 12: Protruding teeth 13: Lens barrel 14: Optical element outer periphery 15: Adhesive 16: Lens fixing member
Claims (3)
たは突起をレンズ両面に有するプレス成形されたガラス
光学素子。1. A press-molded glass optical element having ring-shaped grooves or protrusions on both surfaces of the lens outside the effective diameter of the lens.
1.5〜3.0μm、最大幅1.0〜3.0μmである
ガラス光学素子。2. A glass optical element in which the ring-shaped groove is a triangular groove with a depth of 1.5 to 3.0 μm and a maximum width of 1.0 to 3.0 μm.
または突起を形成させようとする部分に有するレンズ成
型用上型および下型に、軟化したガラスゴブをはさみ、
プレス成型するガラス光学素子の製法。3. A softened glass gob is sandwiched between upper and lower molds for lens molding, which have ring-shaped projections or grooves in the portions of the lens where the grooves or projections are to be formed;
A method for manufacturing glass optical elements using press molding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10097391A JPH04330403A (en) | 1991-05-02 | 1991-05-02 | Glass optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10097391A JPH04330403A (en) | 1991-05-02 | 1991-05-02 | Glass optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04330403A true JPH04330403A (en) | 1992-11-18 |
Family
ID=14288296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10097391A Pending JPH04330403A (en) | 1991-05-02 | 1991-05-02 | Glass optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04330403A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0620200A1 (en) * | 1993-03-08 | 1994-10-19 | Matsushita Electric Industrial Co., Ltd. | Method of molding optical articles |
EP0754538A2 (en) * | 1995-07-18 | 1997-01-22 | Matsushita Electric Industrial Co., Ltd | Optical element, optical element molding die, and method of molding the optical element |
EP0754653A2 (en) * | 1993-10-08 | 1997-01-22 | Matsushita Electric Industrial Co., Ltd. | Press moulding method for forming an optical element |
JP2011033473A (en) * | 2009-07-31 | 2011-02-17 | Sharp Corp | Eccentricity measuring device, method of measuring eccentricity, optical element, optical element array and optical element unit |
CN109502958A (en) * | 2017-09-14 | 2019-03-22 | 日本电产株式会社 | Lens molding method and lens molding machine |
-
1991
- 1991-05-02 JP JP10097391A patent/JPH04330403A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0620200A1 (en) * | 1993-03-08 | 1994-10-19 | Matsushita Electric Industrial Co., Ltd. | Method of molding optical articles |
EP0754653A2 (en) * | 1993-10-08 | 1997-01-22 | Matsushita Electric Industrial Co., Ltd. | Press moulding method for forming an optical element |
EP0754653A3 (en) * | 1993-10-08 | 1997-03-19 | Matsushita Electric Ind Co Ltd | Press moulding method for forming an optical element |
EP0754538A2 (en) * | 1995-07-18 | 1997-01-22 | Matsushita Electric Industrial Co., Ltd | Optical element, optical element molding die, and method of molding the optical element |
EP0754538B1 (en) * | 1995-07-18 | 2003-03-05 | Matsushita Electric Industrial Co., Ltd. | Optical element, optical element molding die, and method of molding the optical element |
JP2011033473A (en) * | 2009-07-31 | 2011-02-17 | Sharp Corp | Eccentricity measuring device, method of measuring eccentricity, optical element, optical element array and optical element unit |
CN101988822A (en) * | 2009-07-31 | 2011-03-23 | 夏普株式会社 | Eccentric measuring device, eccentric measuring method, optical element, array and unit thereof |
CN109502958A (en) * | 2017-09-14 | 2019-03-22 | 日本电产株式会社 | Lens molding method and lens molding machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100257670B1 (en) | Optical element, optical element molding die, and method of molding the optical element | |
KR20150079746A (en) | Method for manufacturing ophthalmic lenses by machining | |
US20060112731A1 (en) | Optical lens molding apparatus | |
JPH04330403A (en) | Glass optical element | |
US5211969A (en) | Mold for press molding of optical element | |
JP2006290692A (en) | Method of forming beam reshaping element, and beam reshaping element manufactured by the method | |
JP5017798B2 (en) | Molding device for molding shaping element used for pickup optical system and shaping element manufactured by the device | |
JPWO2013027808A1 (en) | Optical element manufacturing method and manufacturing apparatus | |
US7499220B2 (en) | Optical lens and method of manufacturing the same | |
JPS61242921A (en) | Molding device for glass lens | |
CN108689589B (en) | Lens molding mold and method for manufacturing cylindrical lens | |
JP5820957B2 (en) | OPTICAL LENS, LENS UNIT, IMAGING MODULE, ELECTRONIC DEVICE, OPTICAL LENS MANUFACTURING METHOD, LENS MOLD, AND LENS MOLD SHAPE CORRECTION METHOD | |
US7327522B2 (en) | Optical lens and method of manufacturing the same | |
JP5112120B2 (en) | Optical element manufacturing method and mold assembly for manufacturing the same | |
CN211375109U (en) | Square optical lens, fixing seat and optical instrument | |
JP2949956B2 (en) | Mold for forming optical element and optical element | |
JP3176717B2 (en) | Optical element molding method | |
JP7407528B2 (en) | glass lens mold | |
CN117930452A (en) | Lens and method for manufacturing lens | |
JP2010018476A (en) | Molding method of optical element and optical element molding material | |
JP2501634B2 (en) | Mold for molding lens and lens molded by this mold | |
JP3214922B2 (en) | Optical element molding die and method of manufacturing the same | |
JPH0379300B2 (en) | ||
JP3209722B2 (en) | Method for molding optical element and optical element | |
TW202006413A (en) | Lens cap production method, lens cap production device, and lens cap |