JPH04365264A - Original reader - Google Patents

Original reader

Info

Publication number
JPH04365264A
JPH04365264A JP3166117A JP16611791A JPH04365264A JP H04365264 A JPH04365264 A JP H04365264A JP 3166117 A JP3166117 A JP 3166117A JP 16611791 A JP16611791 A JP 16611791A JP H04365264 A JPH04365264 A JP H04365264A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
level
reading
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3166117A
Other languages
Japanese (ja)
Inventor
Masaaki Ito
雅章 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3166117A priority Critical patent/JPH04365264A/en
Priority to US07/898,198 priority patent/US5442464A/en
Publication of JPH04365264A publication Critical patent/JPH04365264A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/40056Circuits for driving or energising particular reading heads or original illumination means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/407Control or modification of tonal gradation or of extreme levels, e.g. background level
    • H04N1/4076Control or modification of tonal gradation or of extreme levels, e.g. background level dependent on references outside the picture

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To obtain the original reader which can correct the output level of a photoelectric conversion element at low cost with high accuracy when a light source is turned off. CONSTITUTION:At the original reader equipped with a subtracter 206 to sample the dark time output signal of a photoelectric conversion array 107 after the A/D conversion of an A/D converter 205, to store the signal in a memory 207 over the image read period of one frame, to read this dark time output level and to subtract it from an image signal and a peak detection circuit 208 to detect the maximum value of the output signal from the photoelectric conversion element array 107 in the case of reading a reference density board before reading the original, control signals P1-P4 outputted from the peak detection circuit 208 in the case of sampling the dark time output signal of the photoelectric conversion element array 107 are made equal to control signals P1-P4 set by reading the reference density board when reading the original last time.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、デジタル複写機、フア
クシミリ等の原稿読取装置に関し、その暗時における光
電変換素子の出力レベル補正の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to document reading devices such as digital copying machines and facsimiles, and to improvements in correcting the output level of photoelectric conversion elements during dark times.

【0002】0002

【従来の技術】従来、原稿スキヤナの光源には、ハロゲ
ンランプ、蛍光灯、LEDアレイ等が用いられているが
、固体差、温度変化、経時変化等による照度ばらつき、
光学系部品の装置間で生じる減衰差、光電変換素子の固
体間感度差等を吸収して、最も効率よく、かつ、大きな
ダイナミツクレンジで光電変換素子出力をA/D変換す
るためには、大別して以下の2通りの方法が知られてい
る。 (1)基準白色板読取り時の光電変換素子出力が所定レ
ベルとなるように光源を調光する。 (2)基準白色板読取り時の光電変換素子出力が所定レ
ベルとなるように画像処理回路に可変利得アンプ等を設
ける。
[Prior Art] Conventionally, halogen lamps, fluorescent lamps, LED arrays, etc. have been used as light sources for document scanners, but illuminance variations due to individual differences, temperature changes, changes over time, etc.
In order to absorb the attenuation difference between optical system components, the sensitivity difference between individual photoelectric conversion elements, etc., and convert the output of the photoelectric conversion element into A/D in the most efficient manner and with a large dynamic range, Broadly speaking, the following two methods are known. (1) The light source is dimmed so that the output of the photoelectric conversion element when reading the reference white plate becomes a predetermined level. (2) A variable gain amplifier or the like is provided in the image processing circuit so that the output of the photoelectric conversion element when reading the reference white plate is at a predetermined level.

【0003】しかし、光源の調光操作を行うようにする
と、そのためのコストアツプが大きく、また調光時間が
必要なことから読取り時間の増大を招くので、一般には
可変利得アンプ等を用いて回路的に補正する方法が用い
られる。ところで、光電変換素子は暗時でもあるレベル
の出力を有し、これが画像出力の安定性、階調性を低下
させるため、種々の方法で画像信号の補正を行うが、例
えば、高階調のスキヤナには基準黒色板読取り時の光電
変換素子アレイの全画素出力をデジタル値で記憶し、原
稿読取り時に補正する手法が精度の面ではベストである
However, if the light source is dimmed, the cost will increase significantly, and the dimming time required will increase the reading time. A method of correcting this is used. By the way, photoelectric conversion elements have a certain level of output even in the dark, and this reduces the stability and gradation of the image output, so image signals are corrected using various methods. In terms of accuracy, the best method is to store all pixel outputs of the photoelectric conversion element array as digital values when reading the reference black plate, and then correct them when reading the original.

【0004】しかし基準白色板と基準黒色板は隣接して
配置されると、光源のフレア等により光電変換素子出力
が影響を受け、所定の白、黒レベルにならず、この影響
をなくすには走行体の走行方向に十分な距離を持つて両
者を配置する必要があり、装置の大型化、コストアツプ
、走行体の助走距離増加による読取り時間の増加等を招
く。このような不都合を防ぐため、光源点灯前の光電変
換素子出力を基準黒としてサンプルする方法が提案され
ている。この種の技術の従来例としては、特開昭62−
73869号公報、特開昭62−235871号公報等
が挙げられる。
However, when the reference white plate and the reference black plate are placed adjacent to each other, the output of the photoelectric conversion element is affected by the flare of the light source, and the predetermined white and black levels are not achieved. It is necessary to arrange both of them with a sufficient distance in the traveling direction of the traveling body, which results in an increase in the size of the device, an increase in cost, and an increase in reading time due to an increase in the run-up distance of the traveling body. In order to prevent such inconveniences, a method has been proposed in which the output of the photoelectric conversion element before the light source is turned on is sampled as a reference black. A conventional example of this type of technology is JP-A-62-
73869, JP-A-62-235871, and the like.

【0005】図16は従来例に係る原稿読取装置(スキ
ヤナ)の光学系の概略構成図である。図において、10
1はコンタクトガラス、102は基準白色板、103は
光源ランプ、104は第1ミラー、105aは第2ミラ
ー、105bは第3ミラー、106はレンズ、107は
CCDである。
FIG. 16 is a schematic diagram of the optical system of a conventional document reading device (scanner). In the figure, 10
1 is a contact glass, 102 is a reference white plate, 103 is a light source lamp, 104 is a first mirror, 105a is a second mirror, 105b is a third mirror, 106 is a lens, and 107 is a CCD.

【0006】図1は上記原稿読取装置の画像信号処理系
の概略ブロツク図であり、CCD107の出力はアンプ
202を経て、サンプルホールド回路(S/H)203
により信号部分のみが抽出されることにより、CCD1
07のリセツトノイズが除去される。204は可変利得
アンプ(GC.Amp)で図17のような構成をとる。 4つの制御信号P4 〜P1 よりゲインを1〜15値
に可変できる。205はA/D変換器(ADC)で可変
利得アンプ204の出力を6ビツトのデジタルデータに
変換する。206は減算器で原稿読取り出力から暗時出
力を差し引くことにより暗時出力補正を行う。207は
暗時出力記憶用メモリで、光源ランプ103の消灯時は
CCD全画素の出力値をメモリ207の該当アドレスに
書き込む動作を行い、光源ランプ103の点灯時はCC
D107の出力画素に該当するアドレスから暗時出力を
読み出す動作を行う。208はピーク検知回路で、1ラ
インのCCD出力中の最高値を検出する。通常は可変利
得アンプ204に対して基準ゲインを与える(1,1,
1,0)の値を制御信号P1 〜P4 として出力して
いるが、光源点灯後は、基準白色板102の読取り時に
検出したピーク値6ビツトの上位4ビツトを制御信号と
して出力し、原稿読取り終了までこれを保持する。
FIG. 1 is a schematic block diagram of the image signal processing system of the above-mentioned document reading device.
By extracting only the signal part, CCD1
07 reset noise is removed. A variable gain amplifier (GC.Amp) 204 has a configuration as shown in FIG. The gain can be varied from 1 to 15 values using the four control signals P4 to P1. 205 is an A/D converter (ADC) that converts the output of the variable gain amplifier 204 into 6-bit digital data. A subtracter 206 performs dark output correction by subtracting the dark output from the document reading output. Reference numeral 207 denotes a dark output storage memory, which performs the operation of writing the output values of all pixels of the CCD to the corresponding address of the memory 207 when the light source lamp 103 is turned off, and writes the output values of all the pixels of the CCD to the corresponding address of the memory 207 when the light source lamp 103 is turned on.
The dark output is read from the address corresponding to the output pixel of D107. A peak detection circuit 208 detects the highest value in one line of CCD output. Usually, a reference gain is given to the variable gain amplifier 204 (1, 1,
1, 0) are output as the control signals P1 to P4, but after the light source is turned on, the upper 4 bits of the 6 bits of the peak value detected when reading the reference white plate 102 are output as the control signal, and the original is read. Hold this until finished.

【0007】例えば、10進法で42(2進法で1,0
,1,0,1,0)というピーク値が得られたとすると
制御信号P1 〜P4 として(1,0,1,0)を出
力する。これによりピーク値42は図18のゲイン表よ
り、 42÷(15/14)×(15/10)=58.8で5
9となり、6ビツトA/D変換器205の変換幅を有効
に使用して、以後の原稿読取りが行える。上記原稿読取
装置の動作タイミングチヤートを図19に示す。Gn 
−1は前回原稿読取り時のゲイン、G0 は基準ゲイン
(P4 〜P0 =1,1,1,0)、Gnは今回の原
稿読取り時のゲインである。
For example, 42 in decimal system (1,0 in binary system)
, 1, 0, 1, 0) is obtained, (1, 0, 1, 0) is output as the control signals P1 to P4. As a result, the peak value 42 is 42÷(15/14)×(15/10)=58.8, which is 5 from the gain table in Figure 18.
9, and the conversion width of the 6-bit A/D converter 205 can be used effectively for subsequent document reading. FIG. 19 shows an operation timing chart of the document reading device. Gn
-1 is the gain when reading the previous original, G0 is the reference gain (P4 to P0 = 1, 1, 1, 0), and Gn is the gain when reading the current original.

【0008】[0008]

【発明が解決しようとする課題】ところで、光源点灯前
にCCD107のある画素に対する暗時出力を可変利得
アンプ204が基準ゲイン時にサンプリングした値が1
0進法で2だつたとすると、原稿読取り時の修正ゲイン
下における本来の暗時出力は 2÷(15/14)×(15/10)≒3となり、メモ
リ207から読み出した暗時出力値2では補正し切れな
いこととなる不具合があつた。
[Problem to be Solved by the Invention] By the way, the value sampled by the variable gain amplifier 204 at the reference gain of the dark output for a certain pixel of the CCD 107 before the light source is turned on is 1.
If it is 2 in decimal notation, the original dark output under the modified gain when reading the original is 2 ÷ (15/14) x (15/10) ≒ 3, which is the dark output value read from the memory 207. 2 had a problem that could not be completely corrected.

【0009】本発明の目的は、光源消灯時の光電変換素
子の出力レベルの補正を安価に、かつ高精度に行うこと
ができる原稿読取装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a document reading device that can correct the output level of a photoelectric conversion element at low cost and with high precision when the light source is turned off.

【0010】0010

【課題を解決するための手段】上記目的は、光源消灯時
に光電変換素子が出力した画像信号をサンプリングし、
A/D変換して1フレームの画像読取り期間に渡つて記
憶手段に記憶し、この記憶手段からの出力信号のレベル
に基づいて前記光電変換素子から出力される画像信号を
補正する補正手段と、原稿読取りに先立つて基準濃度板
を読取つた時の前記光電変換素子の出力信号レベルに基
づいて、前記光電変換素子の出力信号レベルを所定のレ
ベルに設定する設定手段とを有する原稿読取装置におい
て、光源消灯時の前記光電変換素子の出力信号をサンプ
リングする時の前記設定手段の設定レベルを、前回の原
稿読取り時に前記基準濃度板読取りによつて前記設定手
段が設定したレベルと同一とする第1の手段により達成
される。また上記目的は、光源消灯時に光電変換素子が
出力した画像信号をサンプリングし、A/D変換して1
フレームの画像読取り期間に渡つて記憶手段に記憶し、
この記憶手段からの出力信号のレベルに基づいて前記光
電変換素子から出力される画像信号を補正する補正手段
と、原稿読取りに先立つて基準濃度板を読取つた時の前
記光電変換素子の出力信号レベルに基づいて、前記光電
変換素子の出力信号レベルを所定のレベルに設定する設
定手段と、光源ランプの管面温度を測定するための測温
手段とを有する画像読取装置において、前記測温手段か
らの管面温度情報により、前記基準濃度板を読取つた時
に設定される前記設定手段の設定レベルを事前に予測し
、その設定レベルを光電消灯時の前記光電変換素子の出
力信号をサンプリングする時の設定手段の設定レベルと
する第2の手段により達成される。さらに上記目的は、
光源消灯時に光電変換素子が出力した画像信号をサンプ
リングし、A/D変換して1フレームの画像読取り期間
に渡つて記憶手段に記憶し、この記憶手段からの出力信
号のレベルに基づいて前記光電変換素子から出力される
画像信号を補正する補正手段と、原稿読取りに先立つて
基準濃度板を読取つた時の前記光電変換素子の出力信号
レベルに基づいて、前記光電変換素子の出力信号レベル
を所定のレベルに設定する設定手段と、光源ランプの管
面温度を測定するための測温手段とを有する画像読取装
置において、連続読取り動作を行う場合、光源消灯時の
前記光電変換素子の出力信号サンプリング時の前記設定
手段の設定レベルを、初回は前記測温手段からの管面温
度情報により、前記基準濃度板を読取つた時に設定され
る設定レベルを事前予測して設定し、2回目以降の読取
り動作では前回の読取り動作時に設定されたレベルと同
一の設定レベルとする第3の手段により達成される。
[Means for solving the problem] The above purpose is to sample the image signal output by the photoelectric conversion element when the light source is turned off,
A/D converting means for storing the image signal in a storage means over the image reading period of one frame, and correcting means for correcting the image signal output from the photoelectric conversion element based on the level of the output signal from the storage means; A document reading device comprising a setting means for setting the output signal level of the photoelectric conversion element to a predetermined level based on the output signal level of the photoelectric conversion element when reading a reference density plate prior to reading the document, A first step in which the setting level of the setting means when sampling the output signal of the photoelectric conversion element when the light source is turned off is the same as the level set by the setting means by reading the reference density plate during the previous document reading; This is accomplished by the following means. In addition, the above purpose is to sample the image signal output by the photoelectric conversion element when the light source is turned off, and convert it into an A/D signal.
stored in a storage means over an image reading period of the frame;
a correction means for correcting the image signal output from the photoelectric conversion element based on the level of the output signal from the storage means; and an output signal level of the photoelectric conversion element when reading the reference density plate prior to reading the original. In an image reading device having a setting means for setting the output signal level of the photoelectric conversion element to a predetermined level, and a temperature measuring means for measuring the tube surface temperature of the light source lamp, The setting level of the setting means to be set when reading the reference density plate is predicted in advance based on the tube surface temperature information, and the setting level is used when sampling the output signal of the photoelectric conversion element when the photoelectric conversion element is turned off. This is achieved by the second means of setting the setting level of the setting means. Furthermore, the above purpose is
The image signal output by the photoelectric conversion element when the light source is turned off is sampled, A/D converted, and stored in a storage means over the image reading period of one frame, and the photoelectric conversion element is a correction means for correcting an image signal output from the conversion element; and a predetermined output signal level of the photoelectric conversion element based on the output signal level of the photoelectric conversion element when reading a reference density plate prior to reading the original. When performing a continuous reading operation in an image reading device having a setting means for setting the level to a level of For the first time, the setting level of the setting means at the time is set by predicting in advance the setting level to be set when reading the reference concentration plate based on the tube surface temperature information from the temperature measuring means, and for the second and subsequent readings. The operation is achieved by a third means that sets the same level as the level set during the previous read operation.

【0011】[0011]

【作用】第1の手段においては、光源消灯時に光電変換
素子が出力した画像信号はサンプリングされ、A/D変
換された後、1フレームの画像読取り期間に渡つて記憶
手段に記憶される。補正手段は記憶手段から出力された
画像信号にレベルに基づいて光電変換素子が読取つて出
力する画像信号を補正する。一方、設定手段は原稿読取
り走査に先立つて光電変換素子で基準濃度板を読取つた
出力レベルに基づいて、光電変換素子の出力レベルを所
定のレベルに設定する。前回の原稿読取り時に光電変換
素子で基準濃度板を読取つて設定手段が設定した設定レ
ベルは、次回、光源消灯時に光電変換素子が出力した画
像信号をサンプリングする時の設定手段の設定レベルと
同一とされる。第2の手段においては、測温手段は光源
ランプの管面温度を測定し、管面温度情報を制御手段に
送信する。制御手段はその管面温度情報により、光電変
換素子で基準濃度板を読取つて設定手段が設定する設定
レベルを予測し、その設定レベルに従つて光源消灯時に
光電変換素子が出力した画像信号をサンプリングする。 第3の手段においては、連続読取り動作を行う場合、初
回は上記の設定レベルの予測による設定レベルに従つて
、2回目以降は前回の読取り動作時に基準濃度板を読取
つて設定された設定レベルに従つて光源消灯時に光電変
換素子が出力した画像信号をサンプリングする。
In the first means, the image signal output by the photoelectric conversion element when the light source is turned off is sampled, A/D converted, and then stored in the storage means over the image reading period of one frame. The correction means corrects the image signal read and output by the photoelectric conversion element based on the level of the image signal output from the storage means. On the other hand, the setting means sets the output level of the photoelectric conversion element to a predetermined level based on the output level obtained by reading the reference density plate with the photoelectric conversion element prior to document reading scanning. The setting level set by the setting means by reading the reference density plate with the photoelectric conversion element during the previous document reading is the same as the setting level of the setting means when sampling the image signal output by the photoelectric conversion element next time when the light source is turned off. be done. In the second means, the temperature measuring means measures the tube surface temperature of the light source lamp and transmits tube surface temperature information to the control means. Based on the tube surface temperature information, the control means reads the reference density plate with the photoelectric conversion element, predicts the setting level to be set by the setting means, and samples the image signal output by the photoelectric conversion element when the light source is turned off according to the setting level. do. In the third means, when performing continuous reading operations, the first reading is performed according to the setting level based on the prediction of the setting level described above, and from the second time onwards, the setting level is set by reading the reference density plate during the previous reading operation. Therefore, the image signal output by the photoelectric conversion element when the light source is turned off is sampled.

【0012】0012

【実施例】以下、本発明の実施例を図面に基づき説明す
る。なお、従来例と同一もしくは同一とみなせる個所に
は同一符号を付して重複する説明は省略する。まず、従
来例と同じ回路構成を有する第1の実施例を説明する。 前述のように、光源ランプ照度が、経時変化、温度依存
性(特に蛍光灯使用時)により変動するとは言え、各読
取り動作においては安定していることに着目し、本実施
例においては、暗時出力サンプリング時のアンプゲイン
を、基準濃度板読取りによるゲイン修正に備えた基準ゲ
インではなく、前回読取り時に設定したゲインとする。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings. Note that the same reference numerals are given to parts that are the same as or can be considered to be the same as in the conventional example, and redundant explanations will be omitted. First, a first embodiment having the same circuit configuration as the conventional example will be described. As mentioned above, although the illuminance of the light source lamp fluctuates due to changes over time and temperature dependence (particularly when fluorescent lamps are used), we focused on the fact that it is stable during each reading operation, and in this example, we The amplifier gain at the time of output sampling is set to the gain set at the previous reading, rather than the reference gain prepared for gain correction by reading the reference density plate.

【0013】スキヤナの原稿読取り速度に対して照度変
動は緩やかなので、例えば、今回のゲイン制御信号がP
4 〜P0 =10(1,0,1,0)だとすると、前
回の制御信号は10に対して±1以内であり、仮に9(
1,0,0,1)であつたとすると、暗時出力サンプリ
ング値は 2÷(15/14)×(15/9)≒3で正しく補正さ
れることとなる。この場合のタイミングチヤートを図3
に示す。
Since illuminance fluctuations are gradual with respect to the document reading speed of the scanner, for example, if the current gain control signal is
4 ~ P0 = 10 (1, 0, 1, 0), the previous control signal was within ±1 with respect to 10, and if 9 (
1, 0, 0, 1), the dark output sampling value will be correctly corrected by 2÷(15/14)×(15/9)≈3. Figure 3 shows the timing chart in this case.
Shown below.

【0014】本実施例においては、可変利得アンプ20
4(図17)を用いて、光電変換素子出力を適正レベル
に変換する例を説明したが、検出したピーク値をD−A
変換し、A/D変換器の変換基準電圧として与える方法
、または検出したピーク値を周波数変換し、光電変換素
子の光蓄積時間を可変する方法でも容易に実現できる。 それぞれの場合に対応する変形例の概要画像処理ブロツ
ク図を図2、図3に示す。
In this embodiment, the variable gain amplifier 20
4 (Fig. 17) was used to explain an example of converting the output of a photoelectric conversion element to an appropriate level.
This can be easily realized by converting the detected peak value and applying it as a conversion reference voltage of an A/D converter, or by frequency converting the detected peak value and varying the light accumulation time of the photoelectric conversion element. A schematic image processing block diagram of a modified example corresponding to each case is shown in FIGS. 2 and 3.

【0015】図2において、209はD/A変換器であ
り、ピーク検知回路208で検出したピーク値をD−A
変換し、A/D変換器205に変換基準電圧として与え
ている。
In FIG. 2, 209 is a D/A converter, which converts the peak value detected by the peak detection circuit 208 into a D/A converter.
The voltage is converted and applied to the A/D converter 205 as a conversion reference voltage.

【0016】図3において、210は周波数変換器であ
り、ピーク検知回路208で検出したピーク値を周波数
変換し、CCD107の光蓄積時間を可変にしている。
In FIG. 3, a frequency converter 210 converts the frequency of the peak value detected by the peak detection circuit 208, thereby making the light accumulation time of the CCD 107 variable.

【0017】次に光源ランプの照度が光源温度依存性を
有する場合の例を示す第2の実施例を説明する。前述し
たように、光源が特に蛍光灯の場合は照度が蛍光灯の管
面温度に依存して変動することに着目し、本実施例にお
いては、装置本体の制御部内に予め格納された光源ラン
プの管面温度−照度比データと、ある管面温度における
基準白色板読取り時の実照度値より、原稿読取り動作時
の照度を光源点灯前に予測し、この予測値により可変利
得アンプ204の利得(ゲイン)を設定し、暗時出力の
サンプリングを行う。
Next, a second embodiment will be described in which the illuminance of the light source lamp has dependence on the light source temperature. As mentioned above, we focused on the fact that when the light source is a fluorescent lamp, the illuminance varies depending on the tube surface temperature of the fluorescent lamp. The illuminance during the document reading operation is predicted before the light source is turned on based on the tube surface temperature - illuminance ratio data and the actual illuminance value when reading the reference white board at a certain tube surface temperature, and this predicted value is used to adjust the gain of the variable gain amplifier 204. (gain) and sample the dark output.

【0018】図8は蛍光灯(光源ランプ)103の要部
外観図であり、光路を遮断しない位置の蛍光灯管面に配
置された温度センサ(例えばサーミスタ、熱電対)30
1で管面温度をモニタする。
FIG. 8 is an external view of the main parts of the fluorescent lamp (light source lamp) 103, in which a temperature sensor (eg, thermistor, thermocouple) 30 is placed on the surface of the fluorescent lamp at a position that does not block the optical path.
1 to monitor the tube surface temperature.

【0019】図4は画像信号処理概略ブロツク図で、制
御部211は温度センサ301からの管面温度とピーク
検出回路208からのデータにより可変利得アンプ20
4を制御する。図9は代表的な蛍光灯の管面温度−照度
比特性を示すグラフであり、制御部211はこのような
特性をデータ化して、図10に示す管面温度に対する離
散的照度比データとして格納している。
FIG. 4 is a schematic block diagram of image signal processing, in which the control section 211 controls the variable gain amplifier 20 based on the tube surface temperature from the temperature sensor 301 and data from the peak detection circuit 208.
Control 4. FIG. 9 is a graph showing the tube surface temperature-illuminance ratio characteristics of a typical fluorescent lamp, and the control unit 211 converts such characteristics into data and stores it as discrete illuminance ratio data with respect to the tube surface temperature shown in FIG. are doing.

【0020】次に、図11ないし図13に示すフローチ
ヤートに基づき第2の実施例の動作を述べる。図11は
電源オン後のシーケンス制御を示したものであり、先ず
、蛍光灯103、第1ミラー104、第2、第3ミラー
105a,105b等の走行体をホーム位置に戻す(ス
テツプ1;S1以下同様)。この時光路原稿載置面上の
読取り開始位置には基準白色板102が配置されている
。S2ないしS5にて管面温度T0における光源照度デ
ータのピーク値D0 を採取し、メモリ207に記憶す
る。S6にて蛍光灯103をオフし、原稿読取り開始に
備える。
Next, the operation of the second embodiment will be described based on the flowcharts shown in FIGS. 11 to 13. FIG. 11 shows the sequence control after the power is turned on. First, the fluorescent lamp 103, the first mirror 104, the second mirror 105a, the third mirror 105b, etc. are returned to the home position (step 1; S1 Same below). At this time, a reference white plate 102 is placed at the reading start position on the optical path document placement surface. In S2 to S5, the peak value D0 of the light source illuminance data at the tube surface temperature T0 is collected and stored in the memory 207. In S6, the fluorescent lamp 103 is turned off and preparations are made to start reading the document.

【0021】図12および図13は読取り動作のサブル
ーチンを示したものであり、読取り動作が開始されると
、図12のS10にて現時点での管面温度Tを採取し、
仮に現在、光源を点灯したら、照度はどれだけ得られる
かを図10の管面温度−照度比データより演算にて予測
し(S11)、この上位4ビツトをS12にて可変利得
アンプ204の利得に設定する。この予測照度を与える
利得の設定下で、S13にて暗時出力をメモリ207へ
ホールドさせ、補正動作を行わせる。そしてS14〜1
6にて従来例と同様に、実照度に合わせた可変利得アン
プ204のゲイン設定を行い、以後図13に示すように
原稿読取り動作を行い(S17)、終了したら(S18
でYES)次の読取り開始に備えて光源オフ(S19)
、可変利得アンプ204の基準利得設定(S20)、暗
時出力サンプリング(S21)、走行体リターン(S2
2)を行う。
FIGS. 12 and 13 show the subroutine of the reading operation. When the reading operation is started, the current tube surface temperature T is collected in S10 of FIG.
If the light source is currently turned on, how much illuminance will be obtained is predicted by calculation from the tube surface temperature - illuminance ratio data in FIG. 10 (S11), and the upper 4 bits are used as the gain of the variable gain amplifier 204 in S12 Set to . Under the setting of the gain that provides this predicted illuminance, the dark output is held in the memory 207 in S13, and a correction operation is performed. And S14~1
6, similarly to the conventional example, the gain of the variable gain amplifier 204 is set in accordance with the actual illuminance, and thereafter the document reading operation is performed as shown in FIG. 13 (S17), and when it is finished (S18
(YES) Turn off the light source in preparation for starting the next reading (S19)
, reference gain setting of variable gain amplifier 204 (S20), dark output sampling (S21), traveling body return (S2
Do 2).

【0022】なお、S2、S5およびS10、S16に
て採取した実機データを図10の管面温度−照度比デー
タに反映、更新すれば、装置動作の経験値により予測は
一層正確になり、かつ、光源特性の経時劣化にも対応で
きる。
Note that if the actual machine data collected in S2, S5, S10, and S16 is reflected and updated in the tube surface temperature-illumination ratio data in FIG. , it is also possible to cope with deterioration of light source characteristics over time.

【0023】図6は第2の実施例の動作のタイミングチ
ヤートであり、Gne は予測によつて得たゲイン、G
0 は基準ゲイン、Gn− 1 は前回原稿読取り時ゲ
イン、Gn は今回原稿読取り時ゲインである。
FIG. 6 is a timing chart of the operation of the second embodiment, where Gne is the gain obtained by prediction, and Gne is the gain obtained by prediction.
0 is the reference gain, Gn-1 is the gain when reading the previous original, and Gn is the gain when reading the current original.

【0024】最後に、第2の実施例の動作の一部を変更
した第3の実施例について、第2の実施例と異なるとこ
ろのみ説明する。前述したように、光源ランプ照度変動
が1度の原稿読取り動作時間に比べると緩やかなこと、
また特に蛍光灯の場合は照度が管面温度に大きく依存す
ることに着目し、本実施例においては、独立した1回の
原稿読取り動作時、あるいは連続した複数回の原稿読取
りの初回動作時においては、装置内に予め格納された光
源ランプの管面温度−照度比データと、ある管面温度に
おける基準白色板読取り時の実照度値より、原稿読取り
動作時の照度を光源点灯前に予測し、この予測値により
可変利得アンプ204の利得を設定し、暗時出力のサン
プリングを行う。
Finally, regarding a third embodiment in which a part of the operation of the second embodiment is changed, only the differences from the second embodiment will be described. As mentioned above, the illuminance fluctuation of the light source lamp is gradual compared to the time required for one document reading operation;
In addition, we focused on the fact that especially in the case of fluorescent lamps, the illumination intensity is largely dependent on the tube surface temperature, and in this embodiment, the illuminance is predicts the illuminance during document reading operation before the light source is turned on, based on the tube surface temperature-illuminance ratio data of the light source lamp stored in advance in the device and the actual illuminance value when reading a reference white board at a certain tube surface temperature. , the gain of the variable gain amplifier 204 is set based on this predicted value, and the dark output is sampled.

【0025】また、連続した複数回の原稿読取りの2回
目以後の動作においては、前回の原稿読取り時に基準白
色板読取り時に設定したゲインにて暗時出力のサンプリ
ングを行う。
In addition, in the second and subsequent operations of a plurality of consecutive document readings, the dark output is sampled at the gain set at the time of reading the reference white board during the previous document reading.

【0026】図14、図15は第2の実施例の図12、
図13のフローチヤートに対応する読取り開始サブルー
チンのフローチヤートであり、図12、図13のフロー
チヤートと同一の処理ステツプ部分には同一のステツプ
番号(S1、S2等)を付してある。図12、図13の
フローチヤートと異なるところのみ説明すると、図15
において、光源をオフした後(S19)、暗時出力のサ
ンプリングモードに設定する(S23)。ここで次の原
稿読取り動作があるか否か(連続読取りか否か)を判断
し(S24)、なければ可変利得アンプ204に基準利
得を設定し(S25)、走行体をリターンさせて動作を
終了させる(S26)。
FIGS. 14 and 15 are the second embodiment shown in FIG.
This is a flowchart of a reading start subroutine corresponding to the flowchart of FIG. 13, and the same processing steps as in the flowcharts of FIGS. 12 and 13 are given the same step numbers (S1, S2, etc.). To explain only the differences from the flowcharts in FIGS. 12 and 13, FIG.
After turning off the light source (S19), the dark output sampling mode is set (S23). Here, it is determined whether there is a next document reading operation (continuous reading or not) (S24), and if not, a reference gain is set in the variable gain amplifier 204 (S25), and the traveling body is returned to resume the operation. The process is terminated (S26).

【0027】次の原稿読取り動作がある場合は、可変利
得アンプ204の利得設定を原稿読取り時のままで走行
体をリターンさせ(S27)、S13に戻り、暗時出力
をメモリ207へホールドさせ(S13)、以後S14
ないしS19およびS24で前回同様の動作を行う。最
終原稿読取り動作完了時に、S25、S26を経て一連
の動作が終了する。
If there is a next document reading operation, the traveling body is returned with the gain setting of the variable gain amplifier 204 unchanged at the time of document reading (S27), the process returns to S13, and the dark output is held in the memory 207 (S27). S13), hereinafter S14
Or in S19 and S24, the same operation as last time is performed. When the final document reading operation is completed, the series of operations ends through S25 and S26.

【0028】この場合のタイミングチヤートを図7に示
す。Gn e は予測によつて得たゲイン、G0 は基
準ゲイン、Gn は初回原稿読取り時ゲイン、Gn +
 1 は2回目原稿読取り時ゲイン、Gn + 2 は
3回目原稿読取り時ゲインである。
A timing chart in this case is shown in FIG. Gn e is the gain obtained by prediction, G0 is the reference gain, Gn is the gain when reading the original for the first time, Gn +
1 is the gain when reading the document for the second time, and Gn + 2 is the gain when reading the document for the third time.

【0029】[0029]

【発明の効果】請求項1および2記載の発明によれば、
光源消灯時に光電変換素子の出力信号をサンプリングす
る時の設定手段の設定レベルを、前回の原稿読取り時に
基準濃度板読取りによつて設定したレベルと同一とする
ことで、また、請求項3ないし5記載の発明によれば、
測温手段からの光源ランプ管面温度情報により、基準濃
度板読取り時に設定される設定手段の設定レベルを事前
に予測し、光源消灯時に光電変換素子の出力信号をサン
プリングする時の設定手段の設定レベルとすることで、
さらに請求項6記載の発明によれば、連続読取り動作を
行う場合、光源消灯時に光電変換素子の出力信号のサン
プリング時の前記設定手段の設定レベルを、初回は前記
測温手段からの管面温度情報により、基準白色板読取り
時に決定される設定レベルを事前予測して設定し、2回
目以降の動作では前回の読取り動作時に決定されたレベ
ルと同一の設定レベルとすることで、暗時出力サンプリ
ング時の光電変換素子出力レベル設定手段の設定を原稿
読取り時のそれとほぼ同一にできるため、正確な光源消
灯時の画像信号出力補正が行えるので読取り時間の増加
を招くことなく、高階調、高精度の原稿読取装置を提供
できる。
Effects of the Invention According to the invention described in claims 1 and 2,
By making the setting level of the setting means when sampling the output signal of the photoelectric conversion element when the light source is turned off to be the same as the level set by reading the reference density plate during the previous reading of the document, According to the invention described,
The setting level of the setting means to be set when reading the reference density plate is predicted in advance based on the light source lamp tube surface temperature information from the temperature measuring means, and the setting means is set when sampling the output signal of the photoelectric conversion element when the light source is turned off. By setting the level,
Furthermore, according to the invention as set forth in claim 6, when performing a continuous reading operation, the setting level of the setting means when sampling the output signal of the photoelectric conversion element when the light source is turned off is initially set to the tube surface temperature from the temperature measuring means. Based on the information, the setting level determined when reading the reference white board is predicted and set in advance, and the second and subsequent operations are set to the same setting level as the level determined during the previous reading operation. Since the setting of the photoelectric conversion element output level setting means can be almost the same as that when reading the original, accurate image signal output correction can be performed when the light source is turned off, so there is no increase in reading time, and high gradation and high precision can be achieved. It is possible to provide a document reading device of

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本願の発明の第1の実施例に係る原稿読取装置
の画像信号処理系の概略ブロツク図である。
FIG. 1 is a schematic block diagram of an image signal processing system of a document reading device according to a first embodiment of the invention of the present application.

【図2】第1の実施例の変形例に係る原稿読取装置の画
像信号処理系の概略ブロツク図である。
FIG. 2 is a schematic block diagram of an image signal processing system of a document reading device according to a modification of the first embodiment.

【図3】第1の実施例の変形例に係る原稿読取装置の画
像信号処理系の概略ブロツク図である。
FIG. 3 is a schematic block diagram of an image signal processing system of a document reading device according to a modification of the first embodiment.

【図4】第3の実施例に係る原稿読取装置の画像信号処
理系の概略ブロツク図である。
FIG. 4 is a schematic block diagram of an image signal processing system of a document reading device according to a third embodiment.

【図5】第1の実施例に係るタイミングチヤートである
FIG. 5 is a timing chart according to the first embodiment.

【図6】第2の実施例に係るタイミングチヤートである
FIG. 6 is a timing chart according to a second embodiment.

【図7】第3の実施例に係るタイミングチヤートである
FIG. 7 is a timing chart according to a third embodiment.

【図8】蛍光灯の要部外観図である。FIG. 8 is an external view of main parts of a fluorescent lamp.

【図9】蛍光灯の管面温度−照度比特性図である。FIG. 9 is a tube surface temperature-illuminance ratio characteristic diagram of a fluorescent lamp.

【図10】蛍光灯の管面温度−照度比特性データの内容
を示す図表である。
FIG. 10 is a chart showing the contents of tube surface temperature-illuminance ratio characteristic data of a fluorescent lamp.

【図11】第2の実施例に係る電源オン時のメインルー
チンのフローチヤートである。
FIG. 11 is a flowchart of a main routine when the power is turned on according to the second embodiment.

【図12】第2の実施例に係る読取り開始時のサブルー
チンの前段部のフローチヤートである。
FIG. 12 is a flowchart of the first stage of a subroutine at the start of reading according to the second embodiment.

【図13】第2の実施例に係る読取り開始時のサブルー
チンの後段部のフローチヤートである。
FIG. 13 is a flowchart of the latter part of a subroutine at the start of reading according to the second embodiment.

【図14】第3の実施例に係る読取り開始時のサブルー
チンの前段部のフローチヤートである。
FIG. 14 is a flowchart of the first part of a subroutine at the start of reading according to the third embodiment.

【図15】第3の実施例に係る読取り開始時のサブルー
チンの後段部のフローチヤートである。
FIG. 15 is a flowchart of the latter part of a subroutine at the start of reading according to the third embodiment.

【図16】原稿読取装置の光学系の簡略構成図である。FIG. 16 is a simplified configuration diagram of an optical system of a document reading device.

【図17】可変利得アンプの構成図である。FIG. 17 is a configuration diagram of a variable gain amplifier.

【図18】可変利得アンプのゲインデータを示す図表で
ある。
FIG. 18 is a chart showing gain data of a variable gain amplifier.

【図19】従来例に係るタイミングチヤートである。FIG. 19 is a timing chart according to a conventional example.

【符号の説明】[Explanation of symbols]

101  コンタクトガラス 102  基準白色板 103  光源ランプ 107  CCD 204  可変利得アンプ 205  A/D変換器 207  メモリ 208  ピーク検知回路 209  D/A変換器 210  周波数変換器 211  制御部 301  温度センサ 101 Contact glass 102 Standard white plate 103 Light source lamp 107 CCD 204 Variable gain amplifier 205 A/D converter 207 Memory 208 Peak detection circuit 209 D/A converter 210 Frequency converter 211 Control unit 301 Temperature sensor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  光源消灯時に光電変換素子が出力した
画像信号をサンプリングし、A/D変換して1フレーム
の画像読取り期間に渡つて記憶手段に記憶し、この記憶
手段からの出力信号のレベルに基づいて前記光電変換素
子から出力される画像信号を補正する補正手段と、原稿
読取りに先立つて基準濃度板を読取つた時の前記光電変
換素子の出力信号レベルに基づいて、前記光電変換素子
の出力信号レベルを所定のレベルに設定する設定手段と
を有する原稿読取装置において、光源消灯時の前記光電
変換素子の出力信号をサンプリングする時の前記設定手
段の設定レベルを、前回の原稿読取り時に前記基準濃度
板読取りによつて前記設定手段が設定したレベルと同一
とすることを特徴とする原稿読取装置。
1. An image signal output by a photoelectric conversion element when the light source is turned off is sampled, A/D converted, and stored in a storage means over the image reading period of one frame, and the level of the output signal from the storage means is determined. a correction means for correcting the image signal output from the photoelectric conversion element based on the output signal level of the photoelectric conversion element based on the output signal level of the photoelectric conversion element when reading the reference density plate prior to reading the original; In an original reading device having a setting means for setting an output signal level to a predetermined level, the setting level of the setting means when sampling the output signal of the photoelectric conversion element when the light source is turned off is set to the level set by the setting means when sampling the output signal of the photoelectric conversion element when the light source is turned off. A document reading device characterized in that the level is set to be the same as the level set by the setting means by reading a reference density plate.
【請求項2】  請求項1記載において、前記設定手段
は、前記A/D変換器に対して変換の基準電圧を与える
電圧印加手段、あるいは前記光電変換素子の出力信号を
可変的に増幅する可変利得増幅手段、あるいは前記光電
変換素子の電荷蓄積時間を制御する制御手段であること
を特徴とする原稿読取装置。
2. The setting means according to claim 1, wherein the setting means is a voltage applying means for applying a conversion reference voltage to the A/D converter, or a variable voltage applying means for variably amplifying the output signal of the photoelectric conversion element. A document reading device characterized in that it is a gain amplification means or a control means for controlling a charge accumulation time of the photoelectric conversion element.
【請求項3】  光源消灯時に光電変換素子が出力した
画像信号をサンプリングし、A/D変換して1フレーム
の画像読取り期間に渡つて記憶手段に記憶し、この記憶
手段からの出力信号のレベルに基づいて前記光電変換素
子から出力される画像信号を補正する補正手段と、原稿
読取りに先立つて基準濃度板を読取つた時の前記光電変
換素子の出力信号レベルに基づいて、前記光電変換素子
の出力信号レベルを所定のレベルに設定する設定手段と
、光源ランプの管面温度を測定するための測温手段とを
有する画像読取装置において、前記測温手段からの管面
温度情報により、前記基準濃度板を読取つた時に設定さ
れる前記設定手段の設定レベルを事前に予測し、その設
定レベルを光電消灯時の前記光電変換素子の出力信号を
サンプリングする時の設定手段の設定レベルとすること
を特徴とする画像読取装置。
3. The image signal output by the photoelectric conversion element when the light source is turned off is sampled, A/D converted, and stored in storage means over the image reading period of one frame, and the level of the output signal from this storage means is determined. a correction means for correcting the image signal output from the photoelectric conversion element based on the output signal level of the photoelectric conversion element based on the output signal level of the photoelectric conversion element when reading the reference density plate prior to reading the original; In an image reading device having a setting means for setting an output signal level to a predetermined level and a temperature measuring means for measuring a tube surface temperature of a light source lamp, the reference temperature is determined based on tube surface temperature information from the temperature measuring means. The setting level of the setting means that is set when reading the density plate is predicted in advance, and the setting level is used as the setting level of the setting means when sampling the output signal of the photoelectric conversion element when the photoelectric conversion element is turned off. Characteristic image reading device.
【請求項4】  請求項3記載において、前記設定手段
の事前予測は、予め記憶手段に格納されている光源ラン
プの管面温度対照度比特性データと、ある管面温度にお
ける基準濃度板を読取つた時の前記光電変換素子の出力
値により演算したものであることを特徴とする画像読取
装置。
4. The advance prediction by the setting means includes reading tube surface temperature contrast intensity ratio characteristic data of the light source lamp stored in advance in the storage means and a reference density plate at a certain tube surface temperature. An image reading device characterized in that the image reading device is calculated based on an output value of the photoelectric conversion element when the photoelectric conversion element is detected.
【請求項5】  請求項3記載において、前記光源ラン
プの管面温度対照度比特性は、前記測温度手段が測定し
た管面温度と、基準濃度板を読取つた時の前記光電変換
素子の出力値に基づいて更新されることを特徴とする画
像読取装置。
5. In claim 3, the tube surface temperature contrast intensity ratio characteristic of the light source lamp is determined by the tube surface temperature measured by the temperature measuring means and the output of the photoelectric conversion element when reading the reference density plate. An image reading device characterized in that the image reading device is updated based on a value.
【請求項6】  光源消灯時に光電変換素子が出力した
画像信号をサンプリングし、A/D変換して1フレーム
の画像読取り期間に渡つて記憶手段に記憶し、この記憶
手段からの出力信号のレベルに基づいて前記光電変換素
子から出力される画像信号を補正する補正手段と、原稿
読取りに先立つて基準濃度板を読取つた時の前記光電変
換素子の出力信号レベルに基づいて、前記光電変換素子
の出力信号レベルを所定のレベルに設定する設定手段と
、光源ランプの管面温度を測定するための測温手段とを
有する画像読取装置において、連続読取り動作を行う場
合、光源消灯時の前記光電変換素子の出力信号サンプリ
ング時の前記設定手段の設定レベルを、初回は前記測温
手段からの管面温度情報により、前記基準濃度板を読取
つた時に設定される設定レベルを事前予測して設定し、
2回目以降の読取り動作では前回の読取り動作時に設定
されたレベルと同一の設定レベルとすることを特徴とす
る画像読取装置。
6. The image signal output by the photoelectric conversion element when the light source is turned off is sampled, A/D converted, and stored in storage means over the image reading period of one frame, and the level of the output signal from this storage means is determined. a correction means for correcting the image signal output from the photoelectric conversion element based on the output signal level of the photoelectric conversion element based on the output signal level of the photoelectric conversion element when reading the reference density plate prior to reading the original; In an image reading device having a setting means for setting the output signal level to a predetermined level and a temperature measuring means for measuring the tube surface temperature of the light source lamp, when performing a continuous reading operation, the photoelectric conversion when the light source is turned off is performed. The setting level of the setting means when sampling the output signal of the element is initially set by predicting in advance the setting level to be set when reading the reference concentration plate based on the tube surface temperature information from the temperature measuring means,
An image reading device characterized in that in a second and subsequent reading operations, the same set level as the level set in the previous reading operation is set.
JP3166117A 1991-06-12 1991-06-12 Original reader Pending JPH04365264A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3166117A JPH04365264A (en) 1991-06-12 1991-06-12 Original reader
US07/898,198 US5442464A (en) 1991-06-12 1992-06-12 Image reading apparatus and method with improved method for correcting output level of photoelectric conversion means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3166117A JPH04365264A (en) 1991-06-12 1991-06-12 Original reader

Publications (1)

Publication Number Publication Date
JPH04365264A true JPH04365264A (en) 1992-12-17

Family

ID=15825347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3166117A Pending JPH04365264A (en) 1991-06-12 1991-06-12 Original reader

Country Status (2)

Country Link
US (1) US5442464A (en)
JP (1) JPH04365264A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726771A (en) * 1994-10-31 1998-03-10 Hewlett-Packard Company System and method for optimizing tonal resolution in an optical scanner
US5902994A (en) * 1997-05-06 1999-05-11 Eastman Kodak Company Apparatus for calibrating a linear image sensor
US6879730B1 (en) * 1999-04-12 2005-04-12 Fuji Photo Film Co., Ltd. Sensitivity correction method and image reading device
JP3885987B2 (en) * 2000-05-18 2007-02-28 株式会社リコー Image reading apparatus and image forming apparatus
JP3918479B2 (en) * 2001-09-11 2007-05-23 セイコーエプソン株式会社 Reference data setting method and image reading apparatus for shading correction
US20100031014A1 (en) * 2006-12-06 2010-02-04 Shuji Senda Information concealing device, method, and program
JP4458143B2 (en) * 2007-10-10 2010-04-28 セイコーエプソン株式会社 Image transfer apparatus and image display control method in image transfer
JP4582218B2 (en) * 2008-07-28 2010-11-17 ソニー株式会社 Stereoscopic image display device and manufacturing method thereof
JP4525808B2 (en) * 2008-07-28 2010-08-18 ソニー株式会社 Stereoscopic image display device and manufacturing method thereof
JP2010032675A (en) * 2008-07-28 2010-02-12 Sony Corp Method for manufacturing stereoscopic image display, and stereoscopic image display
US20100033557A1 (en) * 2008-07-28 2010-02-11 Sony Corporation Stereoscopic image display and method for producing the same
JP4582219B2 (en) * 2008-07-28 2010-11-17 ソニー株式会社 Stereoscopic image display device and manufacturing method thereof
KR20110106160A (en) * 2010-03-22 2011-09-28 (주)인터큐비트 System for playback of ultra high resolution video using multiple displays
US9111374B2 (en) * 2011-11-29 2015-08-18 Brother Kogyo Kabushiki Kaisha Mobile terminal, method for controlling the same, and non-transitory storage medium storing program to be executed by mobile terminal

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216503A (en) * 1979-03-26 1980-08-05 Xerox Corporation Signal restoration and gain control for image viewing devices
JPS58177071A (en) * 1982-04-09 1983-10-17 Fuji Xerox Co Ltd Shading compensation device
US4578711A (en) * 1983-12-28 1986-03-25 International Business Machines (Ibm) Video data signal digitization and correction system
JPH065592B2 (en) * 1984-03-02 1994-01-19 キヤノン株式会社 Recording or playback device
US4602291A (en) * 1984-05-09 1986-07-22 Xerox Corporation Pixel non-uniformity correction system
US4723174A (en) * 1985-04-09 1988-02-02 Fuji Xerox Co., Ltd. Picture image processor
JPH0546373Y2 (en) * 1987-01-09 1993-12-03
JPS63263875A (en) * 1987-04-21 1988-10-31 Sharp Corp Image reader
US5130788A (en) * 1987-05-21 1992-07-14 Minolta Camera Kabushiki Kaisha Shading correction using FIFO memory for correction data
US4803556A (en) * 1987-06-15 1989-02-07 Xerox Corporation Scan lamp intensity control for raster input scanners
JPS641373A (en) * 1987-06-24 1989-01-05 Toshiba Corp Shading correcting reader
US4920428A (en) * 1988-07-08 1990-04-24 Xerox Corporation Offset, gain and bad pixel correction in electronic scanning arrays
US5130822A (en) * 1989-03-10 1992-07-14 Hitachi, Ltd. Method and apparatus for correcting an image signal
JPH02261254A (en) * 1989-03-31 1990-10-24 Fuji Photo Film Co Ltd Electronic copying device
JPH02311083A (en) * 1989-05-26 1990-12-26 Ricoh Co Ltd Original reader

Also Published As

Publication number Publication date
US5442464A (en) 1995-08-15

Similar Documents

Publication Publication Date Title
JPH04365264A (en) Original reader
US4745488A (en) Image reader
US4723174A (en) Picture image processor
US5014332A (en) Image reader
JPH0354509B2 (en)
JPH0249589B2 (en)
US5036186A (en) Shading correction system for use with an optical scanner
JPH10336444A (en) Image read method and device therefor
JP3604931B2 (en) Image reading device, shading correction method, and storage medium
JPH0354510B2 (en)
JP2698688B2 (en) Light intensity adjustment method
JPH0324827B2 (en)
JPS6041364A (en) Optical reader
JPS63287161A (en) Picture reader
JP2627219B2 (en) Image reading device
JPH0810894B2 (en) Image reader
JPH02116265A (en) Output correcting circuit for information read circuit
JP2575363B2 (en) Image reading device
KR930022817A (en) Image reading device and control method
JPS61236271A (en) Light quantity adjusting device for image reader
JPH10327322A (en) Picture reader
JPS59128871A (en) Picture reader
JP2001223895A (en) Picture reader
JPH03106178A (en) Picture reader
JPH01204568A (en) Processing unit for slice level automatic adjustment read signal