JP2000115644A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JP2000115644A
JP2000115644A JP10282942A JP28294298A JP2000115644A JP 2000115644 A JP2000115644 A JP 2000115644A JP 10282942 A JP10282942 A JP 10282942A JP 28294298 A JP28294298 A JP 28294298A JP 2000115644 A JP2000115644 A JP 2000115644A
Authority
JP
Japan
Prior art keywords
defect
area
correction
priority
defective pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10282942A
Other languages
Japanese (ja)
Other versions
JP2000115644A5 (en
Inventor
Hirobumi Nomura
博文 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP10282942A priority Critical patent/JP2000115644A/en
Publication of JP2000115644A publication Critical patent/JP2000115644A/en
Publication of JP2000115644A5 publication Critical patent/JP2000115644A5/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a solid-state image pickup device for performing effective correction to defective pixels and superior improving image quality, without making the constitution of a storage circuit or the like to a large scale. SOLUTION: In order to control the entire system of a video camera, a CPU 11 is provided with a key input part 12, an EEPROM control part 13, a defect detection/correction information preparation part 14, a camera signal control part 15, a TG control part 16 and a diaphragm control part 17. Also, the CPU 11 is provided with an EEPROM 18 as a storage means and a start key 19, a detection level setting key 20, an area-setting key 21 and a priority setting key 22, etc., as operation means. Thus, an image pickup area is sectioned by the area setting key 21, and the priority of the defect correction is attached by the priority-setting key 22. Also, the level of a defect is set by the detection level setting key 20 and the defect is corrected in the priority order of the area and in the order of level of the defects.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体撮像装置に関
し、さらに詳しくは欠陥画素の信号出力を補正する機能
を有する固体撮像装置に関する。
The present invention relates to a solid-state imaging device, and more particularly, to a solid-state imaging device having a function of correcting a signal output of a defective pixel.

【0002】[0002]

【従来の技術】CCD等の半導体で形成した固体撮像素
子では、半導体の局所的な結晶欠陥等によって感度が低
下する欠陥画素が生じることがある。従来より、この欠
陥画素の撮像出力に起因する画質劣化を信号処理によっ
て補正する方法が種々提案されている。その1例として
固体撮像素子に含まれる欠陥画素についての欠陥データ
を、それを製造した半導体工場で検出してROM等の不
揮発性メモリに記憶させ、通常の撮影時に、その不揮発
性メモリに記憶されている欠陥データに基づいて欠陥画
素を特定し、その撮像出力を補正する方法がある。
2. Description of the Related Art In a solid-state image pickup device formed of a semiconductor such as a CCD, a defective pixel whose sensitivity is lowered due to a local crystal defect of the semiconductor or the like sometimes occurs. Conventionally, various methods have been proposed for correcting the image quality deterioration caused by the imaging output of the defective pixel by signal processing. As an example, defect data on defective pixels included in a solid-state imaging device is detected at a semiconductor factory where it is manufactured and stored in a non-volatile memory such as a ROM, and is stored in the non-volatile memory during normal photographing. There is a method of specifying a defective pixel based on the defective data and correcting the imaging output.

【0003】これに対して、固体撮像素子の静電破壊や
経時変化等によって製品化後に発生する欠陥画素につい
ては、ビデオカメラに欠陥検出、および欠陥補正の機能
を持たせることで対処している。その方法として図5に
示すようにビデオカメラ側で欠陥画素を検出するため
に、従来は固体撮像素子であるCCD3の撮像面31の
全領域を欠陥画素の検出範囲とし、その範囲内の全画素
を通常の走査順に順次走査して各画素の光量データを
得、この光量データを所定の欠陥しきい値と比較して欠
陥しきい値よりも大きいものを欠陥画素と見なし、所定
の欠陥個数に対して、欠陥レベルの大きな画素の順に補
正してきた。
[0003] On the other hand, with respect to defective pixels that occur after commercialization due to electrostatic destruction or aging of the solid-state imaging device, the video camera is provided with a defect detection and defect correction function. . As a method for detecting defective pixels on the video camera side as shown in FIG. 5, the entire area of the imaging surface 31 of the CCD 3 which is conventionally a solid-state image sensor is set as a defective pixel detection range, and all pixels within the range are detected. Are sequentially scanned in the normal scanning order to obtain light amount data of each pixel, and the light amount data is compared with a predetermined defect threshold value, and those larger than the defect threshold value are regarded as defective pixels. On the other hand, the correction is performed in the order of the pixels having the higher defect levels.

【0004】ところでCCD3の撮像面31は映像とし
て出力される有効画素領域32と、それ以外の黒レベル
として出力され、映像とはならない無効画素領域33と
から構成されている。これに対して上述した欠陥補正を
適用すると、欠陥画素g、欠陥画素hが有効画素領域3
2に属する画素であるか、または無効画素領域33に属
する画素であるかを区別することなく、欠陥レベルの大
きいものから順に補正をするものであった。
The imaging surface 31 of the CCD 3 is composed of an effective pixel area 32 output as an image, and an invalid pixel area 33 which is output as a black level and does not become an image. On the other hand, when the above-described defect correction is applied, the defective pixel g and the defective pixel h become the effective pixel area 3
The correction is performed in ascending order of the defect level without distinguishing whether the pixel belongs to the pixel group 2 or the invalid pixel area 33.

【0005】この結果、無効画素領域33に有効画素領
域32よりも大きな欠陥レベルの画素が多くあれば、そ
れらの欠陥画素の補正が先に行なわれるため、実際に映
像として出力される画素に対する補正が十分に行なわれ
ないという問題点があった。また、多数の欠陥画素に対
する補正を可能にしようとすると、記憶回路等の構成が
大規模になるという問題点があった。
As a result, if there are many pixels having a defect level higher than that of the effective pixel region 32 in the invalid pixel region 33, the correction of those defective pixels is performed first. However, there was a problem that the operation was not performed sufficiently. In addition, there is a problem that the configuration of the storage circuit and the like becomes large-scale when it is attempted to correct a large number of defective pixels.

【0006】[0006]

【発明が解決しようとする課題】従って本発明の課題
は、記憶回路等の構成を大規模にすることなく、欠陥画
素に対する効果的な補正を行ない、画質の改善に優れた
固体撮像装置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a solid-state imaging device which can effectively correct defective pixels without increasing the size of a memory circuit or the like and can improve the image quality. Is to do.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題に鑑み
なされたものであって、固体撮像素子の撮像領域を、複
数の領域に分割する領域分割手段と、前記領域分割手段
により分割された領域の各々について、欠陥画素と、該
欠陥画素の出力信号レベルとを検出する欠陥画素検出手
段と、前記欠陥画素の欠陥に関する情報を記憶する記憶
手段と、前記領域分割手段により分割された領域につい
て欠陥補正の優先度を設定する優先度設定手段と、前記
優先度設定手段により設定された領域の優先順であっ
て、さらに、前記欠陥画素検出手段により検出された欠
陥画素の出力信号のレベル順に従って、欠陥画素の出力
信号を前記記憶手段に記憶されている、欠陥に関する情
報に基づいて補正する欠陥補正手段とを具備した固体撮
像装置を構成して、上記課題を解決する。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned problems, and has been made in consideration of the above-mentioned problems, and has an area dividing means for dividing an imaging area of a solid-state image sensor into a plurality of areas; For each of the regions, a defective pixel, a defective pixel detecting unit for detecting an output signal level of the defective pixel, a storage unit for storing information on a defect of the defective pixel, and a region divided by the region dividing unit Priority setting means for setting the priority of defect correction; priority order of the area set by the priority setting means; and further, the level order of the output signal of the defective pixel detected by the defective pixel detecting means. According to, the output signal of the defective pixel is stored in the storage means, comprising a defect correction means for correcting based on information about the defect, comprising a solid-state imaging device, To solve the serial problems.

【0008】本発明の固体撮像装置によれば、欠陥画素
に対する補正領域を任意の領域数に分割し、分割した領
域に優先順位を設定でき、且つ、その領域中で欠陥画素
の出力信号レベルの大きさの順に補正できる。従って、
所定の補正可能な個数の範囲内で、領域の優先順に、且
つ、その領域中で欠陥画素の出力信号レベルの大きさの
順に補正することになり、視覚的に影響の大きな中央部
の欠陥補正を重点的に行なうことが可能となり、効果的
な画質の改善が行なわれる。
According to the solid-state imaging device of the present invention, the correction area for the defective pixel can be divided into an arbitrary number of areas, the divided areas can be set with a priority, and the output signal level of the defective pixel in that area can be set. It can be corrected in order of size. Therefore,
Within the predetermined correctable number range, correction is performed in the priority order of the areas and in the order of the magnitude of the output signal level of the defective pixel in the area. Can be focused on, and effective image quality can be improved.

【0009】[0009]

【発明の実施の形態】本発明はCCDの撮像領域を複数
の領域に分割し、各々の領域に対して優先順位をつけ
て、優先順に、且つ欠陥レベルの大きな順に、補正可能
な個数の範囲内で欠陥補正を行い、画質として目立ちや
すい中央領域の欠陥を重点的に補正して、画質の向上を
図ることを特徴とする固体撮像装置である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention divides an image pickup area of a CCD into a plurality of areas, assigns priorities to the respective areas, and sets a range of the number of correctable numbers in the order of priority and the order of the defect level. The solid-state imaging device is characterized in that the defect correction is performed within the device, and the defect in the central region where the image quality is conspicuous is mainly corrected to improve the image quality.

【0010】つぎに、図1ないし図4を参照して実施の
形態例について説明する。尚、図1は欠陥補正を行なう
ためのシステム構成図であり、図2は CCDの分割領
域と欠陥画素の位置を示す図であり、図3は欠陥補正の
フローチャートであり、図4は補正する欠陥画素を選定
し、順位を定める操作のフローチャートである。
Next, an embodiment will be described with reference to FIGS. FIG. 1 is a system configuration diagram for performing defect correction, FIG. 2 is a diagram showing a divided area of a CCD and positions of defective pixels, FIG. 3 is a flowchart of defect correction, and FIG. It is a flowchart of the operation which selects a defective pixel and determines an order.

【0011】まず、本発明にかかわる欠陥補正のシステ
ム構成について、図1を参照して説明する。このシステ
ムでは欠陥補正の優先領域を指定する手段を有し、欠陥
補正を行なうように指示されたときは、優先させる領域
と検出レベルを補正手段に対して設定し、白い欠陥(以
下、白い欠陥を「欠陥」と略記する)を補正する領域に
優先度を設定すると共に、同一領域内においては欠陥レ
ベルの大きな順に補正順を設定するものである。
First, a system configuration for defect correction according to the present invention will be described with reference to FIG. This system has a means for designating a priority area for defect correction. When an instruction to perform defect correction is given, the priority area and the detection level are set for the correction means, and a white defect (hereinafter, white defect) is set. Are abbreviated as “defects”), the priority is set in an area to be corrected, and the correction order is set in the same area in descending order of the defect level.

【0012】システムの構成は、絞り1とレンズ2とC
CD3でビデオカメラの光学系が構成され、CCD3か
ら映像信号をサンプリングするサンプルホールド回路
(S/H)4、サンプリングされた映像信号をデジタル
信号に変換するアナログ・デジタルコンバータ(A/
D)5、デジタル化された映像信号に対し処理を行なう
カメラ信号処理部6、CCD3の出力から欠陥を検出す
る欠陥検出回路7、欠陥を補正し、画像を出力する欠陥
補正回路8、絞り1を制御する絞り制御回路9、CCD
3に電荷を蓄積するためのTG(Timing Generator)1
0が接続されている。
The system is composed of an aperture 1, a lens 2 and a C
The optical system of the video camera is composed of the CD 3, a sample / hold circuit (S / H) 4 for sampling a video signal from the CCD 3, and an analog / digital converter (A / H) for converting the sampled video signal into a digital signal.
D) 5, a camera signal processing unit 6 for processing the digitized video signal, a defect detection circuit 7 for detecting a defect from the output of the CCD 3, a defect correction circuit 8 for correcting the defect and outputting an image, and an aperture 1. Control circuit 9 for controlling the CCD
TG (Timing Generator) 1 for accumulating electric charge in 3
0 is connected.

【0013】また、ビデオカメラのシステム全体を制御
するためにCPU11が用いられている。CPU11
は、その動作機能としてキー入力部12、EEPROM
(Electric Erasable Program ROM )制御部13、欠陥
検出・補正情報作成部14、カメラ信号制御部15、T
G制御部16、絞り制御部17を有している。また、C
PU11には記憶手段としてのEEPROM18と、操
作手段としてのスタートキー19、検出レベル設定キー
20、領域設定キー21、優先順位設定キー22等が設
けられている。尚、CPU11の内部の構成は個別の回
路で構成してもよいものである。
A CPU 11 is used to control the entire video camera system. CPU11
Is a key input unit 12, an EEPROM,
(Electric Erasable Program ROM) control unit 13, defect detection / correction information creation unit 14, camera signal control unit 15, T
It has a G control unit 16 and an aperture control unit 17. Also, C
The PU 11 is provided with an EEPROM 18 as storage means, a start key 19, a detection level setting key 20, an area setting key 21, a priority setting key 22 and the like as operation means. Incidentally, the internal configuration of the CPU 11 may be constituted by individual circuits.

【0014】つぎにシステムの動作について説明する。
まず、被写体23は絞り1からレンズ2を通してCCD
3上に結像され、画像信号に変換される。CCD3から
出力される画像のアナログ信号はサンプルホールド回路
4で、サンプリングされアナログ・デジタルコンバータ
5でデジタル信号に変換される。このデジタル信号はカ
メラ信号処理部6により通常の信号処理がなされ、欠陥
検出回路7、欠陥補正回路8で欠陥補正に供給される。
Next, the operation of the system will be described.
First, the subject 23 is CCD from the aperture 1 through the lens 2
3 and is converted into an image signal. An analog signal of an image output from the CCD 3 is sampled by a sample and hold circuit 4 and converted into a digital signal by an analog / digital converter 5. This digital signal is subjected to normal signal processing by a camera signal processing unit 6 and supplied to a defect detection circuit 7 and a defect correction circuit 8 for defect correction.

【0015】さて、スタートキー19から補正操作の指
示が入力されると、これを受けてキー入力部12はEE
PROM制御部13に対してEEPROM18から欠陥
の検出レベルと補正の優先度の情報を読み込むことを指
示し、同時にカメラ信号制御部15、TG制御部16、
絞り制御部17に対して欠陥補正の動作状態にあること
を知らせる。
When an instruction for a correction operation is input from the start key 19, the key input unit 12 receives the instruction and performs EE.
The PROM control unit 13 is instructed to read the information on the defect detection level and the correction priority from the EEPROM 18, and at the same time, the camera signal control unit 15, the TG control unit 16,
It notifies the aperture control unit 17 that it is in the defect correction operation state.

【0016】ここで、EEPROM18には欠陥検出回
路7で検出された欠陥データ情報、検出レベル設定キー
20で設定された検出レベル情報、領域設定キー21で
設定された領域区分の情報、優先順位設定キー22で設
定された各領域の優先順位の情報等が記録されている。
さらに、CCD3を製造した時の製造工程で測定された
欠陥情報が記録されていてもよい。
The EEPROM 18 stores defect data information detected by the defect detection circuit 7, detection level information set by a detection level setting key 20, information of an area division set by an area setting key 21, and priority setting. Information on the priority of each area set by the key 22 is recorded.
Further, defect information measured in a manufacturing process when the CCD 3 is manufactured may be recorded.

【0017】EEPROM制御部13はEEPROM1
8から読み込んだ欠陥補正の情報を欠陥検出・補正情報
作成部14に入力し、ここでこの情報に基づいて欠陥検
出回路7、欠陥補正回路8用の情報が作成され、欠陥検
出回路7、欠陥補正回路8に供給される。また、欠陥画
素の検出はCCD3に光を当てない状態で測定するた
め、絞り制御部17は外光を遮断するために絞り制御回
路9に対して絞り1を閉じるように指示すると共に、T
G制御部16はTG10に対してCCD3を電荷蓄積状
態にするように制御する。また、カメラ信号制御部15
は欠陥検出回路7、欠陥補正回路8に対して欠陥検出と
欠陥補正の状態であることを指示する。
The EEPROM control unit 13 includes an EEPROM 1
8 is input to the defect detection / correction information creation unit 14, where information for the defect detection circuit 7 and the defect correction circuit 8 is created based on this information. The correction signal is supplied to the correction circuit 8. In addition, since the detection of the defective pixel is performed in a state where light is not irradiated to the CCD 3, the aperture control unit 17 instructs the aperture control circuit 9 to close the aperture 1 in order to block external light,
The G control unit 16 controls the TG 10 so that the CCD 3 is in the charge accumulation state. Also, the camera signal control unit 15
Indicates to the defect detection circuit 7 and the defect correction circuit 8 that they are in the state of defect detection and defect correction.

【0018】上述した状態で、CCD3で撮影された映
像信号は、その画素の欠陥が、領域の優先順に、さらに
その領域内の欠陥の大きさ順に補正され、改善された映
像信号として出力される。
In the above-mentioned state, in the video signal photographed by the CCD 3, the defect of the pixel is corrected in the order of the priority of the region and further in the order of the size of the defect in the region, and is output as an improved video signal. .

【0019】つぎに、本発明を特徴づける領域の分割と
優先順位、欠陥レベルと補正順位の関係について説明す
る。
Next, a description will be given of the relationship between the area division and the priority order, the defect level and the correction order, which characterize the present invention.

【0020】図2に示すようにCCD3には欠陥画素a
〜fがあり、欠陥画素a、bは領域Aに、欠陥画素c、
dは領域Bに、欠陥画素e、fは領域Cに存在するもの
とする。尚、領域Aは座標A0 (xA0,yA0)とA
1 (xA1,yA1)を対角線とする矩形の領域であり、領
域Bは座標B0 (xB0,yB0)とB1 (xB1,yB1)を
対角線とする矩形の領域から領域Aを除いた領域であ
り、領域Cは撮像面31から領域Aと領域Bを除いた領
域である。
As shown in FIG. 2, a defective pixel a
To f, defective pixels a and b are located in area A, defective pixels c and
It is assumed that d exists in the area B, and the defective pixels e and f exist in the area C. The area A is represented by coordinates A 0 (x A0 , y A0 ) and A
1 (x A1 , y A1 ) is a rectangular area having a diagonal line, and an area B is an area from a rectangular area having coordinates B 0 (x B0 , y B0 ) and B 1 (x B1 , y B1 ) as a diagonal line. A is a region excluding A, and a region C is a region obtained by excluding the regions A and B from the imaging surface 31.

【0021】また、欠陥画素の欠陥レベルは表1に示す
ように、領域Aでは欠陥画素a,b、領域Bでは欠陥画
素c,d、領域Cでは欠陥画素e,fの順にレベルが高
いものとする。尚、表1中の「1024」とは出力のフ
ルスケールである。
As shown in Table 1, the defect levels of defective pixels are higher in the order of defective pixels a and b in area A, defective pixels c and d in area B, and defective pixels e and f in area C. And Note that “1024” in Table 1 is the full scale of the output.

【表1】 [Table 1]

【0022】また、欠陥補正の優先度は表2に示すよう
に、領域A,領域B,領域Cの順に高いものとする。
Further, as shown in Table 2, the priority of defect correction is higher in the order of area A, area B, and area C.

【表2】 [Table 2]

【0023】また、検出レベル選択は、その選択段階を
表3に示すように「0」から「3」までに設定している
が、ここでは検出レベル選択の「1」を選択する。この
検出レベルでは、「16/1024」以上の出力レベル
を有する画素が全て欠陥画素として検出される。尚、
「16/1024」とは絞りを閉じた状態で出力のフル
スケールを「1024」としたときに出力が「16」で
あるレベルを示す。
In the detection level selection, the selection stage is set from "0" to "3" as shown in Table 3, but here "1" of the detection level selection is selected. At this detection level, all pixels having an output level of “16/1024” or more are detected as defective pixels. still,
“16/1024” indicates a level at which the output is “16” when the full scale of the output is “1024” with the aperture closed.

【表3】 [Table 3]

【0024】ところで、欠陥画素を全て検出し、それら
全てを補正することができればよいことは当然である。
しかしながら、従来例でも述べたように、回路規模等の
面から補正可能な数が制限されることが現実である。こ
の例では補正できる数を3個とし、検出レベル選択を
「1」とすると表1から分かるように欠陥画素a〜fの
6個は全て検出されることになる。従って3個は補正す
ることができるが、残りの3個は補正できない。
By the way, it is only necessary to detect all defective pixels and correct them all.
However, as described in the conventional example, the number that can be corrected is actually limited in terms of the circuit scale and the like. In this example, assuming that the number that can be corrected is three and the detection level selection is “1”, as can be seen from Table 1, all six defective pixels a to f are detected. Therefore, three can be corrected, but the remaining three cannot.

【0025】つぎに補正する3個の選定について説明す
る。まず、表2から優先度の最も高い領域Aの欠陥画素
から補正を行なう。領域Aには欠陥レベルが「24/1
024」の欠陥画素aと、欠陥レベルが「18/102
4」の欠陥画素bの2つがある。欠陥画素aは欠陥画素
bよりも欠陥レベルが高いため、まず、欠陥画素aが補
正され、つぎに欠陥画素bが補正される。
Next, the selection of the three corrections will be described. First, correction is performed from the defective pixel in the area A having the highest priority according to Table 2. In the region A, the defect level is “24/1
024 ”and the defect level“ 18/102 ”
4 ”defective pixel b. Since the defective pixel a has a higher defect level than the defective pixel b, the defective pixel a is corrected first, and then the defective pixel b is corrected.

【0026】補正可能数3個にまだ満たないため、次に
優先度の高い領域Bの欠陥画素の補正を行なう。領域B
には欠陥レベルが「28/1024」の欠陥画素cと、
欠陥レベルが「22/1024」の欠陥画素dの2つが
あるが、欠陥画素cは欠陥画素dよりも欠陥レベルが高
いため欠陥画素cがまず補正される。これで補正できる
数の上限に達したため、補正は終了し、欠陥画素dおよ
び領域Cの欠陥画素e、fの補正は行なわれない。
Since the number of correctable pixels is less than three, the defective pixel in the area B having the next highest priority is corrected. Area B
Has a defective pixel c with a defect level of “28/1024”;
There are two defective pixels d having a defect level of “22/1024”, but the defective pixel c is corrected first because the defective pixel c has a higher defect level than the defective pixel d. Since the upper limit of the number that can be corrected is reached, the correction is completed, and the correction of the defective pixel d and the defective pixels e and f in the area C is not performed.

【0027】以上説明したように欠陥画素a,b,cが
補正されることになるが、従来の方法では撮像面全ての
領域中で欠陥レベルの高いものから順に補正が行なわれ
ていたため、欠陥画素c,e,aの順に補正されてい
た。この場合、画面中央部に設定した領域Aの欠陥画素
bは補正されないため、画像品位に大きな影響を与える
中央付近の欠陥はそのまま残ることになるが、本発明で
は、この問題が解消され、視覚的に表示画像の品位が向
上されることになる。
As described above, the defective pixels a, b, and c are corrected. However, in the conventional method, the correction is performed in order from the one having the highest defect level in the entire area of the imaging surface. The correction was performed in the order of the pixels c, e, and a. In this case, the defective pixel b in the area A set at the center of the screen is not corrected, so that the defect near the center, which has a great effect on the image quality, remains as it is. Thus, the quality of the displayed image is improved.

【0028】つぎに、上述した欠陥補正に関して図3の
フローチャートを参照して説明する。
Next, the above-described defect correction will be described with reference to the flowchart of FIG.

【0029】まず、スタートキー19から欠陥検出・欠
陥補正の指示が入力されると、EEPROM18から読
み込んだデータに基づき、欠陥検出・補正情報作成部1
4で欠陥検出レベルの設定(ステップS101)と、欠
陥検出領域の設定(ステップS102)が行なわれ、欠
陥検出回路7に伝達する。つぎに、外光を遮断するため
に絞り制御部17からの信号で絞り制御回路9を介して
絞り1を閉じ(ステップS103)、欠陥の検出を容易
にするためにTG制御部16からの信号でTG10を介
してCCD3を蓄積モードにする(ステップS10
4)。その後、欠陥検出回路7で欠陥が検出され、欠陥
補正回路8で欠陥が補正される(ステップS105)。
First, when an instruction for defect detection / defect correction is input from the start key 19, the defect detection / correction information creation unit 1 is operated based on the data read from the EEPROM 18.
In step 4, setting of a defect detection level (step S101) and setting of a defect detection area (step S102) are performed and transmitted to the defect detection circuit 7. Next, the aperture 1 is closed via the aperture control circuit 9 with a signal from the aperture control unit 17 to block external light (step S103), and a signal from the TG control unit 16 is used to facilitate defect detection. To set the CCD 3 to the accumulation mode via the TG 10 (step S10).
4). Thereafter, the defect is detected by the defect detection circuit 7, and the defect is corrected by the defect correction circuit 8 (step S105).

【0030】つぎに、上述したステップS105におけ
る、補正すべき欠陥の選定について、図4のフローチャ
ートを参照して詳しく説明する。尚、図4に用いられて
いる記号はそれぞれ、つぎのものを表すものとする。 i:領域番号 j:欠陥補正番号 k:領域iにおける欠陥検出個数 l:領域iの欠陥リスト m:補正リスト n:検出用カウンタ Imax :領域の最大数 Jmax :補正可能な最大数
Next, the selection of a defect to be corrected in step S105 will be described in detail with reference to the flowchart of FIG. The symbols used in FIG. 4 represent the following, respectively. i: area number j: defect correction number k: number of detected defects in area i 1: defect list of area i m: correction list n: detection counter I max : maximum number of areas J max : maximum number of correctable areas

【0031】まず初期設定が行なわれ、所定数に分割さ
れた領域の領域番号iを0とする(ステップS20
1)。つぎにステップ208からの戻りのルートにより
増加する領域番号iが領域の最大数Imax を越えていな
いか否かを判別し(ステップS202)、越えていれば
(No)、処理すべき領域はないので補正優先順位の処
理は終了する。
First, initialization is performed, and the area number i of the area divided into a predetermined number is set to 0 (step S20).
1). Next area number i increased by route returned from the step 208 it is determined whether or not exceeded the maximum number I max in the region (step S202), if the past (No), the area to be treated Since there is no correction priority order, the process of the correction priority order ends.

【0032】ステップS202で越えていなければ(Y
es)、領域番号iの領域の欠陥画素数を検出する(ス
テップS203)。つぎに、領域番号iの領域で検出し
た欠陥画素について欠陥リストlを作成する(ステップ
S204)。欠陥リストlのなかで検出レベルの大きい
順に並べ、領域番号iの領域における補正優先度をきめ
る準備をする(ステップS205)。
If it does not exceed at step S202 (Y
es), the number of defective pixels in the area with the area number i is detected (step S203). Next, a defect list 1 is created for the defective pixel detected in the area of the area number i (step S204). The defect list 1 is arranged in the descending order of the detection level to prepare for determining the correction priority in the area of the area number i (step S205).

【0033】つぎに、検出用カウンタnをクリアし(ス
テップS206)、CCD全ての領域において補正でき
る数Jmax を超えていないか否かを判別する(ステップ
S207)。超えていれば(No)、補正可能な数の上
限に達した場合であって、領域番号iをi+1として次
の優先順位の領域に変更し(ステップS208)、ステ
ップS202に戻って、再度ステップS207までを繰
り返す。所定の繰り返しによって領域番号iが最大数I
max を超えるとステップS202から処理の終了に向か
う。
Next, the detection counter n is cleared (step S206), and it is determined whether or not the number Jmax that can be corrected in all regions of the CCD is not exceeded (step S207). If it exceeds (No), it means that the upper limit of the correctable number has been reached, the area number i is changed to i + 1, and the area is changed to the area of the next priority (step S208). Steps up to S207 are repeated. The area number i becomes the maximum number I by a predetermined repetition.
If it exceeds max , the process proceeds from step S202 to the end of the process.

【0034】ステップS207で越えていなければ(Y
es)、領域iにおいてカウンタnが検出した数kを超
えていないか否かを判別する(ステップS209)。超
えていれば(No)、領域iのリストがなくなった場合
であって、ステップS208において領域番号iをi+
1として次の優先順位の領域に変更し、ステップS20
2に戻って、再度ステップS209までを繰り返す。こ
の過程で領域iが最大数Imax を超えるとステップS2
02から処理の終了に向かう。
If it does not exceed at step S207 (Y
es) It is determined whether or not the number k detected by the counter n in the area i does not exceed k (step S209). If it exceeds (No), it means that the list of the area i has disappeared, and the area number i is changed to i +
The area is changed to the next priority area as 1 and step S20
Returning to step 2, step S209 is repeated again. If region i in this process is greater than the maximum number of I max step S2
From 02, the process ends.

【0035】一方、越えていなければ(Yes)、ソー
トされた欠陥リストlをレベルの高い順に補正リストm
に加えていく(ステップS210)。つぎに、欠陥補正
番号jをj+1とし(ステップS211)、検出用カウ
ンタnをn+1とし(ステップS212)、S207に
戻って同様に優先順位を補正リストmに加えていき、補
正可能な数の欠陥画素について優先順位が決定されてい
くものである。
On the other hand, if it does not exceed (Yes), the sorted defect list 1 is corrected to the correction list m in descending order of level.
(Step S210). Next, the defect correction number j is set to j + 1 (step S211), the detection counter n is set to n + 1 (step S212), and the process returns to step S207, and the priority is similarly added to the correction list m, and the number of defects that can be corrected is determined. The priority order is determined for the pixels.

【0036】尚、本実施の形態例では優先度の高い領域
を画面中央部に選択する場合について説明したが、これ
に限ることなく任意の領域に着目して高い優先度を設定
してもよい。また、優先度の高い領域を包含して次の優
先度の領域を設定することに限ることなく、画面上に分
散して設定してもよいことは当然である。
In this embodiment, the case where a high-priority area is selected at the center of the screen has been described. However, the present invention is not limited to this, and a high priority may be set by focusing on an arbitrary area. . In addition, it goes without saying that the setting is not limited to setting the next priority area including the high priority area, but may be set dispersedly on the screen.

【0037】[0037]

【発明の効果】従って本発明の固体撮像装置によると、
記憶回路等の構成を大規模にすることなく、画質の改善
に効果的な領域の欠陥画素に対して優先的に補正を行な
うので視覚的に表示画像の品位を向上させることが可能
になる。
Therefore, according to the solid-state imaging device of the present invention,
Since the correction is preferentially performed on the defective pixels in the area effective for improving the image quality without increasing the size of the configuration of the storage circuit and the like, the quality of the displayed image can be visually improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 欠陥補正を行なうためのシステム構成図であ
る。
FIG. 1 is a system configuration diagram for performing defect correction.

【図2】 CCDの分割領域と欠陥画素の位置を示す図
である。
FIG. 2 is a diagram showing a divided area of a CCD and positions of defective pixels.

【図3】 欠陥補正のフローチャートである。FIG. 3 is a flowchart of defect correction.

【図4】 補正する欠陥画素の選定に関するフローチャ
ートである。
FIG. 4 is a flowchart relating to selection of a defective pixel to be corrected.

【図5】 従来のCCDの欠陥補正について説明するた
めの図である。
FIG. 5 is a diagram for explaining a conventional defect correction of a CCD.

【符号の説明】[Explanation of symbols]

1…絞り、2…レンズ、3…CCD、4…サンプルホー
ルド回路、5…アナログ・デジタルコンバータ、6…カ
メラ信号処理部、7…欠陥検出回路、8…欠陥補正回
路、9…絞り制御回路、10…TG、11…CPU、1
2…キー入力部、13…EEPROM制御部、14…欠
陥検出・補正情報作成部、15…カメラ信号制御部、1
6…TG制御部、17…絞り制御部、18…EEPRO
M、19…スタートキー、20…検出レベル設定キー、
21…領域設定キー、22…優先順位設定キー、23…
被写体、31…撮像面、32…有効画素領域、33…無
効画素領域、a〜h…欠陥画素
DESCRIPTION OF SYMBOLS 1 ... Aperture, 2 ... Lens, 3 ... CCD, 4 ... Sample hold circuit, 5 ... Analog-to-digital converter, 6 ... Camera signal processing unit, 7 ... Defect detection circuit, 8 ... Defect correction circuit, 9 ... Aperture control circuit, 10 TG, 11 CPU, 1
2 key input unit, 13 EEPROM control unit, 14 defect detection / correction information creation unit, 15 camera signal control unit, 1
6 TG control unit, 17 iris control unit, 18 EEPRO
M, 19: start key, 20: detection level setting key,
21 ... area setting key, 22 ... priority setting key, 23 ...
Subject, 31: imaging surface, 32: effective pixel area, 33: invalid pixel area, ah: defective pixel

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固体撮像素子の撮像領域を、複数の領域
に分割する領域分割手段と、 前記領域分割手段により分割された領域の各々につい
て、欠陥画素と、該欠陥画素の出力信号レベルとを検出
する欠陥画素検出手段と、 前記欠陥画素の欠陥に関する情報を記憶する記憶手段
と、 前記領域分割手段により分割された領域について欠陥補
正の優先度を設定する優先度設定手段と、 前記優先度設定手段により設定された領域の優先順であ
って、さらに、前記欠陥画素検出手段により検出された
欠陥画素の出力信号のレベル順に従って、欠陥画素の出
力信号を前記記憶手段に記憶されている、欠陥に関する
情報に基づいて補正する欠陥補正手段とを具備したこと
を特徴とする固体撮像装置。
A region dividing unit that divides an imaging region of the solid-state imaging device into a plurality of regions; a defective pixel and an output signal level of the defective pixel for each of the regions divided by the region dividing unit. Defective pixel detecting means for detecting; storage means for storing information on the defect of the defective pixel; priority setting means for setting a priority of defect correction for the area divided by the area dividing means; Means for storing the output signals of the defective pixels in the storage means in accordance with the priority order of the areas set by the means and further according to the level order of the output signals of the defective pixels detected by the defective pixel detection means. A solid-state imaging device, comprising: a defect correction unit configured to perform correction based on information related to the solid-state imaging device.
JP10282942A 1998-10-05 1998-10-05 Solid-state image pickup device Pending JP2000115644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10282942A JP2000115644A (en) 1998-10-05 1998-10-05 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10282942A JP2000115644A (en) 1998-10-05 1998-10-05 Solid-state image pickup device

Publications (2)

Publication Number Publication Date
JP2000115644A true JP2000115644A (en) 2000-04-21
JP2000115644A5 JP2000115644A5 (en) 2005-10-13

Family

ID=17659118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10282942A Pending JP2000115644A (en) 1998-10-05 1998-10-05 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JP2000115644A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002185857A (en) * 2000-12-08 2002-06-28 Olympus Optical Co Ltd Imaging device
JP2005184782A (en) * 2003-11-28 2005-07-07 Pentax Corp Defective pixel detection apparatus, defective pixel detection method, and defective pixel detection program
JP2008011567A (en) * 1999-10-27 2008-01-17 Sanyo Electric Co Ltd Image signal processing device
CN100395586C (en) * 2003-05-09 2008-06-18 奥林巴斯株式会社 Defect correction device and defect correction method
JP2009261842A (en) * 2008-04-30 2009-11-12 Fujifilm Corp Radiographic imaging apparatus and method for detecting defective image
JP2009278639A (en) * 2009-07-13 2009-11-26 Canon Inc Imaging device and its control method
JP2009284177A (en) * 2008-05-21 2009-12-03 Canon Inc Imaging device and method of controlling imaging device
JP2010050730A (en) * 2008-08-21 2010-03-04 Nikon Corp Imaging apparatus and defect correction apparatus
JP2010249621A (en) * 2009-04-15 2010-11-04 Shimadzu Corp Two-dimensional image detector
JP2011135532A (en) * 2009-12-25 2011-07-07 Toshiba Corp Head-separated type camera apparatus
JP2012235536A (en) * 2012-09-04 2012-11-29 Canon Inc Imaging device and control method therefor
JP2013211636A (en) * 2012-03-30 2013-10-10 Nikon Corp Imaging device and imaging program

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011567A (en) * 1999-10-27 2008-01-17 Sanyo Electric Co Ltd Image signal processing device
JP4515627B2 (en) * 2000-12-08 2010-08-04 オリンパス株式会社 Imaging device
JP2002185857A (en) * 2000-12-08 2002-06-28 Olympus Optical Co Ltd Imaging device
CN100395586C (en) * 2003-05-09 2008-06-18 奥林巴斯株式会社 Defect correction device and defect correction method
JP2005184782A (en) * 2003-11-28 2005-07-07 Pentax Corp Defective pixel detection apparatus, defective pixel detection method, and defective pixel detection program
JP4598180B2 (en) * 2003-11-28 2010-12-15 Hoya株式会社 Defective pixel detection device, defective pixel detection method, and defective pixel detection program
JP2009261842A (en) * 2008-04-30 2009-11-12 Fujifilm Corp Radiographic imaging apparatus and method for detecting defective image
JP2009284177A (en) * 2008-05-21 2009-12-03 Canon Inc Imaging device and method of controlling imaging device
JP2010050730A (en) * 2008-08-21 2010-03-04 Nikon Corp Imaging apparatus and defect correction apparatus
JP2010249621A (en) * 2009-04-15 2010-11-04 Shimadzu Corp Two-dimensional image detector
JP2009278639A (en) * 2009-07-13 2009-11-26 Canon Inc Imaging device and its control method
JP2011135532A (en) * 2009-12-25 2011-07-07 Toshiba Corp Head-separated type camera apparatus
JP2013211636A (en) * 2012-03-30 2013-10-10 Nikon Corp Imaging device and imaging program
JP2012235536A (en) * 2012-09-04 2012-11-29 Canon Inc Imaging device and control method therefor

Similar Documents

Publication Publication Date Title
JP3773773B2 (en) Image signal processing apparatus and pixel defect detection method
JP5266957B2 (en) Defective pixel detection device, imaging device, and defective pixel detection method
US20020015111A1 (en) Image processing apparatus and its processing method
US20080278609A1 (en) Imaging apparatus, defective pixel correcting apparatus, processing method in the apparatuses, and program
JP2000092397A (en) Pixel defect detecting device for solid-state image pickup device
JP2000115644A (en) Solid-state image pickup device
JP5523065B2 (en) Imaging apparatus and control method thereof
JP2012044452A (en) Imaging device and defective pixel detecting method for the same
JP2013162173A (en) Imaging apparatus and program
JP3696069B2 (en) Method and apparatus for detecting defective pixels of solid-state image sensor
JP3884952B2 (en) Imaging device
JP2004015191A (en) Apparatus and method for correcting flaw in solid-state imaging device
JPH1127585A (en) Method for detecting defective pixel of solid-state image-pickup element
JP3128485B2 (en) Detecting device for defective pixels of solid-state image sensor
JPH07336605A (en) Picture element defect correction device
JP3767188B2 (en) Electronic camera and signal correction method
JPH09307815A (en) Infrared ray image pickup device
JPH08317292A (en) Detecting method for defect of solid-state image pickup element
JP2004029105A (en) Autofocus device and af evaluated value acquiring method
JP3146762B2 (en) Defect detection device for solid-state imaging device and camera using the same
JP3990059B2 (en) Apparatus and method for correcting defective pixel of imaging device
JP4146186B2 (en) Solid-state imaging device and defect correction method thereof
JPH1127584A (en) Circuit and method for detecting defect in solid-state image-pickup element and camera employing them
JP3531601B2 (en) Memory control method
JP2018101896A (en) Imaging apparatus, control method of the same, and program

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202