JPH04330039A - Production of naphthalenecarboxylic acid - Google Patents

Production of naphthalenecarboxylic acid

Info

Publication number
JPH04330039A
JPH04330039A JP3012228A JP1222891A JPH04330039A JP H04330039 A JPH04330039 A JP H04330039A JP 3012228 A JP3012228 A JP 3012228A JP 1222891 A JP1222891 A JP 1222891A JP H04330039 A JPH04330039 A JP H04330039A
Authority
JP
Japan
Prior art keywords
reaction
stage
oxidation
catalyst
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3012228A
Other languages
Japanese (ja)
Inventor
Teruaki Yamada
輝明 山田
Kazuki Sugiura
一樹 杉浦
Yoshiharu Douko
道古 義治
Kazuhiko Maeda
和彦 前田
Ryohei Minami
良平 南
Yukio Nagao
長尾 幸生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumikin Chemical Co Ltd filed Critical Sumikin Chemical Co Ltd
Priority to JP3012228A priority Critical patent/JPH04330039A/en
Publication of JPH04330039A publication Critical patent/JPH04330039A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To eliminate the need of operation to recover a catalyst and a solvent and simplify waste liquor treatment by suppressing formation of by-products, obtaining high-purity naphthalenecarboxylic acid excellent in filterability in good yield and simultaneously enabling repeated use of a reaction filtrate. CONSTITUTION:A substituted naphthalene having one or more substituent groups selected from alkyl groups, acyl groups or their oxidation intermediates is oxidized with molecular oxygen in the presence of an oxidation catalyst containing a heavy metal in a solvent containing a lower aliphatic monocarboxylic acid to produce naphthalenecarboxylic acid such as naphthoic acid useful as a raw material for photographic chemicals, dyes, etc. In the process, the oxidative reaction is carried out in two stages and the oxidative reaction in the second stage is simultaneously conducted under conditions in which at least either of temperature and pressure is lower than that of the oxidative reaction in the first stage. Thereby, the objective high-purity compound, having high quality and excellent in hue is efficiently obtained. Furthermore, a catalyst is preferably added after the oxidative reaction in the first stage and the obtained reaction mixture is directly subjected to the oxidative reaction in the second stage, or the objective compound is recovered from the resultant reaction mixture. The residual solution is then subjected to the oxidative reaction in the second stage.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、置換ナフタレン化合物
を、低級脂肪族モノカルボン酸を含む溶媒中、重金属化
合物を含む酸化触媒の存在下、分子状酸素により酸化し
てナフタレンカルボン酸を製造する方法に関する。特に
、高品質の生成物を得ると同時に、反応液の循環使用が
可能な効率的なナフタレンカルボン酸の製造方法に関す
る。
[Industrial Application Field] The present invention involves the production of naphthalene carboxylic acid by oxidizing a substituted naphthalene compound with molecular oxygen in a solvent containing a lower aliphatic monocarboxylic acid in the presence of an oxidation catalyst containing a heavy metal compound. Regarding the method. In particular, the present invention relates to an efficient method for producing naphthalenecarboxylic acid that allows for the recycling of a reaction solution while obtaining a high-quality product.

【0002】0002

【従来の技術】ナフタレン環に直接結合した少なくとも
1個のカルボキシル基を持つナフタレンカルボン酸(以
下、NCAという) のうち、モノカルボン酸であるナ
フトエ酸は写真薬、染料などの原料として有用である。 また、ナフタレンジカルボン酸(以下、NDCAという
)、特に 2,6−体は、耐熱性、機械的強度、寸法安
定性に優れたフィルムや繊維製品を与えることから、ポ
リエチレンナフタレートを始めとする各種ポリエステル
、ポリアミド等の原料として需要が増している。さらに
、ナフタレントリカルボン酸類、ナフタレンテトラカル
ボン酸類は、高機能性樹脂などの原料として有望視され
ている。
[Prior Art] Among naphthalenecarboxylic acids (hereinafter referred to as NCA) having at least one carboxyl group directly bonded to a naphthalene ring, naphthoic acid, which is a monocarboxylic acid, is useful as a raw material for photographic agents, dyes, etc. . In addition, naphthalene dicarboxylic acid (hereinafter referred to as NDCA), especially 2,6-isomer, is used in various products including polyethylene naphthalate because it provides films and textile products with excellent heat resistance, mechanical strength, and dimensional stability. Demand is increasing as a raw material for polyester, polyamide, etc. Furthermore, naphthalenetricarboxylic acids and naphthalenetetracarboxylic acids are seen as promising raw materials for highly functional resins and the like.

【0003】かかるNCAは、対応するアルキルおよび
/またはアシル置換ナフタレンの置換基をカルボキシル
基に酸化することにより製造することができる。このよ
うな置換ナフタレンの酸化によるNCAの工業的な製造
方法としては、低級脂肪酸を含む溶媒中で重金属を含む
触媒の存在下に分子状酸素により1段階で液相酸化する
方法が最も一般的である。
Such NCAs can be prepared by oxidizing the substituents of the corresponding alkyl- and/or acyl-substituted naphthalenes to carboxyl groups. The most common industrial method for producing NCA by oxidizing substituted naphthalene is a one-step liquid phase oxidation process using molecular oxygen in a solvent containing a lower fatty acid in the presence of a catalyst containing a heavy metal. be.

【0004】かかる液相酸化によるNCAの製造方法に
ついては、これまでにも、触媒の組成、臭素やアルカリ
金属などの助触媒の添加、原料−触媒比、原料−溶媒比
、反応温度などの各種の反応条件に関して、数多くの提
案がなされてきた (例、特公昭34−2666号、同
48−43893 号、特開昭48−34153 号、
同60−89445 号、同60−89446 号、同
61−246144号、特開平1−160943号各公
報参照) 。
[0004] Regarding the method for producing NCA by liquid phase oxidation, various changes have been made so far, such as catalyst composition, addition of co-catalysts such as bromine and alkali metals, raw material-to-catalyst ratio, raw material-to-solvent ratio, and reaction temperature. Many proposals have been made regarding the reaction conditions (for example, Japanese Patent Publication No. 34-2666, Japanese Patent Publication No. 48-43893, Japanese Patent Publication No. 48-34153,
60-89445, 60-89446, 61-246144, and Japanese Unexamined Patent Publication No. 1-160943).

【0005】しかし、いずれの方法においても1段階で
液相酸化を行った場合、反応を完全に行うことは難しく
、酸化中間体や未反応原料などが反応生成物中にかなり
の割合で含まれるのを避けることはできない。従って、
生成物はそのままでは実用に供することができず、さら
に精製処理に付されることになるので、コスト高につな
がり、製造工程も複雑となる。
However, in either method, when liquid phase oxidation is performed in one step, it is difficult to carry out the reaction completely, and a considerable proportion of oxidized intermediates and unreacted raw materials are contained in the reaction product. cannot be avoided. Therefore,
The product cannot be put to practical use as it is, and must be subjected to further purification treatment, leading to higher costs and complicating the manufacturing process.

【0006】酸化を2段階で行えば反応がより完全とな
り、酸化中間体や未反応原料の少ない高品質のNCA生
成物が得られるとの予想のもとに、2段階で液相酸化を
行うことも既に提案されている。特公昭59−1349
5号公報には、二段酸化による2,6−NDCAの製造
方法が記載されている。具体的には、第一段目を 10
0〜150 ℃の反応温度で生成物が析出しない程度に
行い、続いて 150〜250 ℃に昇温させて第二段
目の酸化反応を行う。
[0006] The liquid phase oxidation was performed in two stages with the expectation that the reaction would be more complete and a higher quality NCA product with fewer oxidized intermediates and unreacted materials would be obtained if the oxidation was performed in two stages. This has already been proposed. Special Public Service 1986-1349
No. 5 describes a method for producing 2,6-NDCA by two-stage oxidation. Specifically, the first stage is 10
The oxidation reaction is carried out at a reaction temperature of 0 to 150°C to an extent that no product is precipitated, and then the temperature is raised to 150 to 250°C to carry out the second stage oxidation reaction.

【0007】この方法は、この公報に実施例に示されて
いるメチル置換ナフタレンのように比較的酸化反応の遅
い置換基を持った置換ナフタレンを原料とする場合には
、ある程度有効であると思われる。しかし、イソプロピ
ル基のように酸化速度が速く、従って反応効率の点から
好ましい置換ナフタレンを原料とする場合には、一段目
の酸化温度が十分に高くないため、ポリパーオキサイド
と思われる重合物が多量に生成することが判明した。 一旦生成した重合物は容易には分解しないため、二段目
の酸化を行っても、得られる2,6−NDCAは品質が
低下し、色相も不満足となりがちである。
This method is thought to be effective to some extent when substituted naphthalene having a substituent with a relatively slow oxidation reaction is used as a raw material, such as the methyl-substituted naphthalene shown in the examples in this publication. It will be done. However, when substituted naphthalene, which has a fast oxidation rate such as isopropyl group and is therefore preferable from the viewpoint of reaction efficiency, is used as a raw material, the oxidation temperature in the first stage is not high enough, resulting in a polymer that is thought to be polyperoxide. It was found that it was produced in large quantities. Since the polymer once produced does not easily decompose, even if the second stage of oxidation is performed, the quality of the 2,6-NDCA obtained tends to deteriorate and the hue tends to be unsatisfactory.

【0008】このように、従来の方法では、品質に満足
できるNCA生成物を直接得ることは困難であった。 
 さらに、酸化後に反応器から抜き出された反応混合物
から、析出した生成物を効率良く分離することが従来は
非常に困難であった。これは、生成したNCAおよび酸
化中間体の粒子が非常に小さく、濾布の目詰りが起こり
易いことが主な原因である。これは、比較的大きな粒子
が生成するテレフタル酸の製造に場合には認められない
、NCA製造に特有の問題点である。この濾過性の悪さ
は、特に液相酸化によるNCAの製造を連続方式で工業
化する場合に、円滑な実施を阻む阻害要因となることは
明白である。
[0008] As described above, it has been difficult to directly obtain NCA products of satisfactory quality using conventional methods.
Furthermore, it has conventionally been very difficult to efficiently separate the precipitated product from the reaction mixture extracted from the reactor after oxidation. This is mainly due to the fact that the particles of NCA and oxidized intermediates produced are very small and easily clog the filter cloth. This is a problem specific to NCA production that is not present in terephthalic acid production, where relatively large particles are produced. It is clear that this poor filterability is an impediment to smooth implementation, especially when industrializing the production of NCA by liquid phase oxidation in a continuous manner.

【0009】また、一般に芳香族炭化水素の液相酸化に
よるカルボン酸の製造では、比較的高価な脂肪族カルボ
ン酸溶媒と重金属触媒を使用するため、これらの溶媒お
よび触媒を循環使用する、即ち、反応混合物から反応生
成物を回収した残りの反応濾液を循環使用することが、
工業化に当たって必要となる。
[0009] Generally, in the production of carboxylic acids by liquid phase oxidation of aromatic hydrocarbons, relatively expensive aliphatic carboxylic acid solvents and heavy metal catalysts are used. The remaining reaction filtrate after recovering the reaction product from the reaction mixture can be recycled and used.
It is necessary for industrialization.

【0010】p−キシレンの酸化によるテレフタル酸の
製造にように置換ベンゼン類の酸化の場合には、触媒を
不活性化する副生物や重合物の生成が少なく、反応濾液
の循環使用に問題は少ない。
In the case of the oxidation of substituted benzenes, such as the production of terephthalic acid by the oxidation of p-xylene, there is little production of by-products or polymers that inactivate the catalyst, and there is no problem in recycling the reaction filtrate. few.

【0011】ところが、置換ナフタレンの酸化の場合に
は、重合物やトリメリット酸等のような触媒を不活性化
させる副生物が生成し、さらに置換基がイソプロピル基
の場合にはナフトールのような反応阻害物質も生成する
。従って、反応濾液をそのまま循環使用していくと、反
応液中にこれらの副生物が蓄積し、循環回数が少ない段
階でNCAの収率が許容できないほどに低下するので、
せいぜい数回程度の循環使用しかできない。そのため、
反応濾液の大部分を抜き出し、濾液中の触媒を回収し、
再生して副生物を除去し、再び反応濾液に戻すという煩
雑な操作が必要となり、経済的に不利になる。
However, in the case of oxidation of substituted naphthalene, by-products such as polymers and trimellitic acid that inactivate the catalyst are produced, and when the substituent is an isopropyl group, oxidation of by-products such as naphthol is produced. Reaction inhibitors are also produced. Therefore, if the reaction filtrate is recycled as it is, these by-products will accumulate in the reaction solution, and the yield of NCA will drop to an unacceptable level when the number of cycles is small.
It can only be used repeatedly a few times at most. Therefore,
Most of the reaction filtrate is extracted, the catalyst in the filtrate is recovered,
This requires a complicated operation of regenerating, removing by-products, and returning the reaction filtrate again, which is economically disadvantageous.

【0012】0012

【発明が解決しようとする課題】本発明の目的は、置換
ナフタレンの分子状酸素による液相酸化によるNCAの
工業的に製造において、従来技術の問題点を克服した改
善された製造方法を提供することである。具体的には、
(1)高純度で色相に優れた高品質のNCA生成物を得
ることができ、(2) 反応混合物の濾過性がよく〔濾
過比抵抗値(後述)が109 m/kg以下〕、(3)
 反応濾液をそのまま繰り返し循環使用しても収率低下
が顕著に起こらない (即ち、反応濾液のリサイクル性
に優れている) 、NCAの製造方法を提供することで
ある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an improved process for the industrial production of NCAs by liquid phase oxidation of substituted naphthalenes with molecular oxygen, which overcomes the problems of the prior art. That's true. in particular,
(1) A high-quality NCA product with high purity and excellent hue can be obtained, (2) the reaction mixture has good filterability [filtration specific resistance value (described later) is 109 m/kg or less], (3) )
It is an object of the present invention to provide a method for producing NCA in which the yield does not significantly decrease even when the reaction filtrate is repeatedly recycled as it is (that is, the reaction filtrate has excellent recyclability).

【0013】[0013]

【課題を解決するための手段】本発明者らは検討の結果
、液相酸化を2段で行う場合に、従来の知見とは異なり
、一段目の酸化反応の温度および/または圧力を二段目
より高くすることにより、上記目的が達成されることを
見出し、本発明を完成した。ここに、本発明は、「アル
キル基、アシル基およびそれらの酸化中間体から選ばれ
た少なくとも1個の置換基を有する置換ナフタレンを、
低級脂肪族モノカルボン酸を含む溶媒中、重金属を含む
酸化触媒の存在下、分子状酸素により酸化してNCAを
製造する方法において、酸化反応を2段階で行い、第二
段の酸化反応を、第一段酸化に比べて温度および圧力の
少なくとも一方が低い条件下で行うことを特徴とするN
CAの製造方法」を要旨とする。
[Means for Solving the Problems] As a result of studies, the present inventors have found that when liquid phase oxidation is performed in two stages, the temperature and/or pressure of the first stage oxidation reaction is different from the conventional knowledge. It was discovered that the above object could be achieved by making the height higher than the eye level, and the present invention was completed. Here, the present invention provides "a substituted naphthalene having at least one substituent selected from an alkyl group, an acyl group, and an oxidized intermediate thereof,"
In a method for producing NCA by oxidation with molecular oxygen in a solvent containing a lower aliphatic monocarboxylic acid in the presence of an oxidation catalyst containing a heavy metal, the oxidation reaction is carried out in two stages, and the second stage oxidation reaction is Ni
The gist is ``Method for manufacturing CA''.

【0014】第二段の酸化反応は、第一段の酸化反応の
反応混合物をそのまま使用して行っても、或いはこれか
らNCA生成物を回収した残りの反応液を用いて行って
もよい。以下、本発明について詳述する。
The second-stage oxidation reaction may be carried out using the reaction mixture from the first-stage oxidation reaction as it is, or may be carried out using the remaining reaction solution from which the NCA product has been recovered. The present invention will be explained in detail below.

【0015】本発明のNCAの製造方法で原料となる置
換ナフタレンは、ナフタレン環にアルキル基、アシル基
およびそれらの酸化中間体から選ばれた少なくとも1個
の置換基が結合した化合物の任意の異性体である。置換
基の例としては、メチル、エチル、イソプロピルなどの
アルキル基、アセチル、ホルミルなどのアシル基が挙げ
られる。酸化中間体基の例としては、次のものが例示さ
れる。
The substituted naphthalene used as a raw material in the method for producing NCA of the present invention is any isomeric compound in which at least one substituent selected from an alkyl group, an acyl group, and their oxidized intermediates is bonded to the naphthalene ring. It is the body. Examples of substituents include alkyl groups such as methyl, ethyl and isopropyl, and acyl groups such as acetyl and formyl. Examples of oxidized intermediate groups include the following.

【0016】[0016]

【化1】[Chemical formula 1]

【0017】原料として有用な置換ナフタレン化合物の
具体例としては、メチルナフタレン、エチルナフタレン
、イソプロピルナフタレン、ジメチルナフタレン、ジエ
チルナフタレン、ジイソプロピルナフタレン、メチルイ
ソプロピルナフタレン、エチルイソプロピルナフタレン
、アセチルメチルナフタレン、アセチルイソプロピルナ
フタレン、さらにはトリアルキルナフタレン類などが挙
げられる。本発明の方法は、原料の置換ナフタレンの種
別によらず有効であるが、特に反応性の高いジイソプロ
ピル基を置換基として有するナフタレン化合物の酸化に
有用である。
Specific examples of substituted naphthalene compounds useful as raw materials include methylnaphthalene, ethylnaphthalene, isopropylnaphthalene, dimethylnaphthalene, diethylnaphthalene, diisopropylnaphthalene, methylisopropylnaphthalene, ethylisopropylnaphthalene, acetylmethylnaphthalene, acetylisopropylnaphthalene, Further examples include trialkylnaphthalenes. The method of the present invention is effective regardless of the type of substituted naphthalene used as a raw material, but is particularly useful for oxidizing naphthalene compounds having a highly reactive diisopropyl group as a substituent.

【0018】モノ置換ナフタレン化合物からはナフトエ
酸が、ジ置換ナフタレン化合物からはナフタレンジカル
ボン酸(NDCA)が、トリ置換ナフタレン化合物から
はナフタレントリカルボン酸が生成する。
Naphthoic acid is produced from mono-substituted naphthalene compounds, naphthalene dicarboxylic acid (NDCA) is produced from di-substituted naphthalene compounds, and naphthalenetricarboxylic acid is produced from tri-substituted naphthalene compounds.

【0019】液相酸化の反応溶媒としては、酢酸、プロ
ピオン酸、酪酸などの低級脂肪族モノカルボン酸を含む
溶媒を使用する。酢酸が特に好ましい。溶媒は低級モノ
カルボン酸をそのまま使用することもできるが、酸化に
対して安定な水あるいはクロロベンゼン、ブロモベンゼ
ンなどの炭化水素系溶媒との混合溶媒とすることもでき
る。
As the reaction solvent for liquid phase oxidation, a solvent containing a lower aliphatic monocarboxylic acid such as acetic acid, propionic acid, butyric acid, etc. is used. Acetic acid is particularly preferred. As the solvent, the lower monocarboxylic acid can be used as it is, but it can also be a mixed solvent with water or a hydrocarbon solvent such as chlorobenzene or bromobenzene, which is stable against oxidation.

【0020】分子状酸素としては、純酸素のほかに、空
気、または酸素と不活性ガスとの混合ガスが使用できる
。空気をそのまま用いるのが経済的である。
As molecular oxygen, in addition to pure oxygen, air or a mixed gas of oxygen and an inert gas can be used. It is economical to use air as it is.

【0021】酸化触媒は、コバルト、マンガン、セリウ
ム、ニッケル、銅、鉄、亜鉛などの少なくとも1種の重
金属を含有し、通常は他に臭素化合物も触媒成分として
使用する。重金属化合物は低級モノカルボン酸溶媒中に
溶解するものを使用し、特に酢酸塩などの低級脂肪酸塩
が望ましい。臭素化合物としては、臭化カリウム、臭化
ナトリウム、臭化アンモニウムなどを用いることができ
る。また、助触媒としてメチルエチルケトンのようなケ
トン類、或いは酢酸カリウムのようなアルカリ金属化合
物を併用することもできる。触媒の使用量は従来と同様
でよい。
The oxidation catalyst contains at least one heavy metal such as cobalt, manganese, cerium, nickel, copper, iron, zinc, and usually also uses a bromine compound as a catalyst component. The heavy metal compound used is one that dissolves in a lower monocarboxylic acid solvent, and lower fatty acid salts such as acetate are particularly preferred. As the bromine compound, potassium bromide, sodium bromide, ammonium bromide, etc. can be used. Furthermore, ketones such as methyl ethyl ketone or alkali metal compounds such as potassium acetate may be used in combination as co-catalysts. The amount of catalyst used may be the same as conventional.

【0022】液相酸化は、従来より一般に採用されてい
る反応条件で実施することができる。反応温度は20〜
250 ℃、好ましくは 100〜200 ℃、反応圧
力は、酸素分圧として 0.2〜20kg/cm2、好
ましくは3〜15kg/cm2の範囲内が適当である。
[0022] Liquid phase oxidation can be carried out under conventionally commonly employed reaction conditions. The reaction temperature is 20~
The temperature is 250°C, preferably 100-200°C, and the reaction pressure is suitably within the range of 0.2-20kg/cm2, preferably 3-15kg/cm2 as oxygen partial pressure.

【0023】本発明の特徴は、反応を2段階で行い、第
二段の反応を、反応温度および圧力の少なくとも一方が
第一段の反応で採用した条件より低くなるようにして行
うことにある。それにより、生成物の濾過性が改善され
、溶媒および触媒を含む反応濾液のリサイクル性が高ま
り、収率をほとんど低下させずに循環使用することが可
能となる。
A feature of the present invention is that the reaction is carried out in two stages, and the second stage reaction is carried out such that at least one of the reaction temperature and pressure is lower than the conditions adopted in the first stage reaction. . This improves the filterability of the product, increases the recyclability of the reaction filtrate containing the solvent and the catalyst, and makes it possible to recycle the reaction filtrate with almost no reduction in yield.

【0024】この理由は明らかではないが、分子状酸素
により第二段の酸化をよりゆるやかな条件下でさらに行
うことにより、温度、圧力の高い条件下に較べて低い酢
酸燃焼率が得られ、かつ濾過性および品質の低下をもた
らす酸化中間体をNCAに変換させることができ、また
、酸化を阻害する重合物、トリメリット酸、ナフトール
類、蟻酸などの酸類が酸化によってある程度燃焼してし
まうことから、NCA生成物の品質が向上すると同時に
、反応濾液のリサイクル性もよくなるのではないかと推
察される。
The reason for this is not clear, but by further performing the second stage oxidation using molecular oxygen under more gentle conditions, a lower acetic acid combustion rate can be obtained than under conditions of high temperature and pressure. In addition, it is possible to convert oxidized intermediates that cause a decrease in filterability and quality into NCA, and to some extent, polymers that inhibit oxidation, acids such as trimellitic acid, naphthols, and formic acid are burned by oxidation. Therefore, it is inferred that the quality of the NCA product is improved and at the same time, the recyclability of the reaction filtrate is also improved.

【0025】このためには、第二段の酸化反応を、第一
段の反応に比べて、反応温度で5〜200 ℃および/
または反応圧力 (酸素分圧) で1〜18kg/cm
2低くすることが好ましい。反応温度および圧力の両方
を第二段で低下させてもよい。
For this purpose, the second stage oxidation reaction must be performed at a reaction temperature of 5 to 200°C and/or lower than the first stage reaction.
or reaction pressure (oxygen partial pressure) of 1 to 18 kg/cm
It is preferable to lower it by 2. Both reaction temperature and pressure may be reduced in the second stage.

【0026】第一段の酸化反応の終了後、得られた反応
混合物をそのまま第二段の酸化反応に付してもよい。こ
の場合には、単に反応温度および/または圧力の一方ま
たは両方を下げて反応を継続すればよい。或いは、第一
段の酸化で得られた反応混合物から生成したNCAを、
例えば、濾過などの適当な手段で回収し、残りの反応液
を第二段の酸化反応に付すこともできる。いずれの場合
も、第二段の酸化反応の開始前また反応中に触媒を追加
してもよい。触媒の追加は、収率の一層の向上に効果的
である。
After completion of the first stage oxidation reaction, the obtained reaction mixture may be directly subjected to the second stage oxidation reaction. In this case, the reaction may be continued by simply lowering one or both of the reaction temperature and/or pressure. Alternatively, the NCA produced from the reaction mixture obtained in the first stage oxidation,
For example, it is possible to collect the reaction solution by appropriate means such as filtration, and then subject the remaining reaction solution to the second stage oxidation reaction. In either case, a catalyst may be added before or during the start of the second stage oxidation reaction. Addition of catalyst is effective in further improving the yield.

【0027】本発明の液相酸化は連続式、半連続式また
は回分式のいずれの方式でも実施できる。また、第一段
の酸化を連続式もしくは半連続式で、第二段の酸化を回
分式というように、異なる反応方式で実施することもで
きる。
The liquid phase oxidation of the present invention can be carried out in a continuous, semi-continuous or batch manner. Further, different reaction methods can be used, such as the first stage oxidation being carried out continuously or semi-continuously and the second stage oxidation being carried out batchwise.

【0028】半連続式反応は、一般に、反応溶媒に触媒
を溶解させた溶液を酸化反応器に装入しておき、これに
分子状酸素含有ガスと原料の置換ナフタレンとを連続的
に供給することにより反応が行われる。溶液の補給と抜
き取りは行わず、反応を所定時間続けた後、反応液を全
て抜き取り、これから反応生成物を回収する。連続式反
応では、液面をほぼ一定に保持するように上記溶液の補
給と抜き取りを連続的に行い、抜き取った反応液から反
応生成物を回収する。
In the semi-continuous reaction, generally, a solution in which a catalyst is dissolved in a reaction solvent is charged into an oxidation reactor, and a molecular oxygen-containing gas and substituted naphthalene as a raw material are continuously supplied to this reactor. The reaction is carried out by this. After the reaction is continued for a predetermined time without replenishing or withdrawing the solution, all the reaction solution is withdrawn and the reaction product is recovered from it. In the continuous reaction, the solution is continuously replenished and withdrawn so as to keep the liquid level approximately constant, and the reaction product is recovered from the withdrawn reaction liquid.

【0029】本発明の方法を連続式で実施する場合には
、酸化反応器を2個用意し、第一反応器を出た反応混合
物をそのまま、あるいはNCAを回収した残りの反応液
を第二反応器に装入して第二段の反応を低温および/ま
たは低圧で実施すればよい。回分式あるいは反応連続式
の場合には、酸化反応器は1個でも2個使用してもよい
When carrying out the method of the present invention in a continuous manner, two oxidation reactors are prepared, and the reaction mixture leaving the first reactor is used as it is, or the remaining reaction liquid from which NCA has been recovered is fed to the second oxidation reactor. The second stage reaction may be carried out at low temperature and/or low pressure by charging it into a reactor. In the case of a batch type or continuous reaction type, one or two oxidation reactors may be used.

【0030】第一段と第二段の酸化反応の配分割合は特
に制限されない。例えば、上述した半連続式で反応を行
う場合、反応原料の置換ナフタレンの供給段階を第一段
の酸化反応とし、供給終了後、温度および圧力の少なく
とも一方を低下させて第二段の酸化反応を回分式で行う
ことができる。
[0030] The distribution ratio of the first stage and second stage oxidation reactions is not particularly limited. For example, when carrying out the reaction in the semi-continuous manner described above, the step of supplying substituted naphthalene as a reaction raw material is the first stage oxidation reaction, and after the supply is finished, at least one of the temperature and pressure is lowered and the second stage oxidation reaction is carried out. can be performed batchwise.

【0031】第二段の酸化反応終了後、反応混合物から
のNCAの回収は、濾過により容易に実施することがで
きる。従って、反応溶媒の使用量は、触媒を完全に溶解
し、かつ生成物の大部分が析出するような量とすること
が好ましい。上に説明したように、本発明の方法によれ
ば、生成物の濾過性が改善されるので、濾布の目詰まり
などの問題を伴わずに、簡単に濾過できる。
After completion of the second stage oxidation reaction, NCA can be easily recovered from the reaction mixture by filtration. Therefore, the amount of reaction solvent used is preferably such that the catalyst is completely dissolved and most of the product is precipitated. As explained above, the method of the invention improves the filterability of the product so that it can be easily filtered without problems such as clogging of the filter cloth.

【0032】生成物は、2段階の酸化反応を受けている
ために高品質のものであるが、所望によりさらに精製処
理に付してもよい。生成物を分離した反応濾液は、主に
触媒、溶媒および溶解しているNCA生成物からなり、
いくらかの反応副生物を含有している。これは、本発明
の方法の第一段の酸化反応に、触媒含有反応溶媒として
循環使用することができる。即ち、この反応濾液に、触
媒成分および必要であれば溶媒を追加して反応液を調製
し、これに原料の置換ナフタレンおよび分子状酸素を供
給して、さらに反応を行わせることができる。
The product is of high quality because it has undergone a two-step oxidation reaction, but it may be subjected to further purification treatment if desired. The reaction filtrate from which the products were separated mainly consists of the catalyst, solvent and dissolved NCA products,
Contains some reaction by-products. This can be recycled as a catalyst-containing reaction solvent in the first stage oxidation reaction of the method of the present invention. That is, a catalyst component and, if necessary, a solvent are added to this reaction filtrate to prepare a reaction solution, and the raw materials substituted naphthalene and molecular oxygen can be supplied to the solution for further reaction.

【0033】後述する実施例に示すように、このように
反応濾液を繰り返し循環使用しても、収率の著しい低下
は起こらない。従来の反応方法では、反応濾液を循環使
用すると収率が低下するため、反応濾液から触媒を回収
し、これを再生するという煩雑な操作で触媒を反復使用
せざるを得なかった。また、その際に、溶媒も別工程で
分離回収するため、その回収に費用がかかっていた。
As shown in the examples below, even if the reaction filtrate is repeatedly recycled in this manner, no significant decrease in yield occurs. In conventional reaction methods, the yield decreases when the reaction filtrate is recycled, so the catalyst has to be repeatedly used through a complicated operation of recovering the catalyst from the reaction filtrate and regenerating it. Furthermore, at this time, the solvent is also separated and recovered in a separate process, which increases the cost of recovery.

【0034】従って、本発明の方法により、反応濾液を
触媒および溶媒として循環使用することが可能となった
ことは、工業化に際して極めて有利である。
Therefore, the method of the present invention makes it possible to recycle the reaction filtrate as a catalyst and a solvent, which is extremely advantageous for industrialization.

【0035】以下、実施例により本発明を例示するが、
本発明はこれに制限されるものではない。実施例及び比
較例に示した反応混合物の濾過比抵抗値とは、濾過時間
θ(sec)、濾液量V(m2) から、次の濾過抵抗
の基礎式:θ/V=V/K+2v/K を用いて、Ruthの低圧濾過係数K(m/s) を求
め、次式の関係から算出したものである。
[0035] The present invention will be illustrated by examples below.
The present invention is not limited to this. The filtration specific resistance value of the reaction mixture shown in Examples and Comparative Examples is calculated from the following basic formula of filtration resistance: θ/V=V/K+2v/K from filtration time θ (sec) and filtrate volume V (m2) Ruth's low-pressure filtration coefficient K (m/s) was obtained using the following equation.

【0036】 K=2・ΔP・(1−m・s)・μ・s・α/ρ式中、 α (m/kg)   :濾過比抵抗、v (m3/m
2) :濾材抵抗に等しい抵抗を与えるような濾滓を生
ずる単位面積当たりの濾液量、 ΔP(kg/m2):操作圧と大気圧との差圧、m (
−)     :ケーキの乾湿重量比、s (−)  
   :スラリー中の固体質量分率、ρ (kg/m3
) :濾液の密度、 μ (kg/m.sec):濾液の粘度。
K=2・ΔP・(1−m・s)・μ・s・α/ρ In the formula, α (m/kg): filtration specific resistance, v (m3/m
2): Volume of filtrate per unit area that produces a filter slag that provides resistance equal to the resistance of the filter media, ΔP (kg/m2): Differential pressure between operating pressure and atmospheric pressure, m (
-) : Dry and wet weight ratio of cake, s (-)
: Solid mass fraction in slurry, ρ (kg/m3
): Density of filtrate, μ (kg/m.sec): Viscosity of filtrate.

【0037】実施例1 酢酸コバルト四水和物5.54g(0.022モル) 
、酢酸マンガン四水和物5.45g(0.022モル)
 、酢酸セリウム一水和物7.46g(0.022モル
) 、臭化カリウム7.95g(0.066モル) 、
および酢酸カリウム6.85g(0.066モル) を
230 mlの酢酸に溶解して触媒溶液を調製し、これ
を500 ml容のチタン製オートクレーブに装入した
。オートクレーブ内を空気で30kg/cm2 ・G 
に加圧した後、120 l/hrの流量で空気を供給し
ながら触媒液を200 ℃に昇温させた。この後、 2
,6−ジイソプロピルナフタレン(2,6−DIPN)
 70g(0.33 モル) を4時間かけてオートク
レーブに供給して、第一段の酸化反応を行った。
Example 1 5.54 g (0.022 mol) of cobalt acetate tetrahydrate
, manganese acetate tetrahydrate 5.45g (0.022mol)
, 7.46 g (0.022 mol) of cerium acetate monohydrate, 7.95 g (0.066 mol) of potassium bromide,
A catalyst solution was prepared by dissolving 6.85 g (0.066 mol) of potassium acetate and potassium acetate in 230 ml of acetic acid, and the catalyst solution was charged into a 500 ml titanium autoclave. Air inside the autoclave is 30kg/cm2・G
After pressurizing the catalyst to 200° C., the catalyst liquid was heated to 200° C. while supplying air at a flow rate of 120 l/hr. After this, 2
,6-diisopropylnaphthalene (2,6-DIPN)
70 g (0.33 mol) was fed into the autoclave over 4 hours to carry out the first oxidation reaction.

【0038】2,6−DIPNの供給終了後、温度を1
80 ℃に、また内圧を15kg/cm2・G(酸素分
圧3kg/cm2・G)にそれぞれ下げて、触媒を追加
せず、そのまま空気のみを供給しながら第二段の酸化反
応を1時間行った。反応終了後、空気の供給を停止し、
オートクレーブを室温まで冷却して反応混合物を回収し
、固形物を濾別した。固形物は希硫酸水溶液で洗浄した
後、乾燥して、 2,6−NDCA73.1g (収率
92.1モル%) を得た。この生成物の純度は99.
2%であり、その副生物の含有量は0.8 %であった
。固形物濾別中の濾過比抵抗値は 3.0×107 m
/kgであり、濾過性は非常によかった。
After the supply of 2,6-DIPN is finished, the temperature is lowered to 1
The temperature was lowered to 80 °C and the internal pressure was lowered to 15 kg/cm2 G (oxygen partial pressure 3 kg/cm2 G), and the second stage oxidation reaction was carried out for 1 hour while supplying only air without adding a catalyst. Ta. After the reaction is complete, stop the air supply,
The autoclave was cooled to room temperature, the reaction mixture was collected, and the solids were filtered off. The solid matter was washed with a dilute aqueous sulfuric acid solution and then dried to obtain 73.1 g (yield: 92.1 mol%) of 2,6-NDCA. The purity of this product is 99.
2%, and its by-product content was 0.8%. The filtration specific resistance value during solid matter filtration is 3.0×107 m
/kg, and the filterability was very good.

【0039】反応混合物から固形物を濾別した残りの濾
液、即ち反応濾液に不足分の触媒および溶媒を加えて上
記と同様の組成の触媒液を調製し、これを上と同じ50
0 ml容のチタン製オートクレーブに装入し、上記と
全く同様に 2,6−DIPNの2段酸化を実施した。 この反応濾液の循環使用による 2,6−DIPNの2
段液相酸化の反応操作を合計10回繰り返した。各回の
反応での 2,6−NDCAの収率を次の表1に示す。 表1のNDCAの収率はモル%単位である。
A catalyst solution having the same composition as above was prepared by adding the insufficient amount of catalyst and solvent to the remaining filtrate after filtering the solid matter from the reaction mixture, that is, the reaction filtrate.
It was charged into a 0 ml titanium autoclave, and two-stage oxidation of 2,6-DIPN was carried out in exactly the same manner as above. 2 of 2,6-DIPN by circulating the reaction filtrate.
The reaction operation of stage liquid phase oxidation was repeated 10 times in total. The yield of 2,6-NDCA in each reaction is shown in Table 1 below. The yields of NDCA in Table 1 are in mole percent.

【0040】[0040]

【表1】[Table 1]

【0041】比較例1 第二段の酸化反応を行わない以外は実施例1と同様にし
て、 2,6−DIPNの酸化反応を行った。その後、
実施例1と同様に反応混合物を処理して、 2,6−N
DCA生成物72.8g (収率91.5%) を得た
。この生成物の純度は98.5%で、その副生物の含有
量は1.5 %であった。固形物濾別中の濾過比抵抗値
は8×109 m/kgであり、濾過性に劣っていた。
Comparative Example 1 An oxidation reaction of 2,6-DIPN was carried out in the same manner as in Example 1 except that the second stage oxidation reaction was not carried out. after that,
The reaction mixture was treated as in Example 1 to give 2,6-N
72.8 g (91.5% yield) of DCA product was obtained. The purity of this product was 98.5% and its by-product content was 1.5%. The filtration specific resistance value during solid matter filtration was 8 x 109 m/kg, indicating poor filtration performance.

【0042】反応混合物から固形物を濾別した残りの反
応濾液を、実施例1と同様に組成を調整してから循環使
用して、 2,6−DIPNの液相酸化反応を繰り返し
た。 2回目以降の反応条件は、この比較例1の初回の反応条
件と同様にした。この反応操作を5回繰り返したところ
で、収率が50%を下回ったため、その時点で反応濾液
の循環使用による反応の反復を中止した。各回の反応成
績を次の表2に示す。
The remaining reaction filtrate after solid matter was filtered off from the reaction mixture was adjusted in composition in the same manner as in Example 1 and then recycled to repeat the liquid phase oxidation reaction of 2,6-DIPN. The reaction conditions for the second and subsequent reactions were the same as those for the first reaction in Comparative Example 1. When this reaction operation was repeated five times, the yield was less than 50%, so at that point, the repetition of the reaction by recycling the reaction filtrate was stopped. The reaction results for each round are shown in Table 2 below.

【0043】[0043]

【表2】[Table 2]

【0044】表2から、2回目の反応で収率は実質的に
低下し、3回目以降は収率が許容できない程度に下がっ
たことがわかる。
From Table 2, it can be seen that the yield decreased substantially in the second reaction, and after the third reaction, the yield decreased to an unacceptable level.

【0045】実施例2 実施例1を繰り返したが、 2,6−DIPNを供給し
ながらおこなった第一段の酸化反応終了後、反応混合物
を一旦オートクレーブから取り出し、固形物を濾別した
残りの濾液をオートクレーブに戻して、不足分の触媒お
よび溶媒を加えて触媒液を調製した後、180 ℃、空
気圧力15kg/cm2・G 、空気供給量120 l
/hrの実施例1と同じ条件で第二段の酸化反応を1時
間実施した。得られた第二段酸化の反応混合物から固形
物を濾別し、この固形物を第一段の固形物と一緒に水洗
し、乾燥した。
Example 2 Example 1 was repeated, but after the first stage oxidation reaction, which was carried out while supplying 2,6-DIPN, the reaction mixture was taken out of the autoclave and the remaining solids were filtered off. After returning the filtrate to the autoclave and adding the missing amount of catalyst and solvent to prepare a catalyst solution, the temperature was 180°C, the air pressure was 15 kg/cm2・G, and the air supply amount was 120 liters.
The second stage oxidation reaction was carried out for 1 hour under the same conditions as in Example 1. A solid substance was filtered from the obtained reaction mixture of the second stage oxidation, and this solid substance was washed with water together with the solid substance of the first stage and dried.

【0046】第二段の濾過で得られた反応濾液を使用し
て、2回目以降の2段酸化反応を上記と同様に反応操作
で実施した。合計10回の反応をこのようにして繰り返
した。各回の 2,6−NDCAの収率、生成物の純度
、第二回酸化での固形物の濾過比抵抗値は、実施例1と
ほぼ同様であった。
Using the reaction filtrate obtained in the second stage filtration, the second and subsequent two-stage oxidation reactions were carried out in the same manner as above. A total of 10 reactions were repeated in this manner. The yield of 2,6-NDCA in each round, the purity of the product, and the filtration specific resistance value of the solid in the second oxidation were almost the same as in Example 1.

【0047】実施例3 本例は、連続式の酸化の例を示す。酢酸コバルト、酢酸
マンガン、酢酸セリウム、臭化カリウムおよび酢酸カリ
ウムを酢酸に溶解させて、酢酸中にCo: 0.42%
、Mn: 0.39%、Ce: 0.98%、K: 1
.7 %、およびBr: 1.7 % (すべて重量%
) を含有する触媒液を調製した。この触媒液および 
2,6−DIPNを、温度200 ℃、空気圧力30k
g/cm2・G 、空気流量2.8 Nm3/hrに調
整した一段目の内容積10リットルの連続酸化反応装置
に連続的に装入し、第一段の酸化反応を行った。第一段
反応装置内の滞留時間は約5時間とした。
Example 3 This example shows an example of continuous oxidation. Cobalt acetate, manganese acetate, cerium acetate, potassium bromide and potassium acetate were dissolved in acetic acid to obtain Co: 0.42% in acetic acid.
, Mn: 0.39%, Ce: 0.98%, K: 1
.. 7%, and Br: 1.7% (all weight%
) was prepared. This catalyst liquid and
2,6-DIPN at a temperature of 200°C and an air pressure of 30k
The mixture was continuously charged into a continuous oxidation reactor having a first stage internal volume of 10 liters, which was adjusted to an air flow rate of 2.8 Nm3/hr and an air flow rate of 2.8 Nm3/hr, to carry out a first stage oxidation reaction. The residence time in the first stage reactor was approximately 5 hours.

【0048】第一段の反応装置から連続的に抜き出され
る反応混合物を、温度180 ℃、空気圧力15kg/
cm2・G 、空気流量0.2 Nm3/hrに調整し
た二段目の連続酸化反応装置に連続的に装入し、第二段
の酸化反応を行った。第二段反応装置内の滞留時間は約
1時間とした。第二段の反応装置から連続的に抜き出さ
れた反応混合物を受槽に集めながら、上記の2段式の連
続反応を8時間続けた。反応終了後、集められた反応混
合物から固形物を濾別し、水洗後に乾燥して、 2,6
−NDCAを得た。この時の濾過比抵抗値は 5.0×
108 m/kgであった。得られた生成物の純度は9
9.0%であり、その副生物の含有量は1.0%であっ
た。反応収率は90.1モル%であった。
The reaction mixture continuously extracted from the first stage reactor was heated at a temperature of 180° C. and an air pressure of 15 kg/kg.
cm2·G, and the air flow rate was adjusted to 0.2 Nm3/hr, which was continuously charged into a second-stage continuous oxidation reactor to perform a second-stage oxidation reaction. The residence time in the second stage reactor was approximately 1 hour. The two-stage continuous reaction described above was continued for 8 hours while the reaction mixture continuously extracted from the second-stage reactor was collected in a receiving tank. After completion of the reaction, solid matter is filtered from the collected reaction mixture, washed with water and dried,
-NDCA was obtained. The filtration specific resistance value at this time is 5.0×
It was 108 m/kg. The purity of the product obtained is 9
9.0%, and the content of by-products was 1.0%. The reaction yield was 90.1 mol%.

【0049】比較例2 第二段の酸化反応を実施しない以外は実施例3の第一段
の反応と同様に、2,6−DIPNの液相酸化を連続的
に行った。第一段の反応器から抜き出された反応混合物
を、そのまま受槽に集め、反応終了後に固形物を濾別し
た。この時の濾過比抵抗値は 2.0×1010 m/
kg であった。得られた生成物の純度は98.2%で
あり、その副生物の含有量は1.8%であった。反応収
率は88.7モル%であった。
Comparative Example 2 Liquid phase oxidation of 2,6-DIPN was carried out continuously in the same manner as the first stage reaction of Example 3, except that the second stage oxidation reaction was not carried out. The reaction mixture extracted from the first-stage reactor was collected as it was in a receiving tank, and after the reaction was completed, the solid matter was filtered off. The filtration specific resistance value at this time is 2.0×1010 m/
It was kg. The purity of the product obtained was 98.2%, and its by-product content was 1.8%. The reaction yield was 88.7 mol%.

【0050】[0050]

【発明の効果】本発明の二段液相酸化によるNCAの製
造方法は、高純度で色相に優れた生成物を収率よく製造
することができ、また、生成物が濾過性に優れているこ
とから、濾過で容易に回収することができる。さらに、
反応濾液を何回も反復使用できるので、排液処理も簡単
になり、非常に経済的に効率よく高品質のNCAを製造
することが可能となるので、NCAの工業的製造にとっ
て極めて有用である。
[Effects of the Invention] The method for producing NCA by two-stage liquid phase oxidation of the present invention can produce a product with high purity and excellent color in good yield, and the product has excellent filterability. Therefore, it can be easily recovered by filtration. moreover,
Since the reaction filtrate can be used repeatedly, wastewater treatment becomes easy, and high-quality NCAs can be produced economically and efficiently, making it extremely useful for industrial production of NCAs. .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  アルキル基、アシル基およびそれらの
酸化中間体から選ばれた少なくとも1個の置換基を有す
る置換ナフタレンを、低級脂肪族モノカルボン酸を含む
溶媒中、重金属を含む酸化触媒の存在下、分子状酸素に
より酸化してナフタレンカルボン酸を製造する方法にお
いて、酸化反応を2段階で行い、第二段の酸化反応を、
第一段酸化に比べて温度および圧力の少なくとも一方が
低い条件下で行うことを特徴とする、ナフタレンカルボ
ン酸の製造方法。
Claim 1: A substituted naphthalene having at least one substituent selected from an alkyl group, an acyl group, and an oxidation intermediate thereof is oxidized in a solvent containing a lower aliphatic monocarboxylic acid in the presence of an oxidation catalyst containing a heavy metal. Below, in the method of producing naphthalene carboxylic acid by oxidation with molecular oxygen, the oxidation reaction is carried out in two stages, and the second stage oxidation reaction is
1. A method for producing naphthalenecarboxylic acid, which is carried out under conditions where at least one of temperature and pressure is lower than in the first stage oxidation.
【請求項2】  第一段の酸化反応後、得られた反応混
合物をそのまま第二段の酸化反応に付す、請求項1記載
の方法。
2. The method according to claim 1, wherein after the first stage oxidation reaction, the obtained reaction mixture is directly subjected to the second stage oxidation reaction.
【請求項3】  第一段の酸化反応後、得られた反応混
合物からナフタレンカルボン酸生成物を回収した残留液
を第二段の酸化反応に付す、請求項1記載の方法。
3. The method according to claim 1, wherein after the first stage oxidation reaction, the residual liquid from which the naphthalene carboxylic acid product is recovered from the resulting reaction mixture is subjected to the second stage oxidation reaction.
【請求項4】  第一段の酸化反応後、触媒を追加して
から第二段の酸化反応を行う、請求項1ないし3のいず
れかに記載の方法。
4. The method according to claim 1, wherein after the first stage oxidation reaction, a catalyst is added and then the second stage oxidation reaction is performed.
JP3012228A 1991-02-01 1991-02-01 Production of naphthalenecarboxylic acid Withdrawn JPH04330039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3012228A JPH04330039A (en) 1991-02-01 1991-02-01 Production of naphthalenecarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3012228A JPH04330039A (en) 1991-02-01 1991-02-01 Production of naphthalenecarboxylic acid

Publications (1)

Publication Number Publication Date
JPH04330039A true JPH04330039A (en) 1992-11-18

Family

ID=11799516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3012228A Withdrawn JPH04330039A (en) 1991-02-01 1991-02-01 Production of naphthalenecarboxylic acid

Country Status (1)

Country Link
JP (1) JPH04330039A (en)

Similar Documents

Publication Publication Date Title
US4314073A (en) Process for the production of an aromatic dicarboxylic acid
CA2098485C (en) Process for preparing 2,6-naphthalenedicarboxylic acid
WO1995009143A1 (en) Production method of high purity isomers of benzenedicarboxylic acids
AU732522B2 (en) Method to produce aromatic carboxylic acids
JPH08325197A (en) Production of terephthalic acid
US5110982A (en) Process for producing 2,6-napthalene dicarboxylic acid
EP1003699B1 (en) Purification of difluoromethane by extractive distillation
US4051178A (en) Process for producing terephthalic acid
US2723994A (en) Oxidation of xylene and toluic acid mixtures to phthalic acids
EP1062196B1 (en) Improved process for producing pure carboxylic acids
US6018077A (en) Process for producing 2,6-naphthalenedicarboxylic acid
JPH04330039A (en) Production of naphthalenecarboxylic acid
JPS61140540A (en) Production of 2,6-naphthalebedicarboxylic acid
JP4207273B2 (en) Method for producing naphthalenedicarboxylic acid
JPS6089445A (en) Production of 2,6-naphthalenedicarboxylic acid
JP3187212B2 (en) Continuous production method of naphthalenedicarboxylic acid
US3819695A (en) Process for preparation of methylterephthalic acid and 4-methylisophthalic acid
JP2900775B2 (en) Process for producing 2,6-naphthalenedicarboxylic acid
JPH0748314A (en) Continuous production of naphthalenedicarboxylic acid
JPH03287561A (en) Method for oxidizing substituted naphthalene
JPH0420420B2 (en)
JPH06228048A (en) Production of naphthalenecarboxylic acid
JPH06211733A (en) Production of 2,6-naphthalene dicarboxylic acid
JPH0335307B2 (en)
JPH0625077A (en) Production of naphthalenecarboxylic acid excellent in filterability

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514