JPH04328450A - Plasma generating spectrometer - Google Patents

Plasma generating spectrometer

Info

Publication number
JPH04328450A
JPH04328450A JP9770291A JP9770291A JPH04328450A JP H04328450 A JPH04328450 A JP H04328450A JP 9770291 A JP9770291 A JP 9770291A JP 9770291 A JP9770291 A JP 9770291A JP H04328450 A JPH04328450 A JP H04328450A
Authority
JP
Japan
Prior art keywords
discharge tube
torch
plasma
microwave
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9770291A
Other languages
Japanese (ja)
Other versions
JP3057184B2 (en
Inventor
Motoaki Iwasaki
岩崎 元明
Toshio Takahara
高原 寿雄
Yasuhiro Tanihata
谷端 康弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP3097702A priority Critical patent/JP3057184B2/en
Publication of JPH04328450A publication Critical patent/JPH04328450A/en
Application granted granted Critical
Publication of JP3057184B2 publication Critical patent/JP3057184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a plasma generating spectrometer having a torch which can inject fine particles in the center of a plasma erected at the center of a discharge tube. CONSTITUTION:There are provided a discharge tube 1, a torch 1b inserted into the discharge tube and an end of which is narrowed, and a cavity 5 which resonates microwaves and generates a microwave-induced plasma in the discharge tube. Moreover, an optical system which takes out and condenses the light generated from the microwave-induced plasma in the axial direction of the discharge tube 1, and a signal processing part 9 which splits the light condensed by the optical system to process the signals are provided. Accordingly, an element to be measured in a sample is detected.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、マイクロ波誘導プラズ
マを利用して試料中の元素を分析する発光分光分析計に
検出器として装着されるプラズマ発光分光検出器に関し
、更に詳しくは、放電管の中央にプラズマを立て該プラ
ズマの中央に微粒子を注入できるト―チを備えたプラズ
マ発光分光検出器に関する。
[Field of Industrial Application] The present invention relates to a plasma emission spectrometer that is installed as a detector in an emission spectrometer that analyzes elements in a sample using microwave-induced plasma. The present invention relates to a plasma emission spectroscopic detector equipped with a torch capable of forming a plasma at the center of the plasma and injecting fine particles into the center of the plasma.

【0002】0002

【従来の技術】従来から知られている発光分光検出器は
、実験的に試作されて実験室などで使用されているもの
ばかりであった。このため、本発明者らは、高感度検出
が可能なうえ保守性に優れた発光分光検出器を開発し、
本願の出願人と同一の出願人が平成2年4月23日に発
明の名称「発光分光検出器」で出願している(特願平2
−107133号、出願公開番号は不明)。
BACKGROUND OF THE INVENTION Conventionally known emission spectroscopic detectors have only been experimentally manufactured and used in laboratories. For this reason, the present inventors developed an emission spectroscopic detector that is capable of highly sensitive detection and is easy to maintain.
The same applicant as the applicant of the present application filed an application on April 23, 1990 with the name of the invention "Emission spectroscopic detector" (Patent application No.
-107133, application publication number unknown).

【0003】然しながら、このような発光分光検出器に
おいては、例えば放電管の内径が3.5mmでト―チの
内径が2mmというようにト―チの構造が放電管の内径
に見合うように作られていた。このため、ト―チから供
給される微粒子には、プラズマの中央を通るものとプラ
ズマの端を通るものがあり、発光効率に悪影響を及ぼし
ていた。
However, in such an emission spectroscopic detector, the structure of the torch is made to match the inner diameter of the discharge tube, for example, the inner diameter of the discharge tube is 3.5 mm and the inner diameter of the torch is 2 mm. It was getting worse. For this reason, some of the fine particles supplied from the torch pass through the center of the plasma, while others pass through the edges of the plasma, which has an adverse effect on luminous efficiency.

【0004】0004

【発明が解決しようとする課題】本発明はかかる状況に
鑑みてなされたものであり、その目的は、放電管の中央
にプラズマを立て、該プラズマの中央に微粒子を注入で
きるト―チを備えたプラズマ発光分光検出器を提供する
ことにある。
[Problems to be Solved by the Invention] The present invention has been made in view of the above situation, and its purpose is to create a plasma in the center of a discharge tube and to provide a torch that can inject fine particles into the center of the plasma. An object of the present invention is to provide a plasma emission spectroscopic detector.

【0005】[0005]

【課題を解決するための手段】本発明は、プラズマ発光
分光検出器において、放電管と、該放電管内に挿設され
先端に絞りが設けられたト―チと、マイクロ波を空洞共
鳴させて放電管内にマイクロ波誘導プラズマを発生させ
るキャビティと、マイクロ波誘導プラズマから発せられ
た光を放電管の軸方向にとり出して集光する光学系と、
該光学系で集光された光を分光して信号処理する信号処
理部とを設け、試料中の被測定元素を検出することによ
って前記課題を解決したものである。
[Means for Solving the Problems] The present invention provides a plasma emission spectrometer detector in which a discharge tube, a torch inserted into the discharge tube and provided with an aperture at its tip, and microwaves are caused to resonate in a cavity. a cavity that generates microwave-induced plasma within the discharge tube; an optical system that extracts and focuses light emitted from the microwave-induced plasma in the axial direction of the discharge tube;
The above-mentioned problem is solved by providing a signal processing section that spectrally spectra the light collected by the optical system and processing the signal, and detecting the element to be measured in the sample.

【0006】[0006]

【作用】本発明の実施例は次のように作用する。即ち、
導入口からプラズマガスと一緒に導入された試料は、内
管を通って供給され、マイクロ波誘導プラズマ内で解離
されて発光する。この発光スペクトルは、外管から軸方
向に取り出され光学窓を介して光学系内に導かれて集光
され、その後、スリットを通り分光器で分光されてのち
信号処理され試料中の元素が測定表示される。このため
、内管の外壁の汚れなどに影響されず試料中の被測定元
素を正確に測定できる。
[Operation] The embodiment of the present invention operates as follows. That is,
A sample introduced together with plasma gas from the inlet is supplied through the inner tube, and is dissociated within the microwave-induced plasma to emit light. This emission spectrum is taken out in the axial direction from the outer tube, guided into the optical system through an optical window, and focused.Then, it passes through a slit and is separated by a spectrometer.After that, it is processed as a signal and the elements in the sample are measured. Is displayed. Therefore, the element to be measured in the sample can be accurately measured without being affected by dirt on the outer wall of the inner tube.

【0007】一方、測定終了後や保守作業時などには、
スライダ―をスライドさせて引出すことによって放電管
をキャビティから引出し、その後、支点を中心にして反
時計方向に90゜回転させる。このようにすることによ
って、内管が上方向から覗けるようになる。また、外管
を交換した後も、外管の中心にト―チの中心を極めて容
易に合わせることができる。
On the other hand, after measurement or during maintenance work,
The discharge tube is pulled out from the cavity by sliding the slider, and then rotated 90 degrees counterclockwise about the fulcrum. By doing this, the inner tube can be seen from above. Furthermore, even after replacing the outer tube, the center of the torch can be very easily aligned with the center of the outer tube.

【0008】[0008]

【実施例】以下、本発明について図を用いて詳細に説明
する。図1は本発明実施例の要部構成断面図であり、図
2は本発明実施例の全体的な構成説明図である。図1及
び図2において、1aは放電管1の例えば石英管でなる
外管、1bはたとえば石英管やステンレス内管でなり外
管1bに挿設されたト―チ、2a〜2cは接手、3a,
3bはナット、4は試料導入口、5はマイクロ波発生器
10から供給された例えば2.45GHz のマイクロ
波を空洞共鳴させて外管1内にマイクロ波誘導プラズマ
6を誘起させる例えば円筒型のキャビティ、7は光学窓
、8は集光系であって凹面鏡81と反射鏡82を有して
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below with reference to the drawings. FIG. 1 is a cross-sectional view of the main part of an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the overall structure of the embodiment of the present invention. 1 and 2, 1a is an outer tube of the discharge tube 1 made of, for example, a quartz tube, 1b is a torch made of, for example, a quartz tube or a stainless steel inner tube and inserted into the outer tube 1b, 2a to 2c are joints, 3a,
3b is a nut, 4 is a sample introduction port, and 5 is a cylindrical tube that induces microwave-induced plasma 6 in the outer tube 1 by making the cavity resonate with microwaves of, for example, 2.45 GHz supplied from the microwave generator 10. The cavity, 7 is an optical window, and 8 is a condensing system, which has a concave mirror 81 and a reflecting mirror 82.

【0009】また、9は信号処理部、11はスライダ―
、12は基台、13は支点、14は調整ネジである。 一方、図1において、ト―チ1bの外径Aは外管1aの
内径に合うように作られており、外管1a内にト―チ1
bを差し込むだけで、外管1aの中心とト―チ1bのセ
ンタ―が合致するようになっている。また、ト―チ1b
の先端の内径Bは、粒子がト―チ1の中央から導出され
るように絞られるとともに、ト―チ1の非先端の内部半
径Eは、キャリアガスと微粒子を供給する装置に圧力損
失などの負荷をかけないように広い形状となっている。
Further, 9 is a signal processing section, and 11 is a slider.
, 12 is a base, 13 is a fulcrum, and 14 is an adjustment screw. On the other hand, in FIG. 1, the outer diameter A of the torch 1b is made to match the inner diameter of the outer tube 1a, and the torch 1 is placed inside the outer tube 1a.
By simply inserting the outer tube 1a, the center of the outer tube 1a and the center of the torch 1b are aligned. Also, torch 1b
The inner diameter B of the tip of the torch 1 is narrowed so that the particles are drawn out from the center of the torch 1, and the inner radius E of the non-tip part of the torch 1 is narrowed so that the particles are extracted from the center of the torch 1. It has a wide shape so as not to apply heavy loads.

【0010】更に、内径Bを有するト―チ1bの先端部
分は、微粒子がト―チ1bの中心と平行に吐出されるよ
うに一定の長さCを持たせている。また、内径Bを有す
るト―チ1bの先端部分と内径Eを有するト―チ1bの
非先端部分との間はテ―パ―Dを有する構造となってい
る。
Further, the tip of the torch 1b having an inner diameter B has a certain length C so that the fine particles are ejected parallel to the center of the torch 1b. Further, the structure has a taper D between the tip portion of the torch 1b having an inner diameter B and the non-tip portion of the torch 1b having an inner diameter E.

【0011】このような構成からなる本発明の実施例に
おいて、ト―チ1bの外径は外管1aの内径Aと適合す
るように作られており、ト―チ1bを外管1aに差込む
だけでト―チ1bの中心と外管1aの中心が一致するよ
うになる。
In the embodiment of the present invention having such a configuration, the outer diameter of the torch 1b is made to match the inner diameter A of the outer tube 1a, and the torch 1b is made to be different from the outer tube 1a. The center of the torch 1b and the center of the outer tube 1a can be aligned by simply inserting the outer tube 1a.

【0012】また、導入口4からプラズマガス(例えば
ArやHe)と一緒に導入された試料(例えば固体パ―
ティクル)は、内管1bを通って供給され、マイクロ波
誘導プラズマ6内で解離されて発光する。この発光スペ
クトルは、外管1aから軸方向に取り出され光学窓7を
介して光学系8内に導かれて集光され、その後、スリッ
ト83を通り信号処理部9で分光されてのち信号処理さ
れ試料中の元素が測定表示される。このため、外管1a
の外壁の汚れなどに影響されず試料中の被測定元素を正
確に測定できる。
[0012] Also, a sample (for example, a solid particle) introduced together with a plasma gas (for example, Ar or He) through the inlet 4 may be
Tickle) is supplied through the inner tube 1b and is dissociated in the microwave induced plasma 6 to emit light. This emission spectrum is taken out in the axial direction from the outer tube 1a, guided into the optical system 8 through the optical window 7, and condensed, then passed through the slit 83, separated by the signal processing section 9, and then subjected to signal processing. The elements in the sample are measured and displayed. For this reason, the outer tube 1a
The element to be measured in the sample can be measured accurately without being affected by dirt on the outer wall of the sample.

【0013】一方、測定終了後や保守作業時などには、
次のようにしてト―チ1bの交換が行われる。即ち、ス
ライダ―11を図2の矢印方向にスライドさせて例えば
60mm引出すことによって放電管1をキャビティ5か
ら引出し、その後、支点13を中心にして反時計方向に
90゜回転させる。このようにすることによって、ト―
チ1bが図1の上方向から覗けるようになる。また、外
管1aを交換した後、外管1a内にト―チ1bを差し込
むことにより、外管1aの中心にト―チ1bの中心を合
わせることができる。
On the other hand, after measurement or during maintenance work,
The torch 1b is replaced as follows. That is, the discharge tube 1 is pulled out from the cavity 5 by sliding the slider 11 in the direction of the arrow in FIG. By doing this, you can
1b can now be seen from above in FIG. Further, by inserting the torch 1b into the outer tube 1a after replacing the outer tube 1a, the center of the torch 1b can be aligned with the center of the outer tube 1a.

【0014】尚、本発明は上述の実施例に限定されるこ
となく種々の変形が可能であり、例えば導入口4に前処
理装置を付加し、液体,気体,及び固体のいずれの試料
をも測定可能となるようにしてもよい。また、集光系か
らの光を光ファイバ―を用いて複数の信号処理部に導き
試料中に含まれている複数の元素を同時に測定するよう
にしても良い。この場合、集光系で上述のように効率良
く光を取出せるため、光ファイバ―内部での感度低下が
充分に補え高感度測定が可能となる。更に、導入口4に
キャピラリ―を接続し極部(極限られた部分)の試料ガ
スだけをサンプリングして分析するようにしても良い。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and can be modified in various ways. For example, a pretreatment device may be added to the inlet 4 to handle any of liquid, gas, and solid samples. It may also be made measurable. Alternatively, the light from the condensing system may be guided to a plurality of signal processing units using optical fibers to simultaneously measure a plurality of elements contained in the sample. In this case, since the condensing system can efficiently extract light as described above, the decrease in sensitivity inside the optical fiber can be sufficiently compensated for and high-sensitivity measurement can be performed. Furthermore, a capillary may be connected to the inlet 4 to sample and analyze only the sample gas at the extreme (extremely limited portion).

【0015】[0015]

【発明の効果】以上詳しく説明したような本発明の実施
例によれば、次の■〜■のような効果が得られ、その結
果、放電管の中央にプラズマを立て該プラズマの中央に
微粒子を注入できるト―チを備えたプラズマ発光分光検
出器が実現する。■ト―チの構造を改造しプラズマ中央
に微粒子を注入できるようになったため、微粒子の解離
効率が向上し発光効率も向上するようになる。■ト―チ
の外径は外管の内径と適合するように作られているため
、ト―チを外管に差込むだけでト―チの中心と外管の中
心が一致するようになる。■絞りが設けられているのは
ト―チの先端部分だけであるため、絞りの有無による圧
力損失が軽微であり、前段の微粒子導入装置に与える影
響を無視できる。
Effects of the Invention According to the embodiments of the present invention as described in detail above, the following effects (1) to (3) can be obtained, and as a result, plasma is generated in the center of the discharge tube, and fine particles are generated in the center of the plasma. A plasma emission spectroscopic detector equipped with a torch that can inject ions has been realized. ■The structure of the torch has been modified so that particles can be injected into the center of the plasma, which improves the dissociation efficiency of particles and the luminous efficiency. ■The outer diameter of the torch is made to match the inner diameter of the outer tube, so just by inserting the torch into the outer tube, the center of the torch and the center of the outer tube will align. . ■Since the throttle is only provided at the tip of the torch, the pressure loss caused by the presence or absence of the throttle is slight, and the effect on the particle introduction device in the previous stage can be ignored.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明実施例の要部構成断面図である。FIG. 1 is a cross-sectional view of the main part of an embodiment of the present invention.

【図2】本発明実施例の全体的な構成説明図である。1
  放電管 1a  外管 1b  ト―チ 5  キャビティ 7  光学窓 8  集光系 81  凹面鏡 82  反射鏡 83  スリット 9  信号処理部 11  スライダ― 12  基台 13  支点
FIG. 2 is an explanatory diagram of the overall configuration of an embodiment of the present invention. 1
Discharge tube 1a Outer tube 1b Torch 5 Cavity 7 Optical window 8 Condensing system 81 Concave mirror 82 Reflector 83 Slit 9 Signal processing unit 11 Slider 12 Base 13 Fulcrum

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】マイクロ波誘導プラズマを利用して試料中
の元素を分析する発光分光分析計に検出器として装着さ
れる発光分光検出器において、放電管と、該放電管内に
挿設され先端に絞りが設けられたト―チと、マイクロ波
を空洞共鳴させて前記放電管内にマイクロ波誘導プラズ
マを発生させるキャビティと、前記マイクロ波誘導プラ
ズマから発せられた光を前記放電管の軸方向にとり出し
て集光する光学系と、該光学系で集光された光を分光し
て信号処理する信号処理部とを具備し、前記試料中の被
測定元素を検出するプラズマ発光分光検出器。
1. An emission spectrometer detector installed as a detector in an emission spectrometer that analyzes elements in a sample using microwave-induced plasma, which includes a discharge tube and a distal end of the discharge tube inserted into the discharge tube. A torch provided with an aperture, a cavity that generates microwave-induced plasma in the discharge tube by causing microwave resonance, and light emitted from the microwave-induced plasma is taken out in the axial direction of the discharge tube. A plasma emission spectroscopic detector that detects an element to be measured in the sample, comprising an optical system that collects light using the optical system, and a signal processing unit that spectrally spectrally and performs signal processing on the light collected by the optical system.
JP3097702A 1991-04-26 1991-04-26 Plasma generator Expired - Fee Related JP3057184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3097702A JP3057184B2 (en) 1991-04-26 1991-04-26 Plasma generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3097702A JP3057184B2 (en) 1991-04-26 1991-04-26 Plasma generator

Publications (2)

Publication Number Publication Date
JPH04328450A true JPH04328450A (en) 1992-11-17
JP3057184B2 JP3057184B2 (en) 2000-06-26

Family

ID=14199259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3097702A Expired - Fee Related JP3057184B2 (en) 1991-04-26 1991-04-26 Plasma generator

Country Status (1)

Country Link
JP (1) JP3057184B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286960A (en) * 1994-04-19 1995-10-31 Nippon Jiyaareru H Kk Icp luminous spectral analyzing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145549U (en) * 1982-03-25 1983-09-30 日本ジヤ−レル・アツシユ株式会社 Torch for plasma emission analysis
JPH02190744A (en) * 1989-01-19 1990-07-26 Yokogawa Electric Corp Fine particle measuring instrument
JPH03222298A (en) * 1990-01-26 1991-10-01 Hitachi Ltd Microwave plasma trace element analyzing device
JPH0426099A (en) * 1990-05-21 1992-01-29 Hitachi Ltd Torch for high frequency plasma and element analysis apparatus using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145549U (en) * 1982-03-25 1983-09-30 日本ジヤ−レル・アツシユ株式会社 Torch for plasma emission analysis
JPH02190744A (en) * 1989-01-19 1990-07-26 Yokogawa Electric Corp Fine particle measuring instrument
JPH03222298A (en) * 1990-01-26 1991-10-01 Hitachi Ltd Microwave plasma trace element analyzing device
JPH0426099A (en) * 1990-05-21 1992-01-29 Hitachi Ltd Torch for high frequency plasma and element analysis apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286960A (en) * 1994-04-19 1995-10-31 Nippon Jiyaareru H Kk Icp luminous spectral analyzing device

Also Published As

Publication number Publication date
JP3057184B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
US7057169B2 (en) Probing method using ion trap mass spectrometer and probing device
US20080064975A1 (en) Spectroscopic breath analysis
EP1521290A1 (en) Mass spectrometer
EP1565727A1 (en) Methods and appartus for molecular species detection, inspection and classification using ultraviolet luorescence
EP0015284B1 (en) Flameless emission spectroscope apparatus and sample introduction method for same
Calzada et al. Determination of bromide by low power surfatron microwave induced plasma after bromine continuous generation
JPH04328450A (en) Plasma generating spectrometer
US8288713B2 (en) Laser multi-sensor system for the selective trace analysis of organic materials
JP2855777B2 (en) Emission spectroscopy detector
US7095016B2 (en) Direct liquid injection inlet to a laser photoionization apparatus
JPS62188919A (en) Method and instrument for direct emission analysis by multistage laser excitation
CN108169218A (en) A kind of hydroxy radical in-situ measurement system
JPH0795438B2 (en) Mass spectrometer
JP6918307B2 (en) Isotope analyzer and isotope analysis method
JPH0552743A (en) Apparatus and method for non-destructive quantitative analysis of condensible gaseous substance using high sensitivity infrared spectral method
JP2001249078A (en) Method and instrument for measuring concentration of very small amount of substance
CN110487775A (en) A kind of portable spectral analysis device based on plasma
JPH02190744A (en) Fine particle measuring instrument
JP2770448B2 (en) Ion species analysis method and apparatus
JP2007010683A (en) Detection method and detection system using ion trap mass spectrometer
JPS62102140A (en) Quantitative determination and correcting method for laser excited plasma spectrochemical analysis
Russell Mass Spectrometry in Clinical Medicine: Principles and Applications
JPH06160281A (en) Method for analyzing composition of microparticle
JPH11326178A (en) Method for analyzing fine particle using fine particle constituent analysis device
JP2010014726A (en) Detection method and detection system using ion trap mass spectrometer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees