JPH04328486A - ガンマカメラ - Google Patents
ガンマカメラInfo
- Publication number
- JPH04328486A JPH04328486A JP9762091A JP9762091A JPH04328486A JP H04328486 A JPH04328486 A JP H04328486A JP 9762091 A JP9762091 A JP 9762091A JP 9762091 A JP9762091 A JP 9762091A JP H04328486 A JPH04328486 A JP H04328486A
- Authority
- JP
- Japan
- Prior art keywords
- plastic scintillator
- detector
- scintillator
- collimator
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005251 gamma ray Effects 0.000 claims description 26
- 239000006096 absorbing agent Substances 0.000 claims description 5
- 239000000835 fiber Substances 0.000 claims description 4
- 238000003384 imaging method Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 claims 2
- 101001129326 Nicotiana tabacum Putrescine N-methyltransferase 4 Proteins 0.000 abstract description 9
- 238000001514 detection method Methods 0.000 abstract description 4
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 16
- 238000004364 calculation method Methods 0.000 description 5
- 235000009518 sodium iodide Nutrition 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 101150086142 PMT4 gene Proteins 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000002603 single-photon emission computed tomography Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Nuclear Medicine (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【0001】[発明の目的]
【0002】
【産業上の利用分野】本発明は、被検体に投与された放
射性同位元素(以下RIという)より放射されるγ線を
検出し、この検出信号を基にRIの被検体内分布を測定
するために用いられるシンチレーションカメラに関し、
特にγ線の検出器の改良に関する。
射性同位元素(以下RIという)より放射されるγ線を
検出し、この検出信号を基にRIの被検体内分布を測定
するために用いられるシンチレーションカメラに関し、
特にγ線の検出器の改良に関する。
【0003】
【従来の技術】従来、この種のシンチレーションカメラ
に適用されたγ線の検出器は、被検体に投与されたRI
より放出されるγ線をコリメータ部において選択的に通
過させ、シンチレータに入射させることにより、シンチ
レータで光に変換し、更にシンチレータ上にちょう密に
配列された光電子増倍管により光電変換する。そして、
各々の光電子増倍管に付属するプリアンプで電気信号に
変換後、それぞれの出力についてウエイティング計算を
行い、発生シンチレーションの位置の検出ならびにエネ
ルギー値を導出していた。
に適用されたγ線の検出器は、被検体に投与されたRI
より放出されるγ線をコリメータ部において選択的に通
過させ、シンチレータに入射させることにより、シンチ
レータで光に変換し、更にシンチレータ上にちょう密に
配列された光電子増倍管により光電変換する。そして、
各々の光電子増倍管に付属するプリアンプで電気信号に
変換後、それぞれの出力についてウエイティング計算を
行い、発生シンチレーションの位置の検出ならびにエネ
ルギー値を導出していた。
【0004】
【発明が解決しようとする課題】しかしながら、従来の
この種のシンチレーションカメラの場合においては、検
出器の位置分解能がFWHM3〜4mmとあまりよくな
く、しかもこの検出器に対し、γ線を入射させるコリメ
ータ部の位置分解能が更に悪い。従って、システム全体
の位置分解能は、コリメータの位置分解能そのものに依
存しており、最高でもFWHM8mm付近しか実現でき
ない。また、検出器(シンチレータ)内でのコンプトン
散乱が問題となり、これによって更に位置分解能の劣化
を期たすことになるという不具合があった。
この種のシンチレーションカメラの場合においては、検
出器の位置分解能がFWHM3〜4mmとあまりよくな
く、しかもこの検出器に対し、γ線を入射させるコリメ
ータ部の位置分解能が更に悪い。従って、システム全体
の位置分解能は、コリメータの位置分解能そのものに依
存しており、最高でもFWHM8mm付近しか実現でき
ない。また、検出器(シンチレータ)内でのコンプトン
散乱が問題となり、これによって更に位置分解能の劣化
を期たすことになるという不具合があった。
【0005】本発明は、係る課題に着目してなされたも
ので、その目的とするところは、従来よりも大幅に位置
分解能が向上されたシンチレーションカメラを提供する
ことにある。
ので、その目的とするところは、従来よりも大幅に位置
分解能が向上されたシンチレーションカメラを提供する
ことにある。
【0006】[発明の構成]
【0007】
【課題を解決するための手段】本発明は、上記の目的を
達成するため、格子状に多数の中子が配列形成されたコ
リメータ部と、このコリメータ部の各中子の中にファイ
バ状のプラスチックシンチレータをそれぞれ挿入した構
造部分を有してなる検出器と、を具備することを特徴と
する。
達成するため、格子状に多数の中子が配列形成されたコ
リメータ部と、このコリメータ部の各中子の中にファイ
バ状のプラスチックシンチレータをそれぞれ挿入した構
造部分を有してなる検出器と、を具備することを特徴と
する。
【0008】
【作用】本発明によるシンチレーションカメラの構成で
あれば、コリメータ部の各中子の中にプラスチックシン
チレータを挿入した構造部分を有してなる検出器として
コリメータ部でのγ線の入射位置が検出可能な光電変換
撮像部、いわゆるポジションセンシチブなPMT(光電
子増倍管)を光学的に結合させて用いることができる。 この場合、PMTの位置分解能は1mm以下である一方
、コリメータ部の中子の穴径は、1mm〜2mm程度で
あることから、中子の穴径のみで位置分解能を確保でき
、FWHM4mm前後の位置分解能が実現できる。
あれば、コリメータ部の各中子の中にプラスチックシン
チレータを挿入した構造部分を有してなる検出器として
コリメータ部でのγ線の入射位置が検出可能な光電変換
撮像部、いわゆるポジションセンシチブなPMT(光電
子増倍管)を光学的に結合させて用いることができる。 この場合、PMTの位置分解能は1mm以下である一方
、コリメータ部の中子の穴径は、1mm〜2mm程度で
あることから、中子の穴径のみで位置分解能を確保でき
、FWHM4mm前後の位置分解能が実現できる。
【0009】また、プラスチックシンチレータは、コリ
メータ部の各中子にそれぞれ挿入されているため、コリ
メータ部の各中子の鉛壁によりコンプトン散乱成分が吸
収され、これにより検出器内のコンプトン散乱成分が激
減し、画質の向上に寄与することができる。
メータ部の各中子にそれぞれ挿入されているため、コリ
メータ部の各中子の鉛壁によりコンプトン散乱成分が吸
収され、これにより検出器内のコンプトン散乱成分が激
減し、画質の向上に寄与することができる。
【0010】更に、プラスチックシンチレータのシンチ
レーション光の減衰率が従来シンチレータで用いていた
よう化ナトリウム(NaI)のそれに比較して極端に短
いため、最計算率特性が向上する。
レーション光の減衰率が従来シンチレータで用いていた
よう化ナトリウム(NaI)のそれに比較して極端に短
いため、最計算率特性が向上する。
【0011】
【実施例】図1は、本発明が適用された第1実施例のシ
ンチレーションカメラの要部概略を示す構成図である。
ンチレーションカメラの要部概略を示す構成図である。
【0012】このシンチレーションカメラにおいて、コ
リメータ部1は、図1で一部拡大表現して示すように格
子状に多数の中子2が配列形成されている。他方、検出
器3は、コリメータ部1の各中子2の中に図2のように
プラスチックシンチレータ101をそれぞれ挿入した構
造部分を有するもので、ポジションセンシチブなPMT
4と光学的に結合させた構成を採用し、また、位置計算
回路5、ディジタル補正回路6、エネルギー弁別回路7
、メモリ8を備える。なお、プラスチックシンチレータ
101は、六角形の断面形状のものであるが、丸形や四
角形の断面形状のものに容易に成形加工することができ
、これにともない、コリメータ部1の中子をプラスチッ
クシンチレータに対応した断面形状にしてもよいもので
ある。また、複数のファイバ素線を束ねてプラスチック
シンチレータ101の構造を得てもよいものである。
リメータ部1は、図1で一部拡大表現して示すように格
子状に多数の中子2が配列形成されている。他方、検出
器3は、コリメータ部1の各中子2の中に図2のように
プラスチックシンチレータ101をそれぞれ挿入した構
造部分を有するもので、ポジションセンシチブなPMT
4と光学的に結合させた構成を採用し、また、位置計算
回路5、ディジタル補正回路6、エネルギー弁別回路7
、メモリ8を備える。なお、プラスチックシンチレータ
101は、六角形の断面形状のものであるが、丸形や四
角形の断面形状のものに容易に成形加工することができ
、これにともない、コリメータ部1の中子をプラスチッ
クシンチレータに対応した断面形状にしてもよいもので
ある。また、複数のファイバ素線を束ねてプラスチック
シンチレータ101の構造を得てもよいものである。
【0013】このように各プラスチックシンチレータ1
01とポシセションセンシチブなPMT4とを光学的に
結合した場合、PMT4が位置分解能に優れているため
、コリメータ部1の各中子2の穴径のみで位置分解能を
確保することができる。そのため、各プラスチックシン
チレータ101のいずれで発生シンチレーションのイベ
ントがあったのかをPMT4により直接的に高分解能(
FWHM4mm前後)で検知することができる。従って
PMT4の検知信号を基に位置計算回路5にて発生シン
チレーションの位置が正確に計算され、撮像諸条件に応
じてディジタル補正を回路6にてその位置補正がなされ
る。更にエネルギー弁別回路7にて発生シンチレーショ
ンのエネルギー値の導出がなされ、これらのデータがメ
モリ8に順次記憶される。なお、メモリ8に記憶されて
いる内容は、SPECT画像等の画像データとして用い
られることになる。
01とポシセションセンシチブなPMT4とを光学的に
結合した場合、PMT4が位置分解能に優れているため
、コリメータ部1の各中子2の穴径のみで位置分解能を
確保することができる。そのため、各プラスチックシン
チレータ101のいずれで発生シンチレーションのイベ
ントがあったのかをPMT4により直接的に高分解能(
FWHM4mm前後)で検知することができる。従って
PMT4の検知信号を基に位置計算回路5にて発生シン
チレーションの位置が正確に計算され、撮像諸条件に応
じてディジタル補正を回路6にてその位置補正がなされ
る。更にエネルギー弁別回路7にて発生シンチレーショ
ンのエネルギー値の導出がなされ、これらのデータがメ
モリ8に順次記憶される。なお、メモリ8に記憶されて
いる内容は、SPECT画像等の画像データとして用い
られることになる。
【0014】しかも、プラスチックシンチレータ101
は、コリメータ部1の各中子2の中に挿入配設されてい
るため、この中子2の鉛壁によってコンプトン散乱成分
が吸収され(図2参照)、これにより検出器3内のコン
プトン散乱が激減し、画質の向上に寄与することができ
る。
は、コリメータ部1の各中子2の中に挿入配設されてい
るため、この中子2の鉛壁によってコンプトン散乱成分
が吸収され(図2参照)、これにより検出器3内のコン
プトン散乱が激減し、画質の向上に寄与することができ
る。
【0015】更に、プラスチックシンチレータ101の
シンチレーション光の減衰率がNaIのそれに比較して
極端に短いため、最計数特性が向上する。
シンチレーション光の減衰率がNaIのそれに比較して
極端に短いため、最計数特性が向上する。
【0016】更に、本実施例では、図2に示すごとくコ
リメータ部1のγ線入射端Aから所定距離Lだけ下げた
位置にプラスチックシンチレータ101のγ線入射面B
を合わせ、これによりプラスチックシンチレータ101
のγ線入射面B及びこの付近でのコンプトン散乱の発生
を防止するものにしている。
リメータ部1のγ線入射端Aから所定距離Lだけ下げた
位置にプラスチックシンチレータ101のγ線入射面B
を合わせ、これによりプラスチックシンチレータ101
のγ線入射面B及びこの付近でのコンプトン散乱の発生
を防止するものにしている。
【0017】また、同じく図2に示すごとくプラスチッ
クシンチレータ101におけるγ線入射側に被検体内散
乱線を遮光する光遮蔽物102を白色ペインティングを
施すなどして設け、プラスチックシンチレータ101を
γ線入射側101aと光出力側101bとに分ける。こ
れにより、プラスチックシンチレータ101のγ線入射
側101aを、被検体内散乱線のストッピングエリアと
して機能させる。これは、プラスチックシンチレータ1
01の波高強度がNaIの1/3〜1/4であること、
及びポジションセンシチブなPMT4のエネルギー分解
能があまり高くないことに起因して、検出器3全体のエ
ネルギー分解能が低下しているのを解消するための機能
である。もし、被検体内散乱線のストッピングエリアの
機能が存在しない場合、プラスチックシンチレータ10
1の後段側において光電ピークよりも低域の散乱成分に
ついても計数処理を実施しなければならないという弊害
が生じる。
クシンチレータ101におけるγ線入射側に被検体内散
乱線を遮光する光遮蔽物102を白色ペインティングを
施すなどして設け、プラスチックシンチレータ101を
γ線入射側101aと光出力側101bとに分ける。こ
れにより、プラスチックシンチレータ101のγ線入射
側101aを、被検体内散乱線のストッピングエリアと
して機能させる。これは、プラスチックシンチレータ1
01の波高強度がNaIの1/3〜1/4であること、
及びポジションセンシチブなPMT4のエネルギー分解
能があまり高くないことに起因して、検出器3全体のエ
ネルギー分解能が低下しているのを解消するための機能
である。もし、被検体内散乱線のストッピングエリアの
機能が存在しない場合、プラスチックシンチレータ10
1の後段側において光電ピークよりも低域の散乱成分に
ついても計数処理を実施しなければならないという弊害
が生じる。
【0018】そして、プラスチックシンチレータ101
のγ線入射側101aに被検体内散乱線のストッピング
エリアとしての機能を持たせるには、プラスチックシン
チレータ101のγ線入射側101aで発した光がその
光出力側101bに伝搬されない構造を確保すればよい
。これが効果的に達成されると、γ線入射側101a側
において等価的にある程度の散乱線を確実に除去するこ
とができる。この観点からγ線入射側101aの材質が
重要なポイントであり、場合によっては、プラスチック
シンチレータの代わりに鉛、錫などを含有した吸収体(
発光不要)をγ線入射側101aに適用してもよいもの
である。
のγ線入射側101aに被検体内散乱線のストッピング
エリアとしての機能を持たせるには、プラスチックシン
チレータ101のγ線入射側101aで発した光がその
光出力側101bに伝搬されない構造を確保すればよい
。これが効果的に達成されると、γ線入射側101a側
において等価的にある程度の散乱線を確実に除去するこ
とができる。この観点からγ線入射側101aの材質が
重要なポイントであり、場合によっては、プラスチック
シンチレータの代わりに鉛、錫などを含有した吸収体(
発光不要)をγ線入射側101aに適用してもよいもの
である。
【0019】なお、本実施例に従って検出器3を構成す
る際、コリメータ部1とPMT4とが光学的に密着する
ようプラスチックシンチレータ101の端面を可及的に
平滑に仕上げるとともに、この端面とPMT4との間の
距離をできるだけ小さくして光学的にカップリングする
ことが、位置分解能を良好に維持するうえでの要件とな
る。この要件が外れるほど検出器3での位置分解能が劣
化することになる。
る際、コリメータ部1とPMT4とが光学的に密着する
ようプラスチックシンチレータ101の端面を可及的に
平滑に仕上げるとともに、この端面とPMT4との間の
距離をできるだけ小さくして光学的にカップリングする
ことが、位置分解能を良好に維持するうえでの要件とな
る。この要件が外れるほど検出器3での位置分解能が劣
化することになる。
【0020】しかし、コリメータ部とPMTとを離した
デバイスを構築することが要求される場合もあり、この
場合には、図3の第2実施例の構成のようにファイバ状
のプラスチックシンタレータが中子毎に挿入されている
コリメータ部1とポジションセンシチブなPMT4との
間に、ライトガイドとして2次元のファイバアレー9を
介在させた光学的な接続構成を採用するとよい。
デバイスを構築することが要求される場合もあり、この
場合には、図3の第2実施例の構成のようにファイバ状
のプラスチックシンタレータが中子毎に挿入されている
コリメータ部1とポジションセンシチブなPMT4との
間に、ライトガイドとして2次元のファイバアレー9を
介在させた光学的な接続構成を採用するとよい。
【0021】更に、図4の第3実施例の構成のようにコ
リメータ部1とポジションセンシチブなPMT4との間
にライトガイドとして集光型にした2次元のファイバア
レー10を介在させた光学的な接続構成を採用してもよ
く、この場合には、より拡大された有効視野を持つコリ
メータ部でのγ線入射位置についての検出をより小さな
ポジションセンシチブなPMTで行うことができる。
リメータ部1とポジションセンシチブなPMT4との間
にライトガイドとして集光型にした2次元のファイバア
レー10を介在させた光学的な接続構成を採用してもよ
く、この場合には、より拡大された有効視野を持つコリ
メータ部でのγ線入射位置についての検出をより小さな
ポジションセンシチブなPMTで行うことができる。
【0022】これらの他にも、コリメータ部とPMTと
を光学的に接続するライトガイドに対し光学的にPMT
に達する光の効率を上げ且つ素子毎の感度ばらつきを減
らすように処置を施すなども行うことも可能である。
を光学的に接続するライトガイドに対し光学的にPMT
に達する光の効率を上げ且つ素子毎の感度ばらつきを減
らすように処置を施すなども行うことも可能である。
【0023】また、上記第2及び第3実施例の構成にお
いても、上記第1実施例と同様に、コリメータ部のγ線
入射端から所定距離だけ下げた位置にプラスチックシン
チレータのγ線入射面を合せて、そのプラスチックシン
チレータを中子の中に配設し、またプラスチックシンチ
レータにおけるγ線入射側もしくは吸収体を介在してγ
線入射面上に被検体内散乱線を遮光する光遮蔽物を設け
ているものである。
いても、上記第1実施例と同様に、コリメータ部のγ線
入射端から所定距離だけ下げた位置にプラスチックシン
チレータのγ線入射面を合せて、そのプラスチックシン
チレータを中子の中に配設し、またプラスチックシンチ
レータにおけるγ線入射側もしくは吸収体を介在してγ
線入射面上に被検体内散乱線を遮光する光遮蔽物を設け
ているものである。
【0024】前述した各実施例は、コリメータ部の各中
子の中にファイバ状のプラスチックシンチレータを挿入
した構造部分を有する検出器を構築した場合であるが、
従来のNaIを成分とする大型シンチレータに対しても
、上記した本発明の技術思想のうち光遮蔽物を設ける技
術思想を応用することができる。この場合には、上記大
型シンチレータと同様な平板形状で薄い別シンチレータ
もしくは別の材質からなる被検体散乱線のストッピング
エリアを形成することになる。これにより被検体内散乱
線をシンチレータ内である程度の削減を達成できる。
子の中にファイバ状のプラスチックシンチレータを挿入
した構造部分を有する検出器を構築した場合であるが、
従来のNaIを成分とする大型シンチレータに対しても
、上記した本発明の技術思想のうち光遮蔽物を設ける技
術思想を応用することができる。この場合には、上記大
型シンチレータと同様な平板形状で薄い別シンチレータ
もしくは別の材質からなる被検体散乱線のストッピング
エリアを形成することになる。これにより被検体内散乱
線をシンチレータ内である程度の削減を達成できる。
【0025】また、コリメータ部の各中子に挿入配置し
たファイバ状のプラスチックシンチレータの代りに、γ
線を光に変換するシンチレータ素子として、NaIもし
くはBGO、CWOなどの単結晶を例えば図5のように
六角形もしくは丸形、四角形にカットし、この外形面(
但しPMT装着面を除く)上に反射剤を塗布(ホワイト
ペインティング)したものを挿入配置することができる
。この場合には、より短い距離でγ線のストッピング効
果があり、かつ感度の高い検出器を構成することが可能
となる。但し、NaIの場合、ちょう解性があるため、
コリメータ部に挿入後、外気に触れぬように密閉にする
必要がある。BGO、CWOはちょう解性がないため密
閉の必要はない。なお、単結晶をカットする方法である
が、シャーリング加工、レーザ光による加工、ワイヤー
放電加工などが考えられる。
たファイバ状のプラスチックシンチレータの代りに、γ
線を光に変換するシンチレータ素子として、NaIもし
くはBGO、CWOなどの単結晶を例えば図5のように
六角形もしくは丸形、四角形にカットし、この外形面(
但しPMT装着面を除く)上に反射剤を塗布(ホワイト
ペインティング)したものを挿入配置することができる
。この場合には、より短い距離でγ線のストッピング効
果があり、かつ感度の高い検出器を構成することが可能
となる。但し、NaIの場合、ちょう解性があるため、
コリメータ部に挿入後、外気に触れぬように密閉にする
必要がある。BGO、CWOはちょう解性がないため密
閉の必要はない。なお、単結晶をカットする方法である
が、シャーリング加工、レーザ光による加工、ワイヤー
放電加工などが考えられる。
【0026】
【発明の効果】以上説明したように本発明によれば、コ
リメータ部の各中子の中にプラスチックシンチレータを
それぞれ挿入した構造を有してなる検出器によって、コ
リメータ部でのγ線入射位置の検出ならびにエネルギー
値の導出を行うから、コリメータ部の各中子の穴径のみ
で位置分解能を確保することが可能となり、またプラス
チックシンチレータで発生する散乱線を効果的に減衰さ
せることができる。従って、位置分解能が従来と比較し
て大幅に向上され、高分解能のSPECTシステムを構
築するうえで好都合となる。
リメータ部の各中子の中にプラスチックシンチレータを
それぞれ挿入した構造を有してなる検出器によって、コ
リメータ部でのγ線入射位置の検出ならびにエネルギー
値の導出を行うから、コリメータ部の各中子の穴径のみ
で位置分解能を確保することが可能となり、またプラス
チックシンチレータで発生する散乱線を効果的に減衰さ
せることができる。従って、位置分解能が従来と比較し
て大幅に向上され、高分解能のSPECTシステムを構
築するうえで好都合となる。
【図1】本発明が適用された第1実施例のシンチレーシ
ョンカメラの要部概略を示す構成図である。
ョンカメラの要部概略を示す構成図である。
【図2】コリメータ部の中子にプラスチックシンチレー
タを挿入した状態を示す斜視図である。
タを挿入した状態を示す斜視図である。
【図3】本発明が適用された第2実施例のシンチレーシ
ョンカメラの検出器の外観を示す斜視図である。
ョンカメラの検出器の外観を示す斜視図である。
【図4】本発明が適用された第3実施例のシンチレーシ
ョンカメラの検出器の外観を示す斜視図である。
ョンカメラの検出器の外観を示す斜視図である。
【図5】本発明が適用された第4実施例のシンチレーシ
ョンカメラにおける検出器の要部説明図である。
ョンカメラにおける検出器の要部説明図である。
1 コリメータ部
2 中子
3 検出器
4 PMT
5 位置計算回路
6 ディジタル補正回路
7 エネルギー弁別回路
8 メモリ
9,10 二次元ファイバアレー
101 プラスチックシンチレータ
102 光遮蔽物
Claims (6)
- 【請求項1】 格子状に多数の中子が配列形成された
コリメータ部と、このコリメータ部の各中子の中にファ
イバ状のプラスチックシンチレータをそれぞれ挿入した
構造部分を有してなる検出器と、を具備することを特徴
とするシチレーションカメラ。 - 【請求項2】 前記検出器は、前記コリメータ部のγ
線入射端から所定距離だけ下げた位置に前記プラスチッ
クシンチレータのγ線入射面を合せて当該プラスチック
シンチレータを前記中子の中に配設したことを特徴とす
る請求項1記載のシンチレーションカメラ。 - 【請求項3】 前記検出器は、前記プラスチックシン
チレータにおけるγ線入射側もしくは吸収体を介在して
γ線入射面上に被検体内散乱線を遮光する光遮蔽物を設
けたことを特徴とする請求項1記載のシンチレーション
カメラ。 - 【請求項4】 前記検出器は、前記プラスチックシン
チレータが挿入された前記コリメータ部の直下にあるい
はライトガイドを介して前記コリメータ部でのγ線の入
射位置が検出可能な光電変換撮像部を設置したことを特
徴とする請求項1記載のシンチレーションカメラ。 - 【請求項5】 前記検出器は、複数のファイバ素線を
束ねて中子毎に前記プラスチックシンチレータを構成し
たことを特徴とする請求項1記載のシンチレーションカ
メラ。 - 【請求項6】 格子状に多数の中子が配列形成された
コリメータ部と、このコリメータ部の各中子を通過した
γ線を当該コリメータ部の直下で受けるシンチレータの
γ線入射側もしくは吸収体を介在してγ線入射面上に被
検体内散乱線を遮光する光遮蔽物を設けた検出器と、を
具備することを特徴とするシンチレーションカメラ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9762091A JP3078591B2 (ja) | 1991-04-26 | 1991-04-26 | ガンマカメラ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9762091A JP3078591B2 (ja) | 1991-04-26 | 1991-04-26 | ガンマカメラ |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04328486A true JPH04328486A (ja) | 1992-11-17 |
JP3078591B2 JP3078591B2 (ja) | 2000-08-21 |
Family
ID=14197249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9762091A Expired - Fee Related JP3078591B2 (ja) | 1991-04-26 | 1991-04-26 | ガンマカメラ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3078591B2 (ja) |
-
1991
- 1991-04-26 JP JP9762091A patent/JP3078591B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3078591B2 (ja) | 2000-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6078052A (en) | Scintillation detector with wavelength-shifting optical fibers | |
US10126444B2 (en) | Calibrating gain of scintillator detector | |
US5481114A (en) | Process and apparatus for the simultaneous selective detection of neutrons and X or gamma photons | |
US4675526A (en) | Method and apparatus for 3-D encoding | |
US5393981A (en) | Apparatus for the simultaneous selective detection of neutrons and X or gamma photons and detection system using said apparatus | |
JP4525123B2 (ja) | 放射線検出器およびその製造方法 | |
KR101898794B1 (ko) | 광자 계수형 검출기 | |
US4291228A (en) | Detector shape and arrangement for positron annihilation imaging device | |
WO2022037473A1 (zh) | 探测准直单元、探测装置及spect成像系统 | |
JPH08211199A (ja) | X線撮像装置 | |
US4621194A (en) | Radiation detecting apparatus | |
CN111175805A (zh) | 辐射探测装置、伽马中子测量仪及图像定位系统 | |
US20150212216A1 (en) | Positron Emission Tomography and Single Photon Emission Computed Tomography based on Intensity Attenuation Shadowing Methods and Effects | |
KR101866947B1 (ko) | 컴프턴 산란 영상 노이즈 제거가 가능한 방사선 투과 영상 장치 및 컴프턴 산란 영상 노이즈 제거 방법 | |
JP3242756B2 (ja) | 放射性表面汚染検出器 | |
JPH04328486A (ja) | ガンマカメラ | |
JP2851319B2 (ja) | 放射線計測装置の放射線検出部 | |
JP2010085415A (ja) | 2次元放射線および中性子イメージ検出器 | |
JPH05100035A (ja) | γ線検出器 | |
JP6733962B2 (ja) | 高計数率シンチレーション検出器 | |
CN111528888B (zh) | 一种基于自锁结构发光晶体的单光子发射断层成像结构 | |
KR101089812B1 (ko) | 방사선 카메라 | |
JP4915322B2 (ja) | 核医学装置 | |
JP6808214B2 (ja) | 放射線計測装置 | |
US12007513B2 (en) | Method and apparatus for improved photosensor light collection in a radiation detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |