JPH0432828A - Instrument for measuring quantity of light reflected from original - Google Patents

Instrument for measuring quantity of light reflected from original

Info

Publication number
JPH0432828A
JPH0432828A JP13829590A JP13829590A JPH0432828A JP H0432828 A JPH0432828 A JP H0432828A JP 13829590 A JP13829590 A JP 13829590A JP 13829590 A JP13829590 A JP 13829590A JP H0432828 A JPH0432828 A JP H0432828A
Authority
JP
Japan
Prior art keywords
reflected light
amount
light amount
data
light quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13829590A
Other languages
Japanese (ja)
Other versions
JP2698688B2 (en
Inventor
Takuyuki Matsuo
卓幸 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13829590A priority Critical patent/JP2698688B2/en
Publication of JPH0432828A publication Critical patent/JPH0432828A/en
Application granted granted Critical
Publication of JP2698688B2 publication Critical patent/JP2698688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Exposure In Printing And Copying (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)

Abstract

PURPOSE:To eliminate the need for using a D/A converter and to sharply shorten a measuring time by controlling the quantity of irradiating light so that the mean value of sample data for all picture elements in a reflected light measuring range coincides with the objective quantity of reflected light. CONSTITUTION:A halogen lamp 8 is lighted up by a lighting voltage to be a reference and a reflected light quantity measuring means 2 samples original reflecting density for all picture elements in the reflected light quantity measuring range and successively stores the sampled data in a memory. Then, information such as the maximum value, minimum value, mean value, and reflected light frequency distribution of the data is calculated from the sampled data by an objective reflected light quantity computing means 3 and the feature of an original is extracted. Since all the picture elements in the reflected light quantity measuring range are scanned only once, the succeeding scanning is executed only by plural proper points in the measuring range and the reflected light quantity data of the residual picture elements are identified by the reflected light quantity data of these points, the use of a D/A converter is eliminated and the measuring time can sharply be shortened.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、原稿読取装置、複写装置、ファクシミリ装置
等の原稿照射光量制御に用いる原稿反射光量測定装置に
関し、特に原稿照射光量の調整方法が手動である複写装
置等における原稿反射光量測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an original reflected light amount measuring device used for controlling the original irradiation light amount in a document reading device, a copying machine, a facsimile machine, etc., and particularly relates to a method for adjusting the original irradiation light amount. The present invention relates to a device for measuring the amount of reflected light on a document in a manual copying machine or the like.

[従来の技術] 一般に、従来のディジタル複写装置の照射光量制御とし
ては、例えば第5図に示すように、原稿照射光手段とし
てのハロゲンランプ8等を用いて原稿を照射し、所定の
反射光量測定領域(第2図の100)内の原稿からの反
射光10を、反射光量測定手段としてのCCD (電荷
結合素子)センサlで画素単位で電気信号11に変換し
、この電気信号11を反射光量算出手段2で反射光量1
2に変換し、この反射光量12を続く照射光量制御手段
4への入力信号となし、この制御手段4で反射光量12
に基いてハロゲンランプ8の点灯電圧をコントロールす
るためのコントロール電圧値15を演算出力し、ランプ
点灯手段7でコントロール電圧値15に基いて点灯電圧
を可変することによってハロゲンランプ8の照射光量を
帰還制御している。ここで、通常、原稿の種類、濃度分
布によっては適正な照射光量が異なるため、目標反射光
量演算手段3によって上記の反射光量12に基いて目標
光量13を算出し、原稿反射光10の光量がこの目標光
量13に収束するように照射光量制御手段4を介して負
帰還をかける制御系を構成している。
[Prior Art] In general, as shown in FIG. 5, for example, as shown in FIG. 5, a halogen lamp 8 or the like is used as an original irradiation light means to irradiate an original, and a predetermined amount of reflected light is controlled in a conventional digital copying apparatus. The reflected light 10 from the document within the measurement area (100 in Fig. 2) is converted into an electric signal 11 pixel by pixel by a CCD (charge-coupled device) sensor l serving as a means for measuring the amount of reflected light, and this electric signal 11 is reflected. Reflected light amount 1 by light amount calculation means 2
This reflected light amount 12 is used as an input signal to the subsequent irradiation light amount control means 4, and this control means 4 converts the reflected light amount 12
Based on this, a control voltage value 15 for controlling the lighting voltage of the halogen lamp 8 is calculated and outputted, and the lamp lighting means 7 changes the lighting voltage based on the control voltage value 15 to feed back the irradiation light amount of the halogen lamp 8. It's in control. Here, since the appropriate amount of irradiation light usually differs depending on the type and density distribution of the original, the target reflected light amount calculation means 3 calculates the target light amount 13 based on the above reflected light amount 12, and the amount of light reflected from the original 10 is calculated by the target reflected light amount calculation means 3. A control system is configured in which negative feedback is applied via the irradiation light amount control means 4 so that the irradiation light amount converges to the target light amount 13.

通常、このような制御系を具えた装置では、ランプ点灯
手段7へのコントロール信号15はアナログ信号である
が、照射光量制御手段4の回路内ではディジタル信号で
あるため、非常に高価なり/A (デジタル/アナログ
)コンバータを備える必要があった。
Normally, in a device equipped with such a control system, the control signal 15 to the lamp lighting means 7 is an analog signal, but in the circuit of the irradiation light amount control means 4 it is a digital signal, which is very expensive. It was necessary to provide a (digital/analog) converter.

そこで、そのようなり/Aコンバータを用いずに照射光
量制御手段4から操作パネル上の表示手段(図示しない
)を用いて装置の使用者に対して照射光量の増減要求を
出力表示し、その増減要求に従って使用者が手動のコン
トロール電圧設定手段(図示しない)を操作してランプ
8の点灯電圧を調整させ、それにより照射光量の増減制
御を実現するという構成が考えられる。
Therefore, without using the /A converter, the irradiation light amount control means 4 outputs and displays a request to increase or decrease the irradiation light amount to the user of the device using the display means (not shown) on the operation panel. A conceivable configuration is that the user operates a manual control voltage setting means (not shown) to adjust the lighting voltage of the lamp 8 according to a request, thereby realizing control to increase or decrease the amount of irradiated light.

C発明が解決しようとする課題〕 しかしながら、上述のように手動で点灯電圧を操作する
場合には、以下に述べるような解決すべき課題が発生す
る。
C Problems to be Solved by the Invention] However, when the lighting voltage is manually operated as described above, the following problems to be solved occur.

すなわち、前述の反射光量測定範囲が比較的広い場合に
は、この範囲をCCDセンサ1で走査する時間がかかる
ために、照射光量が目標光量に収束するまでに長時間を
要してしまうという点である。
That is, when the above-mentioned reflected light amount measurement range is relatively wide, it takes time to scan this range with the CCD sensor 1, so it takes a long time for the irradiated light amount to converge to the target light amount. It is.

本発明の目的は、上述の点に鑑み、D/Aコンバータを
必要とせず、かつ測定時間の大幅な短縮が可能となる原
稿反射光量測定装置を提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned points, an object of the present invention is to provide a document reflection light amount measuring device that does not require a D/A converter and can significantly shorten measurement time.

[課題を解決するための手段] 上記目的を達成するため、本発明は反射光量測定範囲内
の複数画素から成る第1の被測定画素群での反射光量を
格納する記憶手段と、前記第1の被測定画素群の真部分
集合である、少なくとも1画素から成る第2の被測定画
素群での反射光量の総計を演算する第1の演算手段と、
前記記憶手段に格納した前記第1の被測定画素群の全要
素での反射光量を前記総計で規格化する規格化手段と、
該規格化を行った以降において該規格化された反射光量
と前記第2の被測定画素群での反射光量の総計とで前記
第1の被測定画素群の全要素での反射光量を同定する第
2の演算手段とを有することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a storage means for storing the amount of reflected light at a first measured pixel group consisting of a plurality of pixels within a reflected light amount measurement range; a first calculation means for calculating the total amount of reflected light at a second pixel group to be measured, which is a true subset of the pixel group to be measured, and is made up of at least one pixel;
normalizing means for normalizing the amount of reflected light at all elements of the first pixel group to be measured stored in the storage means by the total;
After performing the normalization, the amount of reflected light at all elements of the first pixel group to be measured is identified using the standardized amount of reflected light and the total amount of reflected light at the second group of pixels to be measured. It is characterized by having a second calculation means.

[作 用] 本発明では、反射光量測定範囲内の全画素を1度だけ走
査し、得られた反射光量データを画素単位でメモリにス
トアしておき、以降の走査は反射光量測定範囲の適当な
複数点だけで行い、それらの点の反射光量データで残り
の画素の反射光量データを同定させるようにしたので、
D/Aコンバータを必要とせず、かつ測定時間の大幅な
短縮が可能となる。
[Function] In the present invention, all pixels within the reflected light amount measurement range are scanned once, and the obtained reflected light amount data is stored in a memory for each pixel, and subsequent scanning is performed at an appropriate point within the reflected light amount measurement range. This is done using only multiple points, and the reflected light amount data of the remaining pixels is identified using the reflected light amount data of those points.
A D/A converter is not required, and measurement time can be significantly shortened.

[実施例] 以下、図面を参照して本発明の実施例を詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の原稿照射光量制御回路の回
路構成を示す。同図において、1はCODセンサであり
、128個の読み取り画素から成り、読み出しクロック
(不図示)に従って原稿からの反射光を電気信号11に
逐次変換していく。CCDセンサ1から得られた電気信
号11は反射光量算出手段2によって反射光量データに
変換され、原稿上の画素を示す第2図のan、 al、
 a3・・・amenの画素の順で内部メモリにそれ等
の反射光量データVan。
FIG. 1 shows the circuit configuration of a document irradiation light amount control circuit according to an embodiment of the present invention. In the figure, a COD sensor 1 is composed of 128 reading pixels, and successively converts reflected light from a document into an electrical signal 11 according to a reading clock (not shown). The electric signal 11 obtained from the CCD sensor 1 is converted into reflected light amount data by the reflected light amount calculation means 2, and is converted into reflected light amount data, an, al, and an in FIG.
The reflected light amount data Van is stored in the internal memory in the order of pixels a3...amen.

Val、 Va3−−−、 Vam*nが格納されてい
(。ここで、そのメモリの容量に制限がある場合には、
何画素かおきに間引いてメモリに格納して行く方法もと
れるが、以下では説明の簡単化のために画素の間引きは
行わないこととする。
Val, Va3---, Vam*n are stored (.Here, if there is a limit to the memory capacity,
Although it is possible to thin out every few pixels and store them in the memory, in the following, to simplify the explanation, pixels will not be thinned out.

次に、本実施例における原稿照射光量の制御手順につい
て説明する。第3図のフローチャートはその制御手順を
示す。
Next, a procedure for controlling the amount of light irradiated on an original in this embodiment will be explained. The flowchart in FIG. 3 shows the control procedure.

まず、ハロゲンランプ8をランプ点灯手段7を介して基
準と成る点灯電圧で点灯しく5TEPI) 、反射光量
算出手段2によりそのときの原稿反射濃度を反射光量測
定範囲内(第2図の破線100の枠内)の全画素につい
てサンプリングする(STEP2)。
First, the halogen lamp 8 is turned on at a reference lighting voltage via the lamp lighting means 7 (5TEPI), and the reflection density of the document at that time is determined by the reflection light amount calculation means 2 within the reflected light amount measurement range (as indicated by the broken line 100 in FIG. 2). All pixels within the frame are sampled (STEP 2).

さらに、そのサンプルデータを上述のメモリへ順次格納
しておく (STEP3)。次に、そのメモリに格納し
たサンプルデータから目標反射光量演算手段3によりそ
のデータの最大値、最小値、平均値。
Furthermore, the sample data is sequentially stored in the above-mentioned memory (STEP 3). Next, the maximum value, minimum value, and average value of the data are determined by the target reflected light amount calculating means 3 from the sample data stored in the memory.

反射光量度数分布等の情報を算出して原稿の特徴を抽出
する。例えば、全体的に暗いとか、濃度の分布範囲が広
い等の特徴から、個々の原稿の特徴に応じた目標平均反
射光量を設定する(STEP4)。
Information such as the frequency distribution of the amount of reflected light is calculated to extract the characteristics of the document. For example, a target average amount of reflected light is set according to the characteristics of each document, such as the document being completely dark or having a wide range of density distribution (STEP 4).

以下に述べるように反射光量測定範囲内の全画素につい
てのサンプルデータの平均値がこの目標反射光量に一致
するように照射光量制御を行なうこととなる。
As described below, the irradiation light amount is controlled so that the average value of sample data for all pixels within the reflected light amount measurement range matches the target reflected light amount.

次に、反射光量測定範囲内の全画素の中から1点を特定
測定点として選出する(STEP5)。この選出基準と
しては例えばサンプルデータが最大値であった画素を選
出する。選出された点を以下、r特定測定点1と称する
。以降は反射光量測定範囲内の全画素についてのサンプ
リングを行なって平均反射光量を算出するのではな(、
特定測定点のデータのみから平均反射光量を算出する。
Next, one point is selected as a specific measurement point from among all the pixels within the reflected light amount measurement range (STEP 5). As this selection criterion, for example, a pixel whose sample data has the maximum value is selected. The selected point is hereinafter referred to as r-specific measurement point 1. From now on, we will calculate the average reflected light amount by sampling all pixels within the reflected light amount measurement range (,
Calculate the average amount of reflected light only from data at specific measurement points.

特定測定点のデータからの平均反射光量の算出法につい
ては後述するが、まず5TEP6において特定測定点の
目標反射光量(以下、特定測定点目標反射光量と称する
)を算出する。
The method for calculating the average amount of reflected light from the data of the specific measurement point will be described later, but first, in 5TEP6, the target amount of reflected light at the specific measurement point (hereinafter referred to as specific measurement point target amount of reflected light) is calculated.

続< 5TEP7で照射光量制御手段4により特定測定
点目標反射光量の特定測定点目標反射光量への収束判定
を行ない、収束していなければ表示手段5にコントロー
ル電圧設定手段6を操作すべき旨の表示を行う(STE
P8)。この表示に従って、使用者は手動のコントロー
ル電圧設定手段6を操作してランプ点灯手段7を介して
ハロゲンランプ8の点灯電圧を変え、ハロゲンランプ8
の原稿照射光量を増減させる。その間も目標反射光量へ
収束するまで5TEP7〜5TEP9の処理をループし
続ける。その際、5TEP9では先の特定測定点のみの
サンプリングを行うため、反射光量測定範囲内の全画素
についてのサンプリングを行う場合に較べて、表示→サ
ンプリング→収束判定の周期が短くなる。
Continued < 5 At TEP 7, the irradiation light amount control means 4 determines whether the target reflected light amount at the specific measurement point has converged to the target reflected light amount at the specific measurement point, and if it has not converged, a message indicating that the control voltage setting means 6 should be operated is displayed on the display means 5. Display (STE
P8). In accordance with this display, the user operates the manual control voltage setting means 6 to change the lighting voltage of the halogen lamp 8 via the lamp lighting means 7.
Increase or decrease the amount of light irradiated on the document. In the meantime, the processes of 5TEP7 to 5TEP9 continue to be looped until the amount of reflected light converges to the target amount of reflected light. At this time, in 5TEP9, sampling is performed only at the specific measurement point, so the cycle of display→sampling→convergence determination is shorter than when sampling is performed for all pixels within the reflected light amount measurement range.

次に、特定測定点のデータからの平均反射光量の算出方
法について説明する。
Next, a method for calculating the average amount of reflected light from data at specific measurement points will be explained.

第3図の5TEP2で得られた反射光量測定範囲内の画
素と、その反射光量の関係を第4図の実線の曲線で示す
。いま、各画素の反射光量Vi(iは1〜menまでの
画素番号とする)で表わすと、第2図の反射光量測定範
囲10a内の全画素の平均反射光量Eは次式(1)から
求まる。
The relationship between the pixels within the reflected light amount measurement range obtained in 5TEP2 of FIG. 3 and the amount of reflected light is shown by the solid curve in FIG. Now, when representing the amount of reflected light Vi of each pixel (i is a pixel number from 1 to men), the average amount of reflected light E of all pixels within the reflected light amount measurement range 10a in FIG. 2 is calculated from the following equation (1). Seek.

E  =  (V1+V2+V3+−・・+Vm傘n)
/men         −(1)ここで、反射光量
の最大値をVkとすると、(1)式から(22式が導か
れる。
E = (V1+V2+V3+-...+Vm umbrella n)
/men - (1) Here, if the maximum value of the amount of reflected light is Vk, then equation (22) is derived from equation (1).

E =  (klVk+に2Vk+に3Vk+・・−+
km*nVk)/m傘n(ここで、ki:Vi/Vkで
ある) = 5kVk/+*n            −(2
)(ここで、5k=kl+に2+に3+−+km*nで
ある)そこで、第3図の5TEP3においてメモリに格
納した各画素の反射光量からSkを演算して求める。
E = (klVk+ to 2Vk+ to 3Vk+...-+
km * nVk)/m umbrella n (here, ki: Vi/Vk) = 5kVk/+*n - (2
) (Here, 5k=kl+, 2+, 3+-+km*n) Therefore, in 5TEP3 of FIG. 3, Sk is calculated and determined from the reflected light amount of each pixel stored in the memory.

原稿が同一であれば、kiは照射光量に関係なく一定値
となるため、Skは定数となる。但し、kiが照射光量
に関係なく一定値となるには、CCDセンサ1の各画素
でシェーディング補正が成されていることが前提となっ
ている。
If the documents are the same, ki will be a constant value regardless of the amount of irradiation light, and therefore Sk will be a constant. However, in order for ki to be a constant value regardless of the amount of irradiated light, it is assumed that shading correction is performed in each pixel of the CCD sensor 1.

さて、上記の理由から反射光量測定範囲内の全画素の反
射光量を求めて、ある特定測定点(k番目の画素)につ
いてSkの値を一旦算出しておけば、以降は特定測定点
のみの反射光量を測定することによって平均反射光量が
得られる。
Now, for the above reasons, once the reflected light amount of all pixels within the reflected light amount measurement range is calculated and the value of Sk is calculated for a specific measurement point (kth pixel), from then on, only the specific measurement point can be calculated. By measuring the amount of reflected light, the average amount of reflected light can be obtained.

i二血■叉里豆 上記の実施例では特定測定点を1点と定めたが、複数点
を指定してもよい。例えば、特定測定点を5番目、6番
目、8番目の画素に選定した場合を考える。
In the above embodiment, one specific measurement point is specified, but a plurality of points may be specified. For example, consider a case where the specific measurement points are selected as the 5th, 6th, and 8th pixels.

この場合の平均反射光量Eは次式(3)から求まる。The average amount of reflected light E in this case can be found from the following equation (3).

E ” (Vl12+V3+−−−+■ffi傘n)/
rn傘n= (Vl傘(V5+V6+V8)/(V5+
V6+V8)v2率(V5+V6+V8)/(V5+V
6+V8)++  +  1  +  −11−拳  
    十V (men)* (V5+V6+V8)/
(V5+V6+V8)/men=  (K1+に2+−
+K(men))参(V5+V6+V8)/m傘n  
・−・ (3)ココテKi = Vi/ (v5+V6
+V8) テある。
E” (Vl12+V3+---+■ffi umbrella n)/
rn umbrella n= (Vl umbrella (V5+V6+V8)/(V5+
V6+V8) v2 rate (V5+V6+V8)/(V5+V
6+V8)++ + 1 + -11-Fist
10V (men) * (V5+V6+V8)/
(V5+V6+V8)/men= (2+- to K1+
+K (men)) (V5+V6+V8)/m umbrella n
・−・ (3) KokoteKi = Vi/ (v5+V6
+V8) There is.

上式(3)においてKiは定数となる。従って、Eは(
V5+VB+V8)のみの関数となり、前実施例と同様
に、特定測定点で反射光量測定範囲内の全画素のデータ
を同定できる。特定測定点が1点の場合にはCCDセン
サ1の不良で測定データに信頼性が得られない場合があ
るが、本実施例の様に複数個の特定測定点を設ければ信
頼性が向上する。その際の特定測定点の物理的位置は反
射光量測定範囲内でランダムに選定する必要はなく、C
CDセンサ1の隣接する画素に選定すれば、センサ1を
移動させる必要がなく、特定測定点が1点の場合とほぼ
同じ時間で測定が完了する利点がある。
In the above equation (3), Ki is a constant. Therefore, E is (
V5+VB+V8), and as in the previous embodiment, the data of all pixels within the reflected light amount measurement range can be identified at a specific measurement point. If there is only one specific measurement point, the measurement data may not be reliable due to a defect in the CCD sensor 1, but if multiple specific measurement points are provided as in this example, reliability will be improved. do. The physical location of the specific measurement point at that time does not need to be randomly selected within the reflected light amount measurement range;
If adjacent pixels of the CD sensor 1 are selected, there is no need to move the sensor 1, and there is an advantage that the measurement can be completed in approximately the same time as when there is only one specific measurement point.

[発明の効果] 以上説明したように、本発明によれば、測定時間の大幅
な短縮が可能となる効果が得られる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to obtain the effect that the measurement time can be significantly shortened.

【図面の簡単な説明】 第1図は本発明の一実施例の原稿照射光量制御回路の回
路構成を示すブロック図、 第2図は原稿と反射光量測定範囲の関係を示す平面図、 第3図は本発明実施例における原稿照射光量制御手順を
示すフローチャート、 第4図は第2図の反射光量測定範囲内の画素の反射光量
の一例を示すグラフ、 第5図は従来例の原稿照射光量制御回路の回路構成を示
すブロック図である。 1・・・CCDセンサ、 2・・・反射光量算出手段、 3・・・目標反射光量演算手段、 4・・・照射光量制御手段、 5・・・表示手段、 6・・・コントロール電圧設定手段、 7・・・ランプ点灯手段、 8・・・ハロゲンランプ、 9・・・原稿。 第 図 第2図 am+1 第4図 第5区
[Brief Description of the Drawings] Fig. 1 is a block diagram showing the circuit configuration of a document irradiation light amount control circuit according to an embodiment of the present invention, Fig. 2 is a plan view showing the relationship between the original and the reflected light amount measurement range, and Fig. 3 Figure 4 is a flowchart showing the control procedure for document irradiation light amount in the embodiment of the present invention, Figure 4 is a graph showing an example of the reflected light amount of pixels within the reflected light amount measurement range of Figure 2, and Figure 5 is the original document irradiation light amount in the conventional example. FIG. 2 is a block diagram showing a circuit configuration of a control circuit. DESCRIPTION OF SYMBOLS 1... CCD sensor, 2... Reflected light amount calculation means, 3... Target reflected light amount calculation means, 4... Irradiation light amount control means, 5... Display means, 6... Control voltage setting means , 7...Lamp lighting means, 8...Halogen lamp, 9...Document. Figure 2 am+1 Figure 4 District 5

Claims (1)

【特許請求の範囲】 1)反射光量測定範囲内の複数画素から成る第1の被測
定画素群での反射光量を格納する記憶手段と、 前記第1の被測定画素群の真部分集合である、少なくと
も1画素から成る第2の被測定画素群での反射光量の総
計を演算する第1の演算手段と、 前記記憶手段に格納した前記第1の被測定画素群の全要
素での反射光量を前記総計で規格化する規格化手段と、 該規格化を行った以降において該規格化された反射光量
と前記第2の被測定画素群での反射光量の総計とで前記
第1の被測定画素群の全要素での反射光量を同定する第
2の演算手段と を有することを特徴とする原稿反射光量測定装置。
[Scope of Claims] 1) Storage means for storing the amount of reflected light at a first pixel group to be measured consisting of a plurality of pixels within a measurement range for the amount of reflected light; and a true subset of the first group of pixels to be measured. , a first calculating means for calculating the total amount of reflected light at a second pixel group to be measured consisting of at least one pixel, and the amount of reflected light at all elements of the first pixel group to be measured stored in the storage means. normalizing means for normalizing the total amount of light by the total amount; and after the standardization, the first measured amount is determined by the normalized amount of reflected light and the total amount of reflected light at the second measured pixel group. 1. A document reflected light amount measuring device comprising: second calculation means for identifying the amount of reflected light at all elements of a pixel group.
JP13829590A 1990-05-30 1990-05-30 Light intensity adjustment method Expired - Fee Related JP2698688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13829590A JP2698688B2 (en) 1990-05-30 1990-05-30 Light intensity adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13829590A JP2698688B2 (en) 1990-05-30 1990-05-30 Light intensity adjustment method

Publications (2)

Publication Number Publication Date
JPH0432828A true JPH0432828A (en) 1992-02-04
JP2698688B2 JP2698688B2 (en) 1998-01-19

Family

ID=15218548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13829590A Expired - Fee Related JP2698688B2 (en) 1990-05-30 1990-05-30 Light intensity adjustment method

Country Status (1)

Country Link
JP (1) JP2698688B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608495A (en) * 1993-01-01 1997-03-04 Minolta Camera Kabushiki Kaisha Imaging density control apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608495A (en) * 1993-01-01 1997-03-04 Minolta Camera Kabushiki Kaisha Imaging density control apparatus

Also Published As

Publication number Publication date
JP2698688B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
KR100339854B1 (en) Automated Quality Control Method and Device
JP3587433B2 (en) Pixel defect detection device for solid-state imaging device
JP2001504644A (en) Universal device for automatic adjustment of projector and its use
JPS62500755A (en) Digital image processing methods for overexposed and underexposed photographic images
US6822690B2 (en) Image processing apparatus, image pickup apparatus, and image processing method capable of eliminating effect of outside light
JPH04365264A (en) Original reader
JPH0432828A (en) Instrument for measuring quantity of light reflected from original
JP2000115644A (en) Solid-state image pickup device
FR2614488A1 (en) COLOR TELEVISION CAMERA WITH MULTIPLE TUBES HAVING AN AUTOMATIC COINCIDENCE ADJUSTMENT SYSTEM
JPS5814672A (en) Image reader
JP3406455B2 (en) Infrared imaging device
JP3314923B2 (en) Road surface moisture detection method and road surface moisture detection device
JP2000244739A (en) Image reader
KR100646865B1 (en) Method for revising shading data and scanning device using the same
JPS58153328A (en) Photodetecting sensitivity irregularity correcting system for image sensor
JPS6224989B2 (en)
JP3889123B2 (en) Method for scanning an image using a detector including an array of radiation sensors and apparatus for scanning an image
JP2627219B2 (en) Image reading device
JP3245213B2 (en) Image reading device
JPH03208468A (en) Picture binarizing system
KR0176918B1 (en) Signals distortion automatic evaluation apparatus
JP2620307B2 (en) Energy analyzer
JPH02254864A (en) Image input device
JPH0730758A (en) Base density level detector for original image for image forming device
JP2664338B2 (en) Image processing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees