JP2010018476A - Molding method of optical element and optical element molding material - Google Patents

Molding method of optical element and optical element molding material Download PDF

Info

Publication number
JP2010018476A
JP2010018476A JP2008179729A JP2008179729A JP2010018476A JP 2010018476 A JP2010018476 A JP 2010018476A JP 2008179729 A JP2008179729 A JP 2008179729A JP 2008179729 A JP2008179729 A JP 2008179729A JP 2010018476 A JP2010018476 A JP 2010018476A
Authority
JP
Japan
Prior art keywords
optical element
molding
molding material
lower mold
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008179729A
Other languages
Japanese (ja)
Other versions
JP5121610B2 (en
Inventor
Masayuki Tomita
昌之 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008179729A priority Critical patent/JP5121610B2/en
Publication of JP2010018476A publication Critical patent/JP2010018476A/en
Application granted granted Critical
Publication of JP5121610B2 publication Critical patent/JP5121610B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element molding material which is loaded with high positional accuracy on a lower mold for precision molding so that a highly precise optical element can be produced. <P>SOLUTION: The molding material 4 of glass is loaded on the lower mold 1 having a plurality of concave parts 3, and the optical element molding material, in which a leg 5 formed by the concave part 3 of the lower mold 1 and a glass lump 6 are integrated between the lower mold 1 and an upper mold 2, is formed. When the optical element molding material is loaded on the lower mold 7 for precision molding for press molding the optical element, the leg 5 of the optical element molding material supports the glass lump 6 and therefore the optical element molding material can be held with high positional precision on the lower mold 7 during press molding. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガラスを素材とする光学素子を製造するための光学素子の成形方法及び光学素子成形用素材に関するものである。   The present invention relates to an optical element molding method and an optical element molding material for manufacturing an optical element made of glass.

光学素子を成形する技術として、例えば、特許文献1に開示されたように、巨視的なうねりのある光学ガラス塊を成形型によって熱間でプレス成形する技術が知られている。   As a technique for molding an optical element, for example, as disclosed in Patent Document 1, a technique is known in which an optical glass lump with macroscopic undulation is hot-molded by a mold.

特開平1−301528号公報JP-A-1-301528

近年、成形ガラス光学素子の光学機器への使用は一般化し、従来には見られなかったレンズ形状への展開が進んでおり、特に、両凹形状の成形ガラス光学素子の開発が近年では盛んである。   In recent years, the use of molded glass optical elements in optical devices has become common, and the development of lens shapes that have not been seen in the past has been progressing. In particular, the development of biconcave shaped glass optical elements has been active recently. is there.

このような両凹形状の光学素子を成形するための光学素子成形用素材として、以下に示す課題がある。   There are the following problems as an optical element molding material for molding such a biconcave optical element.

ガラスの光学素子成形用素材として最も安価なものは、溶融状態のガラス塊を下方からのガス流により非接触状態で浮上保持し固化させたガラス塊である。しかし、このガラス塊の外形は、溶融ガラスの表面張力で形成されているので、全面が自由表面の凸形状となる。このような凸形状のガラス塊を、両凹形状の光学素子を成形するための精密成形型の下型の上に、高い置き精度で載置することは困難である。   The most inexpensive glass optical element molding material is a glass lump obtained by floating and holding a molten glass lump in a non-contact state by a gas flow from below. However, since the outer shape of the glass lump is formed by the surface tension of the molten glass, the entire surface has a convex shape with a free surface. It is difficult to place such a convex glass lump with high accuracy on a lower mold of a precision mold for molding a biconcave optical element.

一方、特許文献1に開示された方法では、成形により巨視的なうねりのある成形用素材を得ているので、両凹形状の光学素子成形用の精密成形型の下型の上に比較的安定して置くことができる。しかしながら、特許文献1に開示された方法では、巨視的なうねりの発生位置や大きさが安定しないという問題があった。従って、このような巨視的なうねりのある成形用素材から両凹形状の光学素子を得ようとする場合、成形用素材を凸形状の下型の上に高い置き精度で載置することは困難である。   On the other hand, in the method disclosed in Patent Document 1, since a molding material with macroscopic undulation is obtained by molding, it is relatively stable on a lower mold of a precision molding die for molding a biconcave optical element. Can be placed. However, the method disclosed in Patent Document 1 has a problem that the position and size of macroscopic swell are not stable. Therefore, when trying to obtain a biconcave optical element from a molding material having such macroscopic undulations, it is difficult to place the molding material on the convex lower mold with high accuracy. It is.

また、近年では、ガラスの光学素子を成形する装置の自動化、ハイサイクル化の開発が進んでいる。このような光学素子の製造装置においては、成形用素材を載置した状態の精密成形型の下型を、装置内で移動させる工程が発生することがあるが、この移動工程において、光学素子成形用素材を精密成形型の下型上に高い置き精度で保持することは難しい。   In recent years, development of automation and high cycle of an apparatus for molding a glass optical element has been advanced. In such an optical element manufacturing apparatus, there is a case where a process of moving the lower mold of the precision molding die in which the molding material is placed in the apparatus occurs. In this moving process, the optical element molding is performed. It is difficult to hold the material for use on the lower mold of the precision mold with high accuracy.

本発明は、光学素子成形用素材を精密成形用の下型の上に高い精度で載置し、下型の移動中も位置精度(置き精度)を保つことで、形状精度の高い光学素子を製造することが可能である光学素子の成形方法及び光学素子成形用素材を提供することを目的とする。   In the present invention, an optical element molding material is placed on a lower mold for precision molding with high accuracy, and the positional accuracy (placement accuracy) is maintained even during movement of the lower mold. An object of the present invention is to provide an optical element molding method and an optical element molding material that can be manufactured.

本発明の光学素子の成形方法は、ガラス塊と、前記ガラス塊と一体に形成された脚と、を備える光学素子成形用素材を成形する第1の工程と、精密成形用の下型と上型との間で前記光学素子成形用素材をプレス成形して光学素子を得る第2の工程と、を有し、前記第2の工程において、前記光学素子成形用素材の前記ガラス塊を、前記脚によって前記下型の上に支持することを特徴とする。   The optical element molding method of the present invention includes a first step of molding an optical element molding material comprising a glass block and a leg formed integrally with the glass block, a lower mold for precision molding, and an upper A second step of obtaining an optical element by press-molding the optical element molding material with a mold, and in the second step, the glass block of the optical element molding material is It is supported on the lower mold by a leg.

本発明の光学素子成形用素材は、光学素子を成形するための光学素子成形用素材であって、ガラス塊と、前記ガラス塊を支持するために、前記ガラス塊と一体に形成された脚と、を備えたことを特徴とする。   An optical element molding material of the present invention is an optical element molding material for molding an optical element, and a glass lump and legs formed integrally with the glass lump in order to support the glass lump. , Provided.

光学素子成形用素材に脚が設けられているため、光学素子を成形する精密成形用の下型上に、高い置き精度で載置することができる。   Since the optical element molding material is provided with legs, it can be placed on the lower mold for precision molding for molding the optical element with high placement accuracy.

特に成形が難しい凹レンズ形状の光学素子も、高精度で成形することが容易になり、製造コストの削減に貢献できる。   In particular, an optical element having a concave lens shape which is difficult to mold can be easily molded with high accuracy, and can contribute to a reduction in manufacturing cost.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1(a)〜(c)は、一実施形態による光学素子の成形方法の第1の工程を示すもので、まず、(a)に示すように、光学素子成形用素材を成形するための成形型である下型1と上型2を用意する。下型1は、光学素子成形用素材の脚部成形用の凹部3を有する。   FIGS. 1A to 1C show a first step of an optical element molding method according to an embodiment. First, as shown in FIG. 1A, an optical element molding material is molded. A lower mold 1 and an upper mold 2 are prepared. The lower mold 1 has a recess 3 for forming a leg of an optical element forming material.

この工程で用意する成形型は、脚部のみを成形する成形型でもよいし、脚部とガラス塊部の両方を成形する成形型でもよい。   The mold prepared in this step may be a mold that molds only the legs, or a mold that molds both the legs and the glass lump.

脚部の個数、形状、それに対応する成形型の形状は、光学素子成形用素材を精密成形型の上で安定させるという目的に鑑み、適宜選択される。   The number and shape of the leg portions and the shape of the mold corresponding thereto are appropriately selected in view of the purpose of stabilizing the optical element molding material on the precision mold.

この第1の工程で用意する成形型は、溶融ガラスとの濡れ性の悪い材料で作ることが好ましく、具体的材料としては、カーボン、セラミック等がある。   The mold prepared in the first step is preferably made of a material having poor wettability with molten glass, and specific materials include carbon and ceramic.

図1(a)の成形型を用いて、成形材料4から、(b)、(c)に示すように、一体に形成された脚5とガラス塊6からなる光学素子成形用素材を成形する。   As shown in FIGS. 1B and 1C, an optical element molding material composed of integrally formed legs 5 and glass lumps 6 is molded from the molding material 4 using the molding die shown in FIG. .

この工程の成形温度及びプレス力は、本工程での成形範囲と成形用素材形状から最適なプロセスが選択されることが望ましい。   As for the molding temperature and pressing force in this step, it is desirable that an optimum process is selected from the molding range and the molding material shape in this step.

この工程は、その成形プロセスから、非酸化雰囲気中での成形、又は、大気雰囲気中での成形、を選択することができる。   In this step, molding in a non-oxidizing atmosphere or molding in an air atmosphere can be selected from the molding process.

図1(d)は、第1の工程で得られたガラス塊6と脚5からなる光学素子成形用素材を、精密成形用の下型7の上に載置して、図示しない上型を用いて精密成形(プレス成形)し、光学素子を得る第2の工程を示す。この工程は、非酸化雰囲気中で行なうのが好ましい。   FIG. 1D shows an optical element molding material composed of the glass block 6 and the legs 5 obtained in the first step placed on a lower mold 7 for precision molding. A second step of using the precision molding (press molding) to obtain an optical element is shown. This step is preferably performed in a non-oxidizing atmosphere.

この工程で用いる成形型は、セラミックなどの高温強度のある材料からなることが好ましい。   The mold used in this step is preferably made of a material having high temperature strength such as ceramic.

この工程の成形温度及びプレス力は、ガラスの種類とレンズ形状等から最適なプロセスが選択されることが望ましい。   As for the molding temperature and pressing force in this step, it is desirable to select an optimum process from the type of glass and the lens shape.

本実施例で成形する光学素子の形状は両凹形状であり、その硝材は、屈折率nd1.82の高屈折率の光学ガラスである。具体的な光学素子の寸法は、直径10.0mm、中心高さ1.5mm、凹1面R12mm、凹2面R18mmの両凹レンズである。   The shape of the optical element molded in this example is a biconcave shape, and the glass material is an optical glass having a high refractive index of nd1.82. Specific dimensions of the optical element are a biconcave lens having a diameter of 10.0 mm, a center height of 1.5 mm, a concave surface R12 mm, and a concave surface R18 mm.

第1の工程において光学素子成形用素材を成形するための成形型は、図1(a)に示すように、下型1及び上型2を有し、光学素子成形用素材の脚5を成形するために、下型1の成形面には凹部3を備える。下型1と上型2の外径は12mmである。これらの型で形成されるキャビティーは、3mmの厚さに調整されている。脚部成形用の凹部3は、半径4mmの球冠形状で、その開口径は3mm、深さは0.29mmである。この凹部3は、図1(c)に示すように、PCD3mmのピッチ円上に3箇所設けた。この成形型は、超硬合金で製作し、その成形面にはカーボン系の離型膜を設けた。   The mold for molding the optical element molding material in the first step has a lower mold 1 and an upper mold 2 as shown in FIG. 1A, and molds the legs 5 of the optical element molding material. For this purpose, the molding surface of the lower mold 1 is provided with a recess 3. The outer diameter of the lower mold 1 and the upper mold 2 is 12 mm. The cavity formed by these molds is adjusted to a thickness of 3 mm. The recess 3 for forming the leg has a spherical crown shape with a radius of 4 mm, an opening diameter of 3 mm, and a depth of 0.29 mm. As shown in FIG. 1C, the recesses 3 were provided at three places on a PCD 3 mm pitch circle. This mold was made of cemented carbide, and a carbon-based release film was provided on the molding surface.

この超硬合金製の成形型を用いて、ガラス塊6と複数の脚5からなる光学素子成形用素材を成形する。   Using this cemented carbide mold, an optical element forming material composed of a glass lump 6 and a plurality of legs 5 is formed.

この工程で用いる材料として、全面が滑らかな自由表面からなる凸形状のガラスの塊を成形材料4として用意した。このガラスの塊は、溶融状態のガラスをガス流により非接触状態で保ち、冷却することで得られる。本実施例で用いた凸形状のガラスの塊は、直径6mm、高さ4mmである。   As a material used in this step, a convex glass lump consisting of a free surface whose entire surface was smooth was prepared as a molding material 4. This lump of glass is obtained by keeping molten glass in a non-contact state by a gas flow and cooling it. The convex glass lump used in this example has a diameter of 6 mm and a height of 4 mm.

図1(a)に示すように、下型1の上に、成形材料4を載せた状態で、非酸化雰囲気で、下型1、上型2、成形材料4を610℃まで加熱し、成形材料4を軟化させた後、雰囲気を減圧雰囲気にし、2000Nのプレス力で成形した。この後、冷却し、成形型から光学素子成形用素材を取り出した。   As shown in FIG. 1A, with the molding material 4 placed on the lower die 1, the lower die 1, the upper die 2, and the molding material 4 are heated to 610 ° C. in a non-oxidizing atmosphere, and molding is performed. After the material 4 was softened, the atmosphere was reduced in pressure and molded with a press force of 2000 N. Then, it cooled and took out the optical element shaping | molding raw material from the shaping | molding die.

このようにして得られた光学素子成形用素材は、図1(b)、(c)に示すように、複数の脚5及びガラス塊6を備える。各脚5は、高さ0.28mmの球冠形状に形成されている。ガラス塊6は、直径8mm、厚さ3mmの円板形状に形成されている。   The optical element molding material thus obtained includes a plurality of legs 5 and a glass lump 6 as shown in FIGS. Each leg 5 is formed in a spherical crown shape having a height of 0.28 mm. The glass block 6 is formed in a disk shape having a diameter of 8 mm and a thickness of 3 mm.

次に、第2の工程として、このガラス塊6と脚5からなる光学素子成形用素材を、精密成形用の下型7を用いてプレス成形し、光学素子を得た。精密成形用の下型7の上に置かれた光学素子成形用素材は、下型上において脚5でガラス塊6を支持した状態になっている。   Next, as a second step, the optical element molding material composed of the glass block 6 and the legs 5 was press-molded using the lower mold 7 for precision molding to obtain an optical element. The optical element molding material placed on the precision molding lower mold 7 is in a state where the glass block 6 is supported by the legs 5 on the lower mold.

精密成形型は超硬合金からなり、その下型7はR18mmの凸球面であり、上型(不図示)はR12mmの凸球面である。光学素子の側面部も成形できるように、円筒状の側面型(不図示)も有している。   The precision mold is made of cemented carbide, the lower mold 7 is a convex spherical surface of R18 mm, and the upper mold (not shown) is a convex spherical surface of R12 mm. A cylindrical side surface mold (not shown) is also provided so that the side surface portion of the optical element can be molded.

下型7の上で、光学素子成形用素材の脚5でガラス塊6を支えた状態で、本実施例では下型7が上昇し、側面型の中に搬送され、プレス成形される。プレス温度は610℃、プレス力は3000Nで、窒素雰囲気でプレス成形を行った。   In this embodiment, the lower die 7 is raised on the lower die 7 while the glass block 6 is supported by the legs 5 of the optical element molding material, and is conveyed into the side die and press-molded. The press temperature was 610 ° C., the press force was 3000 N, and press molding was performed in a nitrogen atmosphere.

成形品である光学素子の寸法は、直径10mm、中心高さ1.5mm、凹1面R12mm、凹2面R18mmの両凹レンズであった。このようにして得られた光学素子は、高い光学性能を有しており、また、その側面は高い形状精度に成形されており、芯取り加工を必要とせずに光学機器の鏡筒に組込み可能であった。   The dimensions of the optical element as a molded product were a biconcave lens having a diameter of 10 mm, a center height of 1.5 mm, a concave surface R12 mm, and a concave surface R18 mm. The optical element obtained in this way has high optical performance, and its side surface is molded with high shape accuracy, and can be incorporated into the lens barrel of optical equipment without the need for centering processing. Met.

本実施例によれば、高い光学性能を有する光学素子の製造コストを大幅に低減できる。   According to the present embodiment, the manufacturing cost of an optical element having high optical performance can be greatly reduced.

本実施例では、実施例1と同一形状(両凹形状)の光学素子を得る工程において、ガラス塊と脚からなる光学素子成形用素材の脚部を成形する成形型の構成のみが異なる。   In this example, in the step of obtaining an optical element having the same shape (biconcave shape) as in Example 1, only the configuration of the molding die for molding the leg part of the optical element molding material composed of a glass lump and a leg is different.

図2に示すように、本実施例では、上下面とも平面からなる成形型である下型11及び上型12を用意する。上型12は、光学素子成形用素材の脚部を成形するために上型12の成形面に開口する貫通孔13を有する。下型11と上型12の外径は12mmである。これらの型で形成されるキャビティーは、3mmの厚さに調整されている。脚部成形用の貫通孔13は、開口径は3mmであり、PCD3mmのピッチ円上に3箇所設けた。この成形型は、窒化硼素で製作した。   As shown in FIG. 2, in this embodiment, a lower mold 11 and an upper mold 12 are prepared which are molding molds whose upper and lower surfaces are flat. The upper mold 12 has a through hole 13 that opens in the molding surface of the upper mold 12 in order to mold the leg portion of the optical element molding material. The outer diameters of the lower mold 11 and the upper mold 12 are 12 mm. The cavity formed by these molds is adjusted to a thickness of 3 mm. The through hole 13 for forming the leg portion has an opening diameter of 3 mm, and is provided at three locations on a PCD 3 mm pitch circle. This mold was made of boron nitride.

この窒化硼素製の成形型を用いて、ガラス塊と脚からなる光学素子成形用素材を成形する。   Using this boron nitride mold, an optical element molding material comprising a glass block and legs is molded.

成形材料14として、円板形状のガラス板を用意した。円板形状のガラス板は、直径8mm、高さ3.2mmである。   A disk-shaped glass plate was prepared as the molding material 14. The disk-shaped glass plate has a diameter of 8 mm and a height of 3.2 mm.

下型11の上に、ガラス板を載せた状態で、大気中で、ガラス板の上面を酸水素炎で加熱し、軟化させ、ガラス板の上表面を800℃まで加熱した後、ただちに100Nのプレス力で成形した。この後、冷却し、成形により得られた光学素子成形用素材を取り出した。   In a state where the glass plate is placed on the lower mold 11, the upper surface of the glass plate is heated with an oxyhydrogen flame in the atmosphere and softened, and the upper surface of the glass plate is heated to 800 ° C. Molded with pressing force. Then, it cooled and took out the optical element shaping | molding raw material obtained by shaping | molding.

このようにして得られた光学素子成形用素材は、実施例1と同様に、脚は、球冠形状に形成され、ガラス塊は、直径8mm、厚さ3mmの円板形状に形成されている。   In the optical element molding material thus obtained, as in Example 1, the legs are formed in a spherical crown shape, and the glass block is formed in a disk shape having a diameter of 8 mm and a thickness of 3 mm. .

次に、第2の工程として、このガラス塊と脚からなる光学素子成形用素材を精密成形(プレス成形)し、光学素子を得た。本実施例の第2の工程は、実施例1と同一の工程で行った。   Next, as a second step, the optical element forming material composed of the glass block and the legs was precisely molded (press molded) to obtain an optical element. The second step of this example was performed in the same manner as in Example 1.

成形品である光学素子の寸法は、直径10mm、中心高さ1.5mm、凹1面R12mm、凹2面R18mmの両凹レンズであった。得られた光学素子には、光学素子成形用素材の脚の痕跡は無く、高い品質であった。また、光学素子の側面は高い形状精度に成形されており、芯取り加工を必要とせずに光学機器の鏡筒に組込み可能であった。   The dimensions of the optical element as a molded product were a biconcave lens having a diameter of 10 mm, a center height of 1.5 mm, a concave surface R12 mm, and a concave surface R18 mm. The obtained optical element had no trace of the legs of the optical element molding material and had high quality. In addition, the side surface of the optical element is molded with high shape accuracy, and can be incorporated into a lens barrel of an optical device without requiring centering.

本実施例は、高い光学性能を有する光学素子を成形するための光学素子成形用素材をより安価に製作することができ、製造コストのより一層の削減に効果がある。   In this embodiment, an optical element molding material for molding an optical element having high optical performance can be manufactured at a lower cost, and the manufacturing cost can be further reduced.

本実施例で成形する光学素子の形状は、凹メニスカス形状である。   The shape of the optical element molded in this example is a concave meniscus shape.

第1の工程として、光学素子成形用素材を成形するための成形型として、図3(a)に示すように、下型21と上型22を用いる。下型21の成形面には凹部23が設けられる。下型21の成形面はR12mmの凹球面を有し、上型22の成形面はR9mmの凸球面である。下型21と上型22で形成されるキャビティーの径は12mmである。また、キャビティーの厚みは、3mmに調整されている。脚部成形用の凹部23は、半径4mmの球冠形状で、その開口径は3mm、深さは0.29mmである。この凹部23は、PCD3mmのピッチ円上に3箇所設けた。この成形型は、グラファイトで製作した。   As a first step, as shown in FIG. 3A, a lower mold 21 and an upper mold 22 are used as molds for molding an optical element molding material. A recess 23 is provided on the molding surface of the lower mold 21. The molding surface of the lower mold 21 has a concave spherical surface of R12 mm, and the molding surface of the upper mold 22 is a convex spherical surface of R9 mm. The diameter of the cavity formed by the lower mold 21 and the upper mold 22 is 12 mm. The thickness of the cavity is adjusted to 3 mm. The recess 23 for forming the leg has a spherical crown shape with a radius of 4 mm, an opening diameter of 3 mm, and a depth of 0.29 mm. The recesses 23 were provided at three locations on a PCD 3 mm pitch circle. This mold was made of graphite.

このグラファイト製の成形型を用いて、図3(b)に示すように、ガラス塊26と脚25からなる光学素子成形用素材を溶融状態のガラスから成形する。すなわち、成形材料24として、溶融ガラス塊を用意する。本実施例で用いた溶融ガラス塊の重量は、1.3gである。この溶融ガラス塊は、電気炉内に設置した白金製るつぼ内で光学ガラスを溶融し、流出パイプから溶融ガラスを流出させ、流出する溶融ガラスを所定量グラファイト製の下型21の上に受けて、所望重量の溶融ガラス塊を得たものである。   Using this graphite mold, as shown in FIG. 3B, an optical element molding material composed of a glass block 26 and legs 25 is molded from molten glass. That is, a molten glass lump is prepared as the molding material 24. The weight of the molten glass lump used in this example is 1.3 g. The molten glass lump is obtained by melting the optical glass in a platinum crucible installed in an electric furnace, allowing the molten glass to flow out from the outflow pipe, and receiving a predetermined amount of the molten glass on the lower mold 21 made of graphite. A molten glass lump having a desired weight is obtained.

下型21の上に、溶融ガラス塊を載せた状態で、大気中で、ただちに100Nのプレス力で成形した。この時、溶融ガラス塊の温度は800℃、下型21と上型22は500℃であった。この後、5秒間保持した後、型開きし、成形により得られた光学素子成形用素材を取り出した。   The molten glass lump was placed on the lower mold 21 and immediately molded in the atmosphere with a press force of 100 N. At this time, the temperature of the molten glass block was 800 ° C., and the lower mold 21 and the upper mold 22 were 500 ° C. Then, after holding for 5 seconds, the mold was opened, and the optical element molding material obtained by molding was taken out.

このようにして得られた光学素子成形用素材は、図3(b)に示すように、複数の脚25とガラス塊26からなる。各脚部25は、球冠形状に形成されている。ガラス塊26は、直径12mm、厚さ3mmの球殻形状に形成されている。   The optical element molding material thus obtained is composed of a plurality of legs 25 and a glass lump 26 as shown in FIG. Each leg 25 is formed in a spherical crown shape. The glass block 26 is formed in a spherical shell shape having a diameter of 12 mm and a thickness of 3 mm.

次に、第2の工程として、このガラス塊26と脚25からなる光学素子成形用素材を精密成形し、光学素子を得た。   Next, as a second step, the optical element molding material composed of the glass block 26 and the legs 25 was precisely molded to obtain an optical element.

図3(c)は、精密成形用の下型27の上に置かれた光学素子成形用素材を示す。ガラス塊26と脚25からなる光学素子成形用素材を凹面の成形面を有する精密成形用の下型27に載せた時、脚25でガラス塊26を下型上に支持する。   FIG. 3C shows the optical element molding material placed on the lower mold 27 for precision molding. When the optical element molding material comprising the glass block 26 and the legs 25 is placed on a precision molding lower mold 27 having a concave molding surface, the legs 25 support the glass block 26 on the lower mold.

精密成形型は、超硬合金からなっている。その下型27はR28mmの凹球面であり、上型(不図示)はR9mmの凸球面であり、成形素子の側面部も成形できるように、円筒状の側面型(不図示)も有している。   The precision mold is made of cemented carbide. The lower die 27 is a concave spherical surface of R28 mm, the upper die (not shown) is a convex spherical surface of R9 mm, and also has a cylindrical side die (not shown) so that the side portion of the molding element can be molded. Yes.

下型27の上で、光学素子成形用素材の脚25がガラス塊26を支えた状態で、下型27が横方向に移動し、上型の下方の位置に到達した後上昇し、側面型の中に搬送されてプレス成形される。本実施例でのプレス温度は610℃、プレス力は3000Nで、窒素雰囲気で行った。   With the legs 25 of the optical element molding material supporting the glass block 26 on the lower mold 27, the lower mold 27 moves in the lateral direction and rises after reaching the position below the upper mold, so that the side mold It is conveyed to the inside and pressed. In this example, the press temperature was 610 ° C., the press force was 3000 N, and the test was performed in a nitrogen atmosphere.

このようにして得られた光学素子の寸法は、直径12.4mm、中心高さ1.5mm、凸面R28mm、凹面R9mmの凹メニスカスレンズであった。この光学素子は、高い光学性能を有しており、また、その側面は高い形状精度に成形されており、芯取り加工を必要とせずに光学機器の鏡筒に組込み可能であった。   The dimensions of the optical element thus obtained were a concave meniscus lens having a diameter of 12.4 mm, a center height of 1.5 mm, a convex surface R28 mm, and a concave surface R9 mm. This optical element has high optical performance, and its side surface is molded with high shape accuracy, and can be incorporated into a lens barrel of an optical apparatus without requiring centering.

上記実施例によれば、光学素子成形用素材を載せた状態で精密成形用の下型を移動させても高い精度で置き続けることが可能なので、製造装置システムを安価にすることが可能になる。その結果、高い光学性能を有する光学素子を安価に製造することができる。   According to the above embodiment, even if the lower mold for precision molding is moved with the optical element molding material placed thereon, it can be placed with high accuracy, so that the manufacturing apparatus system can be made inexpensive. . As a result, an optical element having high optical performance can be manufactured at low cost.

実施例1による光学素子の成形方法を説明する図である。FIG. 5 is a diagram illustrating a method for molding an optical element according to Example 1. 実施例2による光学素子の成形方法を説明する図である。6 is a diagram for explaining a method of molding an optical element according to Example 2. FIG. 実施例3による光学素子の成形方法を説明する図である。FIG. 6 is a diagram illustrating a method for molding an optical element according to Example 3.

符号の説明Explanation of symbols

1、7、11、21、27 下型
2、12、22 上型
3、23 凹部
4、14、24 成形材料
5、25 脚
6、26 ガラス塊
13 貫通孔
1, 7, 11, 21, 27 Lower mold 2, 12, 22 Upper mold 3, 23 Recess 4, 14, 24 Molding material 5, 25 Leg 6, 26 Glass lump 13 Through hole

Claims (7)

ガラス塊と、前記ガラス塊と一体に形成された脚と、を備える光学素子成形用素材を成形する第1の工程と、
精密成形用の下型と上型との間で前記光学素子成形用素材をプレス成形して光学素子を得る第2の工程と、を有し、
前記第2の工程において、前記光学素子成形用素材の前記ガラス塊を、前記脚によって前記下型の上に支持することを特徴とする光学素子の成形方法。
A first step of forming an optical element molding material comprising a glass lump and legs integrally formed with the glass lump,
A second step of obtaining an optical element by press-molding the optical element molding material between a lower mold and an upper mold for precision molding,
In the second step, the glass lump of the optical element molding material is supported on the lower mold by the legs.
ガラス塊と、前記ガラス塊と一体に形成された脚と、を備える光学素子成形用素材を成形する第1の工程と、
凸形状の下型に前記光学素子成形用素材を載置し、前記下型と上型との間で前記光学素子成形用素材をプレス成形して光学素子を得る第2の工程と、を有し、
前記第2の工程において、前記光学素子成形用素材の前記ガラス塊を、前記脚によって前記下型の上に支持することを特徴とする光学素子の成形方法。
A first step of forming an optical element molding material comprising a glass lump and legs integrally formed with the glass lump,
A second step of placing the optical element molding material on a convex lower mold, and press-molding the optical element molding material between the lower mold and the upper mold to obtain an optical element; And
In the second step, the glass lump of the optical element molding material is supported on the lower mold by the legs.
光学素子を成形するための光学素子成形用素材であって、
ガラス塊と、
前記ガラス塊を支持するために、前記ガラス塊と一体に形成された脚と、を備えたことを特徴とする光学素子成形用素材。
An optical element molding material for molding an optical element,
A glass lump,
An optical element molding material comprising: a leg formed integrally with the glass block to support the glass block.
光学素子成形用の下型と上型との間で前記光学素子成形用素材をプレス成形する工程で、前記ガラス塊を、前記脚によって前記下型の上に支持することを特徴とする請求項3に記載の光学素子成形用素材。   The glass block is supported on the lower mold by the legs in the step of press-molding the optical element molding material between the lower mold and the upper mold for optical element molding. 3. The optical element molding material according to 3. 前記ガラス塊に複数の脚を一体に形成したことを特徴とする請求項3又は4に記載の光学素子成形用素材。   5. The optical element forming material according to claim 3, wherein a plurality of legs are integrally formed on the glass block. 各脚が、球冠形状を有することを特徴とする請求項5に記載の光学素子成形用素材。   6. The optical element molding material according to claim 5, wherein each leg has a spherical crown shape. 軟化又は溶融状態のガラスを成形型で成形することで、前記脚と前記ガラス塊を一体に形成したことを特徴とする請求項3ないし6のいずれかに記載の光学素子成形用素材。   The optical element molding material according to any one of claims 3 to 6, wherein the legs and the glass lump are integrally formed by molding a softened or molten glass with a molding die.
JP2008179729A 2008-07-10 2008-07-10 Optical element molding method and optical element molding material Expired - Fee Related JP5121610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008179729A JP5121610B2 (en) 2008-07-10 2008-07-10 Optical element molding method and optical element molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008179729A JP5121610B2 (en) 2008-07-10 2008-07-10 Optical element molding method and optical element molding material

Publications (2)

Publication Number Publication Date
JP2010018476A true JP2010018476A (en) 2010-01-28
JP5121610B2 JP5121610B2 (en) 2013-01-16

Family

ID=41703754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179729A Expired - Fee Related JP5121610B2 (en) 2008-07-10 2008-07-10 Optical element molding method and optical element molding material

Country Status (1)

Country Link
JP (1) JP5121610B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106895A (en) * 2010-11-19 2012-06-07 Konica Minolta Opto Inc Glass optical element and method for manufacturing the same
CN102557395A (en) * 2010-11-24 2012-07-11 柯尼卡美能达精密光学株式会社 Glass optical element, method of producing thereof and mold

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291424A (en) * 1985-06-14 1986-12-22 Matsushita Electric Ind Co Ltd Forming mold of glass lens and forming method
JP2001278630A (en) * 2000-03-30 2001-10-10 Olympus Optical Co Ltd Forming method of optical element, forming material and holder for forming material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291424A (en) * 1985-06-14 1986-12-22 Matsushita Electric Ind Co Ltd Forming mold of glass lens and forming method
JP2001278630A (en) * 2000-03-30 2001-10-10 Olympus Optical Co Ltd Forming method of optical element, forming material and holder for forming material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106895A (en) * 2010-11-19 2012-06-07 Konica Minolta Opto Inc Glass optical element and method for manufacturing the same
CN102557395A (en) * 2010-11-24 2012-07-11 柯尼卡美能达精密光学株式会社 Glass optical element, method of producing thereof and mold

Also Published As

Publication number Publication date
JP5121610B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP2006265087A (en) Preform for optical element
WO2014097830A1 (en) Molded glass article production method, and mold
JP4918182B2 (en) Manufacturing method and manufacturing apparatus for glass molded body, and manufacturing method for optical element
TWI499563B (en) Method for producing glass preform, and
JP5021205B2 (en) Mold press mold and optical element manufacturing method
JP6739131B2 (en) Mold for molding optical component made of glass and method for manufacturing optical component made of glass using the mold
JP5121610B2 (en) Optical element molding method and optical element molding material
JP2008307856A (en) Method of manufacturing transfer mold, and transfer mold
JP4559784B2 (en) Optical element manufacturing method
JP4460339B2 (en) Mold press molding apparatus and optical element manufacturing method
US8997523B2 (en) Method of manufacturing glass molding
JP2003104741A (en) Press forming apparatus for optical element and method for manufacturing optical element
JP2012201523A (en) Method for manufacturing infrared lens
JP5269477B2 (en) Optical element manufacturing method, optical element manufacturing apparatus, and optical element
TWI401217B (en) Arrayed glass lenses and forming method, forming apparatus thereof
JP2006001803A (en) Mold press forming mold, method of manufacturing optical element and mold pressed lens
JP5100790B2 (en) Optical element manufacturing method
KR102076984B1 (en) Press mould for manufacturing optical dummy lens
JP5441050B2 (en) Method for manufacturing transfer mold nest, transfer mold nest, and transfer mold nest used therein
JPWO2009044768A1 (en) Optical element manufacturing method and manufacturing apparatus
JP2007091514A (en) Mold assembly and method of manufacturing glass to be molded using the same
JP2007076945A (en) Method and apparatus for molding glass lens
JPS61180201A (en) Glass lens and its manufacture
JPH1179762A (en) Manufacture of glass optical element
JP5430092B2 (en) Optical element molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5121610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees